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Quantum fluctuation theorem for heat exchange in the strong coupling regime
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We study quantum heat exchange in a multistate impurity coupled to two thermal reservoirs. Allowing for
strong system-bath interactions, we show that a steady-state heat-exchange fluctuation theorem holds, though the
dynamical processes nonlinearly involve the two reservoirs. We accomplish a closed expression for the cumulant
generating function, and use it obtain the heat current and its cumulants in a nonlinear thermal junction, the
two-bath spin-boson model.
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Exact fluctuation relations for nonequilibrium classical sys-
tems have been recently discovered and exemplified, dealing
with work and entropy fluctuations in various (open, closed,
driven) systems.1 In particular, the fluctuation theorem (FT)
for entropy production quantifies the probability of negative
entropy generation, measuring “second law violation.”2,3 Both
transient and steady-state fluctuation theorems (SSFTs) have
been derived, where the latter measures entropy production
in nonequilibrium steady-state systems over a long interval.
In the context of heat exchange between two equilibrium
reservoirs ν = L,R, the SSFT can be roughly stated as
ln[Pt (+ω)/Pt (−ω)] = �βω.4,5 Here Pt (ω) denotes the prob-
ability distribution of the net heat transfer ω, from L to R, over
the (long) interval t , with �β = T −1

R − T −1
L as the difference

between the inverse temperatures of the reservoirs. A related
quantity is the cumulant generating function (CGF), providing
general relations between transport coefficients under the FT
symmetry.6,7

Extending the work and heat FT to the quantum domain
has recently attracted significant attention.7,8 Specifically, a
quantum exchange FT, for the transfer of energy between
two reservoirs maintained at different temperatures, has been
derived in Refs. 4, 9, and 10 using projective measurements,
and in Refs. 11 and 12, based on the unraveling of the quantum
master equation (QME). These derivations assume that the
interaction between the two thermal baths is weak, and can
be neglected with respect to overall energy changes. Using the
Keldysh approach, an exact analysis was carried out in Ref. 13.
However, it is valid only for harmonic systems. It is thus an
open question as to whether a heat-exchange FT is obeyed by
an anharmonic quantum system strongly coupled to multiple
reservoirs.

Practically, understanding and controlling energy transport
and heat dissipation in nanoscale junctions is crucial for mak-
ing further progress in device miniaturization.14 Theoretical
studies adopting simple models can reveal the role of different
system parameters on the transport mechanisms.15–18 How-
ever, such treatments either assume weak coupling between
the nanoscale object and the environment, an assumption
that is not always justified, or are limited to very simple
models.

It is our objective here to investigate quantum heat exchange
in two-terminal impurity models: (i) To derive the SSFT
for heat currents in open quantum systems, incorporating
anharmonic interactions, allowing for strong system-bath
interactions (”strong coupling”), and (ii) to obtain the CGF

and gain explicit expressions for the heat current and its second
moment, useful for understanding heat current characteristics
for anharmonic strongly coupled systems.

Our analysis begins with a general model for the impurity,
reservoirs and the interaction form. Describing the dynamics at
the level of the noninteracting-blip approximation (NIBA),19

a scheme accommodating strong system-bath interactions, we
derive a QME for the system dynamics, under the Markovian
limit. Unraveling these equations into trajectories with a
particular amount of net energy dissipated, e.g., to the R

reservoir, a heat-exchange SSFT is verified. We also obtain
the CGF, independent of the particular physical realization.
The scheme is exemplified on the two-terminal spin-boson
model.

Model. Consider a quantum impurity (system) placed
between two thermal reservoirs (baths). The energy structure
of the impurity is not necessarily uniform, thus anharmonic
systems, with finite spectrum and uneven energy spacings, are
comprised. Further, system-bath interactions are potentially
strong relative to the system energetics. We adopt the dressed-
tunneling Hamiltonian

H =
∑

n

εn|n〉〈n| +
∑

ν

Hν

+
∑
n>m

�nm

2
(|n〉〈m|e−i�nm + |m〉〈n|ei�nm), (1)

where |n〉 denotes the impurity quantum states, coupled
through the tunneling elements �nm, dressed by the baths
operator �nm = �nmL + �nmR . The operators �nmν depend
on the coordinates of the ν = L,R bath and may represent,
for example, a collection of displacements or momentum op-
erators as in the standard small polaron model.19 Furthermore,
different bath operators may couple to different transitions.
The thermal reservoirs Hν are assumed to be in a canonical
state, maintained at a temperature Tν = β−1

ν . Besides that, we
do not specify the reservoirs, and they may be composed of
fermions, spins, photons, or phonons. The Hamiltonian (1)
allows only for energy-transfer processes between the two
baths, mediated by a system excitation. Transfer of particles is
not considered in the present Rapid Communication.

Population dynamics. System dynamics is explored at the
level of the NIBA scheme:20–22 Applying the Born approxima-
tion to the dressed Hamiltonian (1), equations of motion for
the impurity reduced density matrix can be readily obtained.23

This approximation is generally valid for � < ωc, where ωc
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is a cutoff of the reservoirs modes, at high temperatures and
in the strong coupling regime.19 Furthermore, we apply the
secular approximation, assuming that energy spacings in the
system are larger than bath-induced relaxation rates. This
results in the decoupling of the diagonal and nondiagonal
reduced density matrix equations.23 Finally, we also execute
the Markov approximation, assuming that the reservoirs’
dynamics is fast relative to the system relaxation dynamics.
For a two-state system coupled to a bosonic bath, these set
of approximations lead to the celebrated Marcus expression,
describing a donor-acceptor nonadiabatic electron transfer
rate.24 In the present model we acquire quantum kinetic
equations for the population pn,

ṗn = −pn

∑
m�=n

Cnm(ωnm) +
∑
m�=n

pmCnm(ωmn). (2)

The nontrivial aspect of these equation is that the transition rate
from state n to m, Cnm(ωnm), is a convolution of L-induced
and R-induced processes16

Cnm(ωnm) =
∫ ∞

−∞
eiωnmtCnmL(t)CnmR(t)dt

=
∫ ∞

−∞
CnmL(ωnm − ω)CnmR(ω)dω, (3)

describing a joint L-R energy-transfer process. Here ωnm =
εn − εm. The indices of Cnm are ordered such that n > m. The
ν-bath correlation function is given by the thermal average

Cnmν(t) = �nm

2
〈ei�nmν (t)e−i�nmν (0)〉. (4)

The operators are written in the interaction representation
�nmν(t) = eiHν t�nmνe

−iHν t . In the frequency domain we write
Cnmν(ω) = ∫ ∞

−∞ dt eiωtCnmν(t), which are the elements in (3).
While these bath-specific rates satisfy a detailed balance
relation

Cnmν(ω)

Cnmν(−ω)
= eωβν , (5)

an analogous condition does not hold for the combined rates
Cnm(ωnm) ruling the dynamics in Eq. (2). This fact reflects rich-
complex dynamics, as we discuss immediately. Since energy is
dissipated or absorbed in such a complex L-R process, energy
“counting” is a nontrivial task, as reflected in the resolved
master equation (6).

The QME (2) encloses complex physical processes as
Eq. (3) draws nontrivial transfer rates. For example, when
the system decays, making a transition from state n to m, it
disposes the energy ωnm into both reservoirs cooperatively;
an energy ω is dissipated into the R bath while the L bath
gains (or contributes) the rest, ωnm − ω. Similarly, excitation
of the system occurs through an L-R compound process.
We highlight the three nontrivial mechanisms involved here:
(i) Nonresonance energy-transfer processes are allowed, where
each reservoir donates (absorbs) an energy which does not
overlap with the system’s energy spacings. (ii) Anharmonic
processes are allowed. For example, in the context of vi-
brational energy transfer, multiphonon processes are incor-
porated within the relaxation rates Cnm—see, e.g., Eq. (14).
(iii) The transport process takes place, conjoining the reser-
voirs’ dynamics in a nonadditive manner, as discussed above.

In contrast, the weak coupling limit11,12,16 admits only resonant
transmission processes and single-phonon effects. Moreover,
in the weak coupling limit the reservoirs additively act on the
system.25

Cumulant generating function. We define the function
Pt (n,ω) as the probability distribution that within the time
t a net energy ω has been dissipated into the R bath, with
the system populating the n state at time t . For later use we
also construct Pt (ω) = ∑

n Pt (n,ω), the distribution of ω at t ,
irrespective of the system state. The time evolution of Pt (n,ω)
obeys

Ṗt (n,ω) =
∑
m�=n

∫ ∞

−∞
[Pt (m,ω̃)CnmR(ω − ω̃)

×CnmL(ω̃ − ω − ωnm)dω̃]

−Pt (n,ω)
∑
m�=n

∫ ∞

−∞
CnmR(ω̃)CnmL(ωnm − ω̃)dω̃.

(6)

This can be justified by energy resolving the population
dynamics in Eq. (2), then collecting the matching energy terms
from the left- and the right-hand side of the equation. The first
term here describes a process whereby the time t a net energy ω̃

has been damped into R, whereas the system occupies the state
m. At the moment t the system (assisted by the bath) transits
from m → n, further dissipating an energy ω − ω̃ into the R

reservoir. Similarly, the second term collects all transitions
which deplete Pt (n,ω). Next we introduce the counting field
χ and Fourier transform the resolved probabilities Pt (n,χ ) =∫ ∞
−∞ dω eiωχPt (n,ω), yielding

Ṗt (n,χ ) = −Pt (n,χ )
∑
m�=n

Cnm(ωnm) +
∑
m>n

Pt (m,χ )f +
mn(χ )

+
∑
m<n

Pt (m,χ )f −
nm(χ ). (7)

For brevity, we introduce the short notation

f ±
nm(χ ) =

∫ ∞

−∞
eiωχCnmR(ω)CnmL(±ωnm − ω)dω. (8)

These equations can be encapsulated in a matrix form
|	̇(χ,t)〉 = −μ̂(χ )|	(χ,t)〉, with 	 a vector of the probabil-
ities Pt (n,χ ). We define the characteristic function Z(χ,t) =
〈I |	(χ,t)〉, with 〈I | as a left vector of unity, and the cumulant
generating function G(χ ) = limt→∞ 1

t
ln Z(χ,t), recovered

as the negative of the smallest eigenvalue of the matrix μ̂.
Steady-state fluctuation theorem. We now prove that

G(χ ) = G(i�β − χ ), implying that a SSFT for heat exchange
holds. In order to derive this relation we analyze the symmetry
properties of the matrix μ̂. For clarity, we write our proof using
a three-state impurity. Its μ̂ matrix is given by

μ̂(χ ) =

⎛
⎜⎝

μ1,1 −f +
21(χ ) −f +

31(χ )

−f −
21(χ ) μ2,2 −f +

32(χ )

−f −
31(χ ) −f −

32(χ ) μ3,3

⎞
⎟⎠ . (9)

The diagonal terms μi,i constitute the decay rates from each
level, and are independent of χ . The characteristic polynomial
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Dμ̂(χ)(λ), with the roots λ, is given by

Dμ̂(χ)(λ) = f +
31(χ )[f −

21(χ )f −
32(χ ) − (λ − μ2,2)f −

31(χ )]

− f +
21(χ )[f −

21(χ )(λ − μ3,3) − f +
32(χ )f −

31(χ )]

+ (λ − μ1,1)[(λ − μ2,2)(λ − μ3,3)

− f −
32(χ )f +

32(χ )].

One can show that the following three properties hold here,
and in higher dimensions as well: (i) μ̂(χ ) is symmetric
under the operation f +

nm(χ ) → f −
nm(χ ). Thus, the roots λ

are also symmetric in this respect. (ii) Each element in the
characteristic polynomial is cyclic, in the sense that a series
of transitions must end at the initial state. For example, the
product f +

31(χ )f −
21(χ )f −

32(χ ) describes a relaxation process
from state 3 to 1, followed by an excitation from state 1 to 2,
finishing with an excitation term f −

32(χ ), bringing the system
back to state 3. (iii) The correlation function f +

nm(χ ) satisfies
the identity

f +
nm(i�β − χ ) = eβLωnmf −

nm(χ ), (10)

gathered by manipulating Eq. (8) with (5). Under these
three properties we prove that Dμ̂(χ)(λ) = Dμ̂(i�β−χ)(λ): The
symmetric terms in the characteristic polynomial are mapped
one onto the other as a result of the symmetry (10), whereas the
system-dependent prefactors, i.e., the term eβLωnm in Eq. (10),
overall cancel, a result of the cyclic property (ii). We conclude
that the eigenvalues of μ̂ satisfy a symmetry relation, and in
particular G(χ ) = G(i�β − χ ). The probability distribution
of ω is obtained as Pt (ω) = 1

2π

∫ ∞
−∞ dχZ(χ,t)e−iχω. Since

Z(χ,t) ∼ eG(χ )t in the long time limit, a heat-exchange
fluctuation relation is resolved

lim
t→∞

1

t
ln

Pt (ω)

Pt (−ω)
= �βω

t
. (11)

The FT relation has been derived without specifying either the
system energy structure and its interaction with the reservoirs,
or the form of the reservoirs. It allows for strong coupling
between the impurity and the baths, reflected in the compound
transition rates. Moreover, an explicit expression for the CGF,
G(χ ), can now be written, bearing analytical expressions for
the current cumulants, as we achieve below for the spin-boson
model. In the right-hand side of (11) we identify the heat
current J ≡ ω/t , the total energy transferred over an interval t .

Spin-boson model. The equilibrium spin-boson (SB) model,
referring to a spin immersed in an equilibrated boson reservoir,
is an eminent model in chemistry and physics, useful for
describing, e.g., solvent-assisted electron transfer reactions
and the Kondo resonance.19 The nonequilibrium spin-boson
model, where the spin is coupled to more than one thermal
reservoir, has been suggested as a prototype model for
exploring heat transfer through nanojunctions.16,18 We now
analytically obtain the CGF, thus the current and its cumulants,
for the nonequilibrium SB model at strong coupling

H = ω0

2
σz + �

2
σx + σz

∑
ν,j

λj,ν(b†j,ν + bj,ν)

+
∑
ν,j

ωjb
†
j,νbj,ν . (12)

Here σx and σz are the Pauli matrices, ω0 is the energy gap
between the spin levels, and � is the tunneling energy. The
two reservoirs include a collection of uncoupled harmonic
oscillators, and b

†
j,ν (bj,ν) is the bosonic creation (annihilation)

operator of the mode j in the ν reservoir. The parameter
λj,ν accounts for the system-bath interaction strength. The
Hamiltonian is transformed to the displaced bath-oscillator
basis using the small polaron transformation19 HS = U †HU ,
U = eiσz�/2,

HS = ω0

2
σz + �

2
(σ+ei� + σ−e−i�) +

∑
ν,j

ωjb
†
j,νbj,ν, (13)

where σ± = 1
2 (σx ± iσy) are the auxiliary Pauli matrices,

� = ∑
ν �ν , and �ν = 2i

∑
j

λj,ν

ωj
(b†j,ν − bj,ν). Under the

NIBA, the system population obeys a convolution-type master
equation20–22 (〈σz〉 = p1 − p0)

ṗ1 = −�2

2

∫ t

0
e−Q′(t−s) cos[ω0(t − s) − Q′′(t − s)]p1(s)ds

+ �2

2

∫ t

0
e−Q′(t−s) cos[ω0(t − s) + Q′′(t − s)]p0(s)ds,

with conserved total occupation p0(t) + p1(t) = 1. The func-
tion Q(t) = ∑

ν Qν(t), made of a real and imaginary compo-
nents Qν(t) = Q′

ν(t) + iQ′′
ν(t), is defined by

Q′
ν(t) =

∫ ∞

0

Jν(ω)

πω2
[1 − cos(ωt)][1 + 2nν(ω)]dω,

Q′′
ν(t) =

∫ ∞

0

Jν(ω)

πω2
sin(ωt)dω. (14)

Here Jν(ω) = 4π
∑

j λ2
j,νδ(ω − ωj ) is the ν-bath spectral

function, and nν(ω) is the Bose-Einstein distribution.
It is of interest to carry out the analysis in the non-

Markovian limit, allowing for a long decorrelation time for the
baths. The assumption of no memory enforces a strict energy
conservation condition for processes between the system and
the environment. In contrast, in the non-Markovian regime
there is no such energy-conservation statement, and thus it is
not obvious that the FT symmetry relation (11) still holds.8,9,27

In the Markovian case the QME for the population
dynamics [Eqs. (2) and (3)] follows ṗ1 = −C(ω0)p1 +
C(−ω0)p0, with the rates C(ω0) = ∫ ∞

−∞ eiω0tCL(t)CR(t)dt ;
Cν(t) = e−Qν (t). Since only a single correlation function
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FIG. 1. (Color online) Nonequilibrium spin-boson model:
(a) Plot of Pt (ω) at various times. (b) Demonstration of the validity
of the SSFT. TL = 3, TR = 2, Eν

r = 1, ω0 = 0.5, t = 20 (◦), t = 100
(dotted), and t = 400 (�).
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matters, the level indices were discarded. Following
Eqs. (6)–(8), we identify the matrix μ̂ by

μ̂(χ ) =
(

C(−ω0) −f +(χ )

−f −(χ ) C(ω0)

)
, (15)

with f ±(χ ) = ∫ ∞
−∞ eiωχCR(ω)CL(±ω0 − ω)dω. Its smallest

eigenvalue is

G(χ ) = − 1
2 [C(ω0) + C(−ω0)]

+ 1
2

√
[C(ω0) − C(−ω0)]2 + 4f −(χ )f +(χ ). (16)

The averaged heat current can be readily obtained,

〈J 〉 ≡ 〈ω〉t
t

= dG(χ )

d(iχ )

∣∣∣
χ=0

=
∫ ∞

−∞
[CR(ω)CL(ω0 − ω)p1

−CR(−ω)CL(−ω0 + ω)p0]ω dω. (17)

The population here is calculated in steady state, p0 =
C(ω0)/[C(ω0) + C(−ω0)]. This expression was heuristically
suggested in Ref. 16, and here it is derived from the
basic dynamics. Note that the details of the function Q(t)
are not utilized in this derivation. Furthermore, Eq. (16)
provides the averaged current for non-Markovian systems
as well.26 The formal structure for the noise power is

given by

〈S〉 = d2G(χ )

d(iχ )2

∣∣∣
χ=0

= −2[C(ω0) + C(−ω0)]−1

×
[∫ ∞

−∞
ωC−(ω)dω

∫ ∞

−∞
ωC+(ω)dω + 〈J 〉2

]

+
∫ ∞

−∞
dω ω2[C+(ω)p1 + C−(ω)p0], (18)

where we defined C±(ω) = CR(±ω)CL(±ω0 ∓ ω). We can
also plot the distribution Pt (ω). Assuming high temperatures
Tν > ω0 and strong coupling, Eq. (14) can be simplified,
Q′

ν(t) = Eν
r Tνt

2, Q′′
ν(t) = Eν

r t , with the reorganization energy
defined as Eν

r = ∑
j 4λ2

j,ν/ωj .24 Using this form, Fig. 1
displays the entropy production distribution and the validity
of the SSFT (inset).

To conclude, a heat-exchange SSFT has been derived
for quantum systems incorporating strong system-bath inter-
actions and anharmonic effects. Our study provides closed
expressions for the CGF, useful for deriving the distribution of
heat fluctuations, the averaged current, and the thermal noise
power. For the spin-boson model one can show that in the
non-Markovian case the SSFT does not generally hold.27 It
is satisfied in the Markovian limit, when energy conservation
is enforced. Future work will be devoted to generalizing our
study to systems showing coherence effects.
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