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Nanostructured graphene for energy harvesting
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Engineered nonlinearities have been shown to play an important role in increasing the efficiency of energy
harvesting devices. Macroscopic prototypes using this approach have been demonstrated recently [F. Cottone,
H. Vocca, and L. Gammaitoni, Phys. Rev. Lett. 102, 080601 (2009).] Here, in order to implement such a scheme
at the nanoscale, we propose a simple device which is based on strained nanostructured graphene and discuss
how it can respond to many energy sources that, although having a low intensity, are freely available, such as
ambient vibrations or thermal noise. We discuss in some detail the case of thermal fluctuations harvesting in the
steady-state nonequilibrium regime and of ambient vibrations.
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An efficient power supply for increasingly small electronic
devices is a challenging task that could prevent prototype
nanocircuitry to move to mass production. On the other hand,
as the size of devices shrinks, their power requirements also
diminish.1 Hence, energy sources that are freely available, such
as ambient vibrations or thermal energy, become important
and allow envisaging a batteryless world of self-powered
devices.2–5 For this reason, and to pursue clean energy sources
compatible with a sustainable development, energy harvesting
and energy conversion have become a very intense field of
research.6–9

Linear mechanical resonators are the most common solu-
tion to convert vibrational into electrical energy10,11 exploiting
piezoelectric7 or capacitive transduction.12 Unfortunately, it
is not always possible to tune their resonant frequency in
the spectral region of ambient vibrations and, even when
such tuning is possible, their efficiency rapidly decreases
when moving away from the resonant frequency, which is an
important limitation especially for broad spectral densities
such as those of ambient vibrations. Cottone et al.13 have
demonstrated the role of engineered nonlinearity to improve
significantly the efficiency of noise harvesting devices. Their
macroscopic toy model consists of an inverted pendulum with a
magnet attached to its tip. The approach of an external magnet
is used to control the pendulum dynamics, pushing its tip
away from its equilibrium position and making it oscillate
around two unique and symmetric equilibrium positions. The
magnetic repulsion can be tuned in a way that the pendulum
operates as a bistable device, combining high-frequency
oscillations around one of the two equilibrium positions—
where it spends most of the time—with low-frequency, large
excursions from one to the other.

In this Rapid Communication we show that a compressed
graphene sheet can be used to implement such a bistable
device to harvest thermal fluctuations and ambient vibrations
at the nanoscale. The degree of compression ε is the only
control parameter and allows switching among three possible
regimes: (a) single-well potential (ε ∼ 0), (b) double-well
potential with allowed swings from one minimum to the other
(intermediate ε), i.e., the bistable device, and (c) double-well

potential with no commutation between the two equilibrium
positions (large ε). Yet, we show that graphene possesses an
intrinsic nonlinearity14 and can harvest thermal fluctuations
and other kinds of nonequilibrium noise, outperforming any
comparable linear oscillator, even when it is not compressed
(see, for instance, Ref. 15 for general nonlinear potentials).

Thermal fluctuations are ubiquitously present in every
dissipative system at a finite temperature. In principle, random
fluctuations in equilibrium with their surroundings cannot be
harvested without violating the second law of thermodynam-
ics. However, it has been argued that equilibrium, a concept
derived from macroscopic physics, is elusive when applied
to the atomic scale and fluctuations become important.16

Nevertheless, to avoid formal problems related to the definition
of thermodynamical equilibrium of a nanoscale system, we
restrict our discussion to the case of open systems in the
steady-state nonequilibrium regime or systems under slowly
varying local equilibrium conditions.

To calculate the deformation potential of graphene, we
perform first-principles electronic structure calculations within
density-functional theory (DFT). We use the SIESTA package,17

norm-conserving pseudopotentials, and the generalized gradi-
ent approximation18 to the exchange-correlation energy. Given
the very large number of atoms necessary to describe the
deformation that oscillating graphene undergoes, we use a
minimal basis set, though for short graphene strips satisfactory
convergence tests have been carried out against a more reliable
single-ζ polarized basis. We obtain a Young’s modulus of
0.85 TPa (assuming an effective thickness of the graphene
sheet of 3.34 Å) and a Poisson ratio of 0.18. The structures
were relaxed until all the forces were lower than 0.04 eV/Å,
except for those atoms that need to be constrained to sample
the transition states. To keep the computational load at a man-
ageable level, rather than nanoribbons, we consider infinite
graphene, which can be modeled by one single primitive cell
along the y axis, the direction perpendicular to the deformation
(see Fig. 1). The energy of a device with a given width W is
obtained by rescaling the calculated energy by a factor W/w,
w being the width of the primitive cell. It should be stressed
that within this approximation, where a linear scaling of the
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FIG. 1. (Color online) Buckled ground-state configuration of a
graphene sheet under compressive strain. The atoms of the primitive
cell explicitly introduced in the calculation within periodic boundary
conditions are shown in light yellow (light gray). Atoms of the
computational cell that need to be constrained to sample transition
states (at the apex and at the clamped ends) are displayed with a
darker color (gray). The potential profile is obtained by performing
a series of calculations of sinusoidal deformations with increasing
amplitudes hi , as shown schematically in the inset.

energy with W is assumed, edge effects are neglected. Edges
can generate stress fields, induce the formation of ripples and,
in general, will affect the overall dynamic behavior of the
system. These effects are not accounted for in our model.
However, for the width of ribbons to be used in realistic devices
the energetics and the dynamic response of the system is not
expected to qualitatively change.

We start from a flat graphene sheet with a compressive
strain ε [defined as (L0 − L)/L0, where L is the length of the
graphene sheet and L0 its equilibrium value in absence of com-
pression; see also Fig. 1] ranging from 0% to 0.1%. For each
value of ε we generate several sinusoidal deformations with
an increasing amplitude hi (see the inset of Fig. 1). Previous
tests indicated that sinuslike profiles are close to the minimum
energy configurations, and thus are good initial guesses. Next,
we carry out a geometric optimization of each structure. Small
regions at the beginning and at the end of the strip are kept flat

to mimic typical nanoindentation experiments. As our purpose
is mapping the potential landscape, the apex of each of the
deformed strip is kept fixed to prevent all the structures from
relaxing to their atomic ground state.

As illustrated in Fig. 2, the potential has a minimum at
h = 0 in the case of uncompressed graphene, while for ε > 0
two symmetric minima appear, indicating that graphene favors
a buckled configuration such as the one sketched in Fig. 1. As
ε increases, the minima move apart and the transition barrier
grows, making the commutation between wells less likely.

The dynamics of the system is described by the equation of
motion

mẍ = −∂Ep

∂x
− bẋ + F0ξ (T ), (1)

where Ep is the elastic (potential) energy as obtained by
the electronic structure calculations and reported in Fig. 2.
As customary in the study of beam deflection or cantilever
vibrations, we reduce the dynamics of the clamped graphene
sheet of total mass M to the equivalent dynamics of a
free pointlike mass m = 0.4M .19 Here we assume a simple
phenomenological viscous damping term20 with a damping
coefficient that in the harmonic potential case can be expressed
as b = mω0/Q, taking Q = 100 for the quality factor of a
graphene sheet in air. In general the mechanical dissipation
in the graphene dynamics is due to a number of different
phenomena21,22 and can be more properly expressed in terms
of a dissipation function that takes into account generalized
memory effects as in the expression

∫ t

−∞ b(t − τ )ẋ(τ )dτ .
F0ξ (T ) represents the random force [ξ (T ) is a flat spectrum

stochastic process, Gaussian distributed, with zero mean and
unitary standard deviation] accounting for the thermal noise-
induced stochastic dynamics of the graphene sheet. When
the potential is harmonic (Ep = 1/2kx2) and the system is
at thermal equilibrium, the fluctuation-dissipation theorem
links the magnitude of the thermal fluctuation to the damping
coefficient via F̂ 2

0 = 4kBT b, where kB is the Boltzmann

FIG. 2. (Color online) Potential as a func-
tion of the out-of-plane coordinate h for com-
pressions ε ranging from 0% to 0.1%. Finite
values of ε favor buckling of the graphene sheet,
with two symmetric minima at h �= 0. The inset
displays the separation between the minima and
the transition barrier as a function of ε, together
with fits to ε2 and

√
ε, respectively.
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FIG. 3. (Color online) Evolution of the po-
sition x in the three possible regimes: (i) At low
applied compressions the system oscillates in
a single-well potential at approximately x = 0
(black circles); (ii) at the optimal compression a
bistable behavior is clearly observed, with long
swings from one well to the other (red dia-
monds); (iii) at large compressions the buckled
graphene gets trapped in one of the minima (blue
squares). The left-hand panel shows the time
evolution x = x(t); the right-hand panel is the
attractor diagram x = x(v).

constant and T is the temperature. In this case the root mean
square (rms) of the displacement amounts to xrms = √

kBT /k.
The potential that we obtained from the DFT calculations,

however, is strongly nonharmonic, even in the simple case of
uncompressed graphene, where a satisfactory fit is achieved
only with the order-4 polynomial c4x

4 + c2x
2 (we obtain c4 =

0.12 meV Å−4 and c2 = 6.59 meV Å−2 for the nanoribbon
of Fig. 2). Hence a useful prediction from the stochastic
differential equation (1) can only be obtained numerically.
Here we used the well-known Euler-Maruyama method, where
the stochastic force intensity is set arbitrarily at F̂ 2

0 = 4kBT b

with a flat spectral distribution (white noise approximation)
and T = 300 K, to mimic a nonequilibrium thermal noise
acting on the graphene sheet.

Solutions of Eq. (1) for a graphene nanoribbon of 1 × 17 nm
are shown in Fig. 3 for the different working regimes. This
graph illustrates how the dynamics of the system can be
controlled by tuning the level of compression. At high values
of ε the trajectory is confined around one of the two attractors,
in a buckled configuration, whereas for low ε the barrier is not
effective and the system is swinging in a perturbed, single-well
potential around zero. It is at intermediate compressions that
the system can jump from one well to the other, increasing
the rms of the position vector. This optimal compression range
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FIG. 4. Root mean square (rms) of the position vector x (left-hand
side) and mechanical power (right-hand side) as a function of the
compressive strain ε. The optimal compression that maximizes xrms

is ε ∼ 0.17. This value of ε also maximizes the piezoelectrically
generated voltage in the transduction circuit described in the text.
The dashed line in the right-hand panel gives an estimation of the
mechanical power accumulated by a linear oscillator of comparable
size to the one discussed.

depends on the geometrical parameters of the graphene device
and the temperature of the noise that has to be harvested.13

The dependence of xrms on the compression level is shown
in Fig. 4(a). Here the x(t) time series has been averaged to
zero before computing the xrms in order to filter out any dc
component that cannot be considered interesting for energy
harvesting purposes as in Ref. 13. Increasing ε leads to an
increase of the rms of the position: The two attractors of
the dynamics have appeared, but the barrier still allows low-
frequency swings from one well to the other. At approximately
ε̄ = 0.17, xrms gets to a maximum and then drops dramatically,
indicating that the barrier has reached a critical value and the
dynamics is trapped in one of the two attractors.

The mechanical power, defined as Pmech = 〈F0ξ (T )ẋ〉, on
the other hand, is slowly decaying and does not present a
maximum at ε̄ [see Fig. 4(b)]. This happens because, although
the graphene sheet on average moves more, as shown in
Fig. 4(a), it also moves slower, yielding a decrease in the
mechanical power.23

Figure 4(b) seems to suggest that it is pointless to pursue
the double-well potential of the buckled graphene, because the
maximum mechanical power is accumulated by flat graphene.
However, as it will be clear in the following, in order to harvest
electrical energy we need a conversion mechanism that is
capable of transforming the available mechanical energy into
this final form of energy. Before dealing with the conversion
mechanism, we further note that another energy source that
could be scavenged is represented by ambient vibrations,
such as mechanical vibrations and acoustic energy,3,4,24 that
are not intrinsic to the system as is the thermal noise
considered so far. The main limitation of conventional linear
nano-oscillators with respect to these kinds of environmental
vibrations is the poor flexibility of their frequency sensitivity:
Not only is the spectral response usually very narrow, but it
is also difficult to shift it toward the low-frequency domain,
which is where most of the ambient vibration energy is
located.

The spectral response of the proposed graphene device,
expressed by the vector X(ω) = F{x(t)}, is shown in Fig. 5.
The output spectrum shown represents the amplitude of
movement in response to each frequency component of the
incident noise. Indeed, the larger average mechanical power is
harvested by the flat graphene [Fig. 4(b)], but responds only to
frequencies close to a resonance frequency of ∼30 GHz, with
an approximate bandwidth of 10 GHz. On the other hand,
close to the optimal compression, when the system is allowed
to swing from one well to the other, a very broad range of
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FIG. 5. (Color online) Spectral response in the three operating
regimes. Zero or too large compressive strains yields rather selective
frequency responses (black circles and blue squares, respectively).
Around the optimal compression, on the other hand, the spectral
response is much broader and extends significantly to the low-
frequency domain (red diamonds). The spectral response is defined
as the Fourier transform of the position vector as follows: X(ω) =
F{x(t)} = 1√

2π

∫ +∞
−∞ x(t)e−iωt dt .

frequencies can be harvested, with a noticeable extension to
low frequencies. This means that even if the maximum power is
higher in the uncompressed case [P (ε̄) is 2/3 of the maximum
power P (0)], the device becomes sensitive to a much broader
frequency spectrum, with an integrated power that exceeds
significantly the linear case, especially in the case of harvesting
ambient vibrations. It should be noticed that when the optimal
compression is exceeded and the system gets stuck in one of
the two wells, the spectral response gets significantly worse,
resulting in a narrower and higher-frequency distribution, even
with respect to the case of flat graphene. This fact suggests that
certain caution should be paid when choosing the value of ε,
especially in view of the experimental difficulties to control it
with accuracy.

The energy harvested by the vibrating graphene device,
however, cannot be stored in a simple way, as mechanical
energy storing is an elusive task and a very intense research
field. Yet, the harvested thermomechanical energy needs to be
converted to electrical energy and used immediately or stored
with known storing procedures, namely, through electrical
capacitors. As we discuss below, such a conversion provides
an argument in favor of the buckled configuration.

Devising and engineering an efficient transduction scheme
is subjected to the optimization of many parameters. Here we
assume a simplified piezoelectric conversion model consisting
of two ZnO transducers placed at the clamped ends of the
suspended sheet. The behavior of the piezoelectric material

is modeled as a capacitance with a deformation-dependent
charge density d31 = −5.1 × 10−12 m/V,25,26 coupled to a
load resistance. Following Roundy and Wright,11 the whole
dynamics of the graphene harvester can be described by

mẍ = −∂Ep

∂x
− bẋ − 	1V + F0ξ (T ), (2)

V̇ = 	2ẋ − V

RC
, (3)

where the motion equation is modified by the inclusion
of a piezoelectric term [Eq. (3)], which accounts for the
forces associated with the transduction mechanism and which
couples motion and the transduction equations [Eq. (3)].
Taking a large enough value of the time constant RC of the
transducing circuit (low cut-on frequency ωhp = 1/RC), the
second equation provides V = 	2x, where V is the generated
voltage and 	2 is the electromechanical coupling coefficient
as defined in Ref. 11. Therefore, the piezoelectric rms voltage
V is simply the rms of the position vector rescaled by a factor
	2—taken to be 5.8 V/m from Ref. 11. Now the maximum
harvested electrical power Pel = V 2/R no longer corresponds
to the unstrained graphene sheet and the optimal compression
is ε̄, the one that gives the larger xrms (see Fig. 4), as previously
observed in Ref. 13. This piezoelectric model is admittedly a
simple one, and it should be taken into account that the specific
transduction scheme implemented will also affect the overall
dynamics of the system.

In conclusion, we have shown that a nanostructured
graphene device can harvest ambient noise thanks to its
intrinsically anharmonic deformation potential, outperforming
conventional linear oscillators. A linear oscillator of a size
comparable to our device is estimated to harvest 2.2 pW of
mechanical power, almost one order of magnitude less than
flat graphene. Under an appropriate compressive strain the
graphene sheet assumes a buckled configuration and behave
as a bistable device. Such an engineered nonlinearity is shown
to broaden the spectral response, extending it toward the
low-frequency domain, where most of the ambient energy
source is typically available. Mechanical-to-electrical energy
conversion through a model piezoelectric transduction scheme
is briefly discussed.
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