
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 84, 161102(R) (2011)

Vibrational properties of MnO and NiO from DFT + U-based density
functional perturbation theory

A. Floris,1,2 S. de Gironcoli,3 E. K. U. Gross,2,4 and M. Cococcioni5
1Department of Physics, King’s College London, London, Strand WC2R 2LS, United Kingdom

2European Theoretical Spectroscopy Facility (ETSF)
3SISSA Condensed Matter Theory sector and CNR-IOM DEMOCRITOS Simulation Centre, via Bonomea 265, I-34136 Trieste, Italy

4Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany
5Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE,

Minneapolis, Minnesota 55455, USA
(Received 27 September 2011; published 13 October 2011)

We introduce an extension of the density functional perturbation theory (DFPT) that allows self-consistent
linear-response calculations from a DFT + U ground state. Using this scheme, the full phonon dispersion of
strongly correlated materials, whose ground state can be captured with Hubbard-corrected functionals, can be
accessed with unprecedented accuracy and numerical efficiency. The tool is applied to the study of MnO and
NiO in their antiferromagnetic (AFII) ground state. Our results confirm the highly noncubic behavior of these
systems and show a strong interplay between features of the phonon spectrum and the occupation of specific d

states, suggesting the possibility to investigate the electronic structure of these materials through the analysis of
their phonon spectrum.
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Late transition-metal (TM) monoxides (MnO, FeO, CoO,
NiO), the prototypes of strongly correlated systems, are well
known to be poorly described by density functional theory
(DFT) within the commonly used approximate functionals,
such as local density approximation (LDA) and generalized
gradient approximation (GGA). Their insulating antiferromag-
netic (AFII) state, however, can be captured quite accurately by
the popular DFT + U (Ref. 1) scheme,2–5 based on a Hubbard-
model additive correction to the DFT Hamiltonian.6–11 In this
Rapid Communication we exploit the DFT + U improved
description of the electronic ground state of these systems to
accurately compute their vibrational properties.

In the past decades the lattice vibrations of TM monoxides
have been investigated quite intensively with experimen-
tal techniques.12–16 Calculations, however, have been more
sparse17–22 and, with the exception of Ref. 18 [a Green-
function-based method from a DFT + dynamical mean field
theory (DMFT) functional], none of them was based on linear
response theory, which is computationally much more efficient
than methods requiring a supercell (e.g., “frozen phonon”).

In this Rapid Communication we extend the formulation
of density functional perturbation theory (DFPT)23 to the
DFT + U Hamiltonian. This allows calculations of the
entire vibrational spectrum of the DFT + U ground state
of correlated materials with unprecedented accuracy and
efficiency. Moreover, by computing the Hubbard U through the
linear-response method of Ref. 24, our scheme is completely
parameter free. “DFPT + U” numerical results will be shown
for MnO and NiO in their antiferromagnetic (low-temperature)
phase. The two GGA + U vibrational spectra will be analyzed
in detail and compared with GGA results and with available
experimental data.

DFPT is based on the application of first-order perturbation
theory to the ground state of the self-consistent Kohn-Sham
(KS) Hamiltonian (see Ref. 23, Sec. II C, whose notation
is adopted in the following). The displacement of an ion L in
direction α from its equilibrium position induces a perturbation
�λVSCF in the electronic KS potential VSCF, leading to a

variation �λn(r) of the charge density (λ ≡ {Lα}). Since the
Hubbard potential VHub is a corrective addition to the KS
potential, its variation �λVHub must be added to �λVSCF when
solving the DFPT equations.23 The VHub expression reads5
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In Eq. (1), the atomic occupations nIσ
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where �λϕI
m is the response of the atomic wave function ϕI

m

due to a shift in the position of its center and
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Note that, in Eq. (2), the terms arising from the variation �λUI

are assumed to be negligible. In Eq. (3), |�λψσ
i 〉 is the KS state

linear response to the atomic displacement, computed solving
the DFPT equations (Ref. 23, Sec. II C).

Once the density response �λn(r) = 2 Re
∑occ

iσ ψ∗σ
i �λψσ

i

is obtained, the dynamical matrix can be constructed
and the phonon frequencies and vibrational modes are

161102-11098-0121/2011/84(16)/161102(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.161102


RAPID COMMUNICATIONS

FLORIS, DE GIRONCOLI, GROSS, AND COCOCCIONI PHYSICAL REVIEW B 84, 161102(R) (2011)

calculated. However, the Hubbard energy correction EHub =
1
2

∑
Iσmm′ UI (δmm′ − nIσ

mm′ )nIσ
mm′ will contribute to the standard

(LDA/GGA) dynamical matrix with the following additional
term:
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namely, the total derivative of the Hubbard contribution
∂λEHub to Hellmann-Feynman forces.25 In Eq. (4), ∂λ indicates
a bare derivative, i.e., taken at fixed orbitals ψσ

i .26 Finally, in
the case of insulators and semiconductors, a “nonanalytical”
term Cna

Iα,Jβ must be added to the dynamical matrix to
account for the coupling of longitudinal vibrations with the
macroscopic electric field generated by ionic displacements.
This term, responsible for the LO-TO splitting at q = �,
depends on the Born effective-charge tensor Z∗ and the
high-frequency electronic dielectric tensor ε∞: Cna

Iα,Jβ =
4πe2

�

(q·Z∗
I )α(q·Z∗

J )β
q·←→ε ∞·q .27 The calculation of Z∗

I,αβ and ε∞
αβ is based on

the response of the electronic system to a macroscopic electric
field and requires the evaluation of the transition amplitudes
between valence and conduction KS states promoted by the
commutator of the KS Hamiltonian with the position operator
r, 〈ψc,k|[HSCF,r]|ψv,k〉.28 A finite contribution to this quantity
comes from the presence of the (nonlocal) Hubbard potential
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where ϕI
m,k are Bloch sums of atomic wave functions and kα

is a component of the Bloch vector k.
To summarize, the extension of DFPT to the DFT +U func-

tional amounts to the definition and implementation of three
contributions: (i) the variation of the Hubbard potential �λVHub

to be added to �λVSCF; (ii) the second derivative �μ(∂λEHub)
to be added to the analytical part of the dynamical matrix; and
(iii) a term to the “nonanalytical” dynamical matrix.

This DFPT extension was implemented in the PHONON

code of the QUANTUM ESPRESSO package.29 Although the
formalism presented above is valid only for norm-conserving
(NC) pseudopotentials and for insulators, our implementation
has been extended to ultrasoft (US) pseudopotentials26,30 and
metallic systems. The corresponding formal extension, crucial
for efficient calculations of systems with localized electrons,
will be presented in a future publication.

We now discuss the phonon spectrum of MnO and NiO,
obtained with this approach.31 The UI values were determined
via the linear-response approach of Ref. 24, leading to
UMn = 5.25 eV and UNi = 5.77 eV.

MnO and NiO crystallize in the cubic rock-salt structure
but acquire a rhombohedral symmetry due to their
antiferromagnetic order consisting of ferromagnetic (111)
planes of cations alternating with opposite magnetization.
DFT + U has been used quite successfully to characterize
this AFII ground state.6,10

FIG. 1. (Color online) MnO (upper panel) and NiO (lower)
phonon dispersion, calculated in GGA (dashed lines) and GGA +
U (solid thick lines). Blue (black) arrows mark the GGA + U (GGA)
magnetic splittings and their sign (see text). Upper panel: Filled
symbols represent experimental data (Refs. 12,13 and 15), and open
symbols the results of other calculations (at zone center) (Ref. 17).
Lower panel: Symbols represent experimental data (Refs. 12 and 16).
Note that for NiO the arrows point downward to indicate the sign
difference with respect to MnO. Right-hand panels: Phonon DOS.

Figure 1 (upper panel) shows the MnO phonon dispersion
calculated with GGA and GGA + U . The most evident
effect brought about by the Hubbard correction is a general
upward shift of the frequencies, making the GGA + U

spectrum in much better agreement than GGA with available
experiments,12,13,15 for both acoustic and optical branches (also
confirming the accuracy of the linear-response calculation24 of
the Hubbard parameter). Note in particular the considerable
improvement over GGA in the calculation of LO and TO
frequencies at q = � (GGA underestimates the LO frequency
by ≈15 meV). The frequency shift is clearly illustrated in
the phonon density of states (DOS) (Fig. 1, right-hand panel),
exhibiting also a different weight distribution, with a more
disperse structure in the GGA + U case. A second noteworthy
change consists in a substantial reduction of the splitting
between the TO modes in the [11̄1̄] and [001] directions. Along
these directions, the discontinuous and continuous modes at
the zone center are indicated as TO1 and TO2 and correspond
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to counterphase vibrations of the Mn and O sublattices. Both
transverse optical modes along [111] are polarized in the (111)
ferromagnetic planes. Along [11̄1̄] and [001] directions, the
transverse mode TO2 also vibrates parallel to the (111) planes
and is continuous at q = �. Transverse mode TO1, instead,
vibrates out of these planes for q ∈ [11̄1̄] and q ∈ [001]
(along [211] and [110], respectively) and the inequivalence
between {111} planes due to magnetism causes the TO1 to be
discontinuous and to split from TO2. A similar effect, although
less pronounced, can also be observed for LO modes. These
splittings are absent in the paramagnetic cubic phase.20 In
fact, as pointed out by Massidda et al.,17 the TO splitting has
a purely magnetic origin.

The splitting reduction was interpreted in Ref. 17 as a
consequence of the suppression of the Mn-O hybridization,
produced by the stronger localization of d states due to the
Hubbard correction. The latter also results in a concomitant
increase of the KS electronic band gap. An alternative,
albeit equivalent, way to understand the magnetic splitting
reduction is through the superexchange mechanism, expected
to be responsible for the magnetic coupling J between metal
ions.33–36 In fact, according to second-order perturbation
theory, J ∝ t2/�, where t is the hopping amplitude between
d and p states and � is their energy separation. A larger
U destabilizes empty (minority-spin) d states, resulting in a
substantial increase of � and a reduction of J .

The phonon dispersion of NiO is presented in Fig. 1 (lower
panel). Overall, NiO shows the same trends observed in MnO:
The Hubbard correction shifts the frequencies upward (in a
less pronounced way than in MnO), improving the agreement
with experiments.12,37 Also for NiO the magnetic splitting �TO

significantly contracts in comparison to GGA. At variance with
MnO, however, TO1 splits downward along the [001] and the
[11̄1̄] directions, appearing softer than TO2. In Ref. 19 the
splitting �TO (and, in particular, its sign) has been related
to the magnetic coupling between metal ions according to
the formula �TO = d2J1

dQxdQy
, where Qx and Qy are atomic

displacements along two directions parallel to the side of the
cubic cell. Thus, a change in the sign of the nearest-neighbor
magnetic coupling J1, as found in Ref. 19, could be responsible
for the inverted order of TO1 and TO2. While this is consistent
with the experimental results from Ref. 37, it seems in
contrast with the ones of Chung et al.12 (believed to be “more
controversial”19), who do not observe a sign change in the
splittings of NiO and MnO. Our results confirm those of
Ref. 19. We notice, moreover, that the sign of �TO correlates
with the occupation of specific subsets of orbitals, namely,
the minority-spin eg states. At ambient pressure, the metal
ions of all late TM monoxides have maximum magnetization,
with five electrons in the majority-spin d orbitals and the
rest in the minority-spin counterparts. From MnO to NiO
the number of minority-spin d electrons varies from 0 to
3 (FeO has 1, CoO has 2). The d states of TM ions in
octahedral coordination with O, as in these compounds, are
subjected to a crystal field that splits them into a doublet (eg)
and a triplet (t2g), with the latter at lower energy. eg states
point along the TM-O directions, while the t2g are directed
toward the midpoint of the sides of the oxygen octahedra. The
AFII-induced rhombohedral symmetry further splits the t2g

triplet in a second doublet (e′
g) with eg symmetry and a lone

state a1g that corresponds to a z2 state along the [111] cubic
diagonal. In MnO the minority-spin states, nominally empty,
show a residual occupation (due to the incomplete transfer of
electrons from the Mn to the O) that mostly concentrates on
the eg states. NiO, instead, has nominally three minority-spin
electrons, mostly concentrated on t2g (e′

g and a1g) states, with
higher-energy eg states almost empty. Going from MnO to
NiO, as the occupation of the minority-spin states increases,
t2g orbitals become more and more stable and their occupation
eventually becomes larger than that of eg states. We argue
that the �TO change of sign is related to this crossover. In
fact, when minority-spin eg states are more occupied, more
electronic charge is concentrated in the TM-O “bonds,” making
them stronger and increasing the frequency of the TO1 mode.
When t2g states are occupied, instead, the electronic charge
points toward interstitial spaces and the energy required by
the TO1 vibration of the two sublattices against each other
along directions oblique to the (111) planes is lower than
that of vibrations parallel to these planes (TO2) that bring t2g

states to partially overlap with oxygen p orbitals. While not
strictly quantitative, this scenario seems consistent with what
was observed in some Fe compounds under pressure, where
the transition from a high-spin state to a low-spin one (with
the conversion of the majority eg electrons into minority t2g

manifold) is accompanied by a significant softening of the bulk
modulus.38 Further calculations (not presented here) on CoO
(two minority-spin electrons) and CoO+ (one minority-spin
electron) confirm this interpretation: While CoO (with low-
lying occupied e′

g , and essentially unoccupied eg) behaves as
NiO, CoO+ (with a1g occupied and eg partially occupied) has
a splitting of the same sign as MnO. The occupation of the
minority eg states can also be related to the change in the sign
of J1 through superexchange theory:33–36 Lower occupations
of these orbitals increase the weight of virtual transitions
to them and make the interactions more strongly negative
(ferromagnetic). In this view, the change of sign of J1 and of
the magnetic splitting can be regarded as consequences of the
redistribution of electrons on the TM d states. A detailed study
of the vibrational properties of strongly correlated materials
can therefore shed light on their electronic structure and
magnetic interactions.

To summarize: In this Rapid Communication we
have introduced an extension of DFPT allowing linear
response calculations from a DFT + U ground state. The
scheme represents a highly efficient method to calculate the
entire vibrational spectrum of systems with strong electronic
correlation. The approach exploits two computational
advantages of DFPT and DFT + U : (i) the possibility to
avoid supercell calculations and (ii) the affordable cost of the
Hubbard correction in the calculations of the total energy and
its derivatives. The excellent agreement with experimental
measurements obtained for MnO and NiO demonstrates
the accuracy of the computational tool. In addition, the
results suggest the possibility to investigate fine details of the
electronic structure of these materials through their signature
on the vibrational spectrum. The methodological extension
introduced here will be crucial to study the behavior of TM
compounds at finite temperature and in studies requiring a
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highly accurate vibrational spectrum, e.g., calculations of the
electron-phonon coupling in high-Tc superconductors.
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