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Spatial correlations in chaotic nanoscale systems with spin-orbit coupling
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We investigate the statistical properties of wave functions in chaotic nanostructures with spin-orbit coupling
(SOC), focusing in particular on spatial correlations of eigenfunctions. Numerical results from a microscopic
model are compared with results from random matrix theory in the crossover from the Gaussian orthogonal
to the Gaussian symplectic ensembles (with increasing SOC); one- and two-point distribution functions were
computed to understand the properties of eigenfunctions. It is found that correlations of wave-function amplitudes
are suppressed with SOC; nevertheless, eigenfunction correlations play a more important role in the two-point
distribution function(s), compared to the case with vanishing SOC. Experimental consequences of our results are
discussed.
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I. INTRODUCTION

Spin-orbit coupling (SOC) has the potential to make novel
electronics applications possible,1 as it allows one to control
the electron’s spin degree of freedom through its motion.
Most systems of interest for such applications are nano-
or mesoscopic in size, including semiconductor quantum
dots,2 metallic nanoparticles,3 and quantum corrals defined on
surfaces.4 The energy spectrum, and more generally, properties
of these systems are (typically) described by random matrix
theory (RMT).5,6

In RMT, the system’s properties are a consequence of
its symmetries—in the classic Wigner-Dyson ensembles, the
key symmetries are time-reversal (T ) and spin-rotation (σ )
invariance.5,6 With both T and σ invariance, the system is
described by the Gaussian orthogonal ensemble (GOE); SOC
breaks the σ invariance (while preserving T invariance),
driving the system to the Gaussian symplectic ensemble
(GSE). [Systems with broken T invariance are described by the
Gaussian unitary ensemble (GUE).] More specifically, systems
with SOC are described by random N × N matrices (with
N → ∞) having quaternion components,

H = S ⊗ I2 + i
λ√
4N

3∑
j=1

Aj ⊗ σ j , (1)

where S is an N×N symmetric matrix, the {Aj } are N×N

antisymmetric matrices, {σ j } are the Pauli matrices, and I2 is
the 2 × 2 identity matrix. λ in Eq. (1) is related to the SOC
of the microscopic Hamiltonian—λ = 0 in the GOE, while
λ = √

4N in the GSE.
As most nanoscale systems of interest are described

by RMT,2–6 it is important to understand the regimes and
behaviors which arise with SOC and the properties in these
regimes. In this work, we consider the spatial properties
of wave functions in chaotic nanoscale systems with SOC.
The spatial properties of wave functions often determine the
system’s response to experimental probes and are important
for devices and applications.7–15 While other works have

discussed properties and consequences of eigenvector statistics
with SOC,16,17 here we consider the spatial properties of
eigenvectors and, in particular, how these properties evolve
with SOC.

In what follows, we consider the properties of the
Hamiltonian

H = 1

2m
p2 + γ (p) · �σ + V (r), (2)

where γ (p) is a pseudovector describing the SOC [satisfying
γ (−p) = −γ (p)] and V (r) is a confining and/or disorder
potential. To characterize the system and understand its
properties, one- and two-point distribution functions are
computed going from the GOE to the GSE (with increasing
SOC). Results obtained via RMT are compared with those
obtained by direct simulation of Eq. (2) for a stadium billiard18

with Rashba SOC,19

γ (p)Rashba = α(−pyx̂ + pxŷ), (3)

where α parametrizes the strength of the SOC. In particular,
it is found that excellent agreement between RMT and
microscopic simulations are obtained in a “mean-field”
description of the (GOE-GSE) crossover (see below).
A key observation from our results is that correlations
of wave-function amplitudes are suppressed with SOC.
Interestingly, however, these correlations play a more
important role in the two-point distribution function(s),
compared to the GOE (with vanishing SOC).

The rest of the paper is organized as follows. The descrip-
tion of wave-function statistics in RMT and, in particular,
the description of the GOE-GSE crossover is discussed in
Sec. II. Details of our calculations for the stadium billiard
with Rashba SOC are presented in Sec. III. Our results
are presented in Sec. IV—one- and two-point distribution
functions obtained via RMT are compared with numerical
results from the stadium billiard. Finally, Sec. V contains a
summary of our results as well as remarks on experimental
consequences.
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II. WAVE-FUNCTION STATISTICS IN RMT

In RMT, wave-function correlations are governed by the
functional probability distribution9,20,21

P(ψ) = N exp

[
− β

2

∑
s,s ′

∫
drdr′ψ∗

s (r)Ks,s ′ (r,r′)ψs ′ (r′)

]
.

(4)

Ks,s ′ (r,r′) is the functional inverse of the two-point correlation
function 〈ψ∗

s (r)ψs ′ (r′)〉, where the angular brackets 〈· · ·〉 de-
note an average with respect toP(ψ); the parameter β depends
on the system’s symmetries—β = 1 (β = 2) in the GOE (GUE),
while β = 4 in the GSE. [N is a normalization constant.]P(ψ)
is the probability that a particular energy eigenfunction with
spin-σ is equal to the specified function ψσ (r).

A key property of Eqs. (1) and (2) is their invariance
under time reversal; as a result, the energy levels are twofold
degenerate—the eigenstates {ψ(r),T ψ(r)} are degenerate,
where T is the time-reversal operator. Explicitly,

ψ(r) =
(

φ(r)
χ (r)

)
, T ψ(r) =

(−χ∗(r)
φ∗(r)

)
. (5)

As a consequence of this twofold degeneracy, the wave-
function amplitude probed numerically and experimentally is
|ψσ (r)|2 = |φ(r)|2 + |χ (r)|2. As noted above, we are interested
in the regimes/behaviors which arise with SOC—we will not
only be interested in the GSE but also in the crossover from the
GOE to the GSE. As such, we decompose the complex wave
functions φ(r) and χ (r) in Eq. (5) into their real and imaginary
parts. Then, the wave-function amplitude is parametrized as

|ψσ (r)|2 = γ 2
1 φ2

1(r) + γ 2
2 φ2

2(r) + γ 2
3 χ2

1 (r) + γ 2
4 χ2

2 (r), (6)

where the parameters {γi}, which satisfy the constraint γ 2
1 +

γ 2
2 + γ 2

3 + γ 2
4 = 1, characterize the crossover—γ1 = 1 with

γi = 0 for i �= 1 in the GOE, while γi = 1/2 (i = 1, . . . ,4)
in the GSE; in the crossover, the {γi} fluctuate and, hence,
physical quantities must be averaged over their distribution.

We obtained P({γi}), the distribution of the {γi}, numer-
ically from Eq. (1) by considering the various orthogonal
invariants22—the results are shown in Fig. 1. These results
were obtained by considering 100,000 realizations of 200 ×
200 matrices [in the GOE-GSE crossover, Eq. (1)]; to eliminate
finite-size effects, theP({γi}) were computed using 50 levels in
the middle of the band. (We have considered N × N matrices
in the GOE-GSE crossover for several values of N ; as long
as states in the middle of the band were used, the results for
P({γi}) were insensitive to N .)

From Fig. 1, we see that the P({γi}) change rapidly in
the range 0.05 � λ/

√
4N � 0.1—in particular, the P({γi}) are

broad for small λ, but become sharply peaked Gaussian-like for
larger values of λ, moving toward γi = 1/2(∀i) with increasing
λ. Figure 2 shows the variance of the {γi}, 〈γ 2

i 〉−〈γi〉2, as
a function of λ; the inset shows how the average values of
the {γi}, 〈γi〉, evolve with λ. We see that the variance is
extremely small for larger values of λ; even for small values of
λ (where the P({γi}) are broad and asymmetric), the variance
does not exceed 0.03. As noted above, physical quantities
must be averaged over the P({γi}); however, as will be seen
below, rather good results are obtained in a “mean-field”

FIG. 1. (Color online) Distribution of the {γi}, P({γi}) [from
Eq. (6)], where λ∗ = λ

√
4N . (a) λ∗ = 0.05, (b) λ∗ = 0.07,

(c) λ∗ = 0.09, and (d) λ∗ = 0.25.

description (due to the small variances), similar to what has
been observed in the GOE-GUE crossover11,23—rather good
results are obtained by approximating the {γi} by their average
values [rather than averaging over the P({γi})].

From Eq. (4), all spatial correlations can be obtained once
the two-point correlation function 〈ψ∗

s (r)ψs ′ (r′)〉 is known. To
determine this, we expand the wave function as

ψ(r) =
∑

p

ψ+,p(r)c+,p + ψ−,p(r)c−,p, (7)

where the two-component spinors ψ+,p(r) and ψ+,p(r)
are eigenstates of Eq. (2) with V (r) = 0. To compute
〈ψ∗

s (r)ψs ′ (r′)〉, the Fourier coefficients [in Eq. (7)] are taken to
be Gaussian random variables having zero mean and variance
given by9 (a,b = +,−)

〈c∗
a,pcb,k〉 = δa,bδp,k

1

N (ε)
δ(εa(p) − ε), 〈ca,pcb,k〉 = 0, (8)

FIG. 2. (Color online) Variance of {γi} vs λ∗ = λ
√

4N . Inset:
Average values of {γi} vs λ∗.
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where εa(p) is the energy of the eigenstate ψa,p(r), ε is a fixed
energy, and N (ε) is the single electron density of states at
energy ε. Then, writing the wave function as per Eq. (5) and
using the parametrization in Eq. (6), one obtains the correlators
(i,j = 1,2) 〈φi(r)φj (r′)〉, 〈χi(r)χj (r′)〉, and 〈φi(r)χj (r′)〉.

III. BILLIARD WITH RASHBA SPIN-ORBIT COUPLING

As described above, we are interested in comparing results
obtained via RMT with those obtained from microscopic
simulations of a stadium billiard with Rashba SOC. For γ (p)
given by Eq. (3), one obtains the following for the eigenstates
{ψ+,p(r),ψ−,p(r)} [in Eq. (7)] and the corresponding energies
{ε+(p),ε−(p)} (h̄ = 1):

ε±(p) = |z|2
2m

± α|z|; ψ±,p(r) = 1√
2A

(
1

±iz/|z|
)

eip·r,

where z = px + ipy . The spectrum above describes two spin-
split chiral surfaces with energy ε, shown schematically in
Fig. 3(a), where k± = √

2mε + m2α2 ∓ mα. Then, writing
the wave function as per Eq. (5) and using the parametrization
in Eq. (6), we obtain24 (i,j = 1,2)

〈φi(r)φj (r′)〉 = 〈χi(r)χj (r′)〉 = δi,j f, (9a)

〈φi(r)χj (r′)〉 = −〈χi(r)φj (r′)〉 = δi,j g, (9b)

where

f = 1
2 [J0(k+R) + J0(k−R)] , (10a)

g = 1
2 [J1(k+R) − J1(k−R)] . (10b)

In Eqs. (10a) and (10b), J0(x) [J1(x)] is the Bessel function
of order 0 (order 1),25 R = |r − r′|, and k± are the wave

x(R0)
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0
)

(c)
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FIG. 3. (Color online) (a) Spin-split energy surfaces with wave
vectors k+ and k−. (b) Stadium billiard considered in this work.
(c) Spatial scan of the LDOS of a typical chaotic eigenfunction.

vectors associated with the chiral branches at energy ε. The
physics of Eqs. (9a) and (9b) [and Eq. (8)] is that the
system ergodically samples the energy surfaces26 [shown
schematically in Fig. 3(a)].

We have computed the local density of states (LDOS) for
a stadium billiard,18 where the billiard’s wall was constructed
with a unitary δ-function potential,27

V (r) = V0δ [r − R(s)] , (11)

with R(s) parametrizing the wall (and V0 → ∞). The retarded
Green’s function (GF) for the system,

G(r,r′; ω) = 〈r|(ω − H + i0+)−1|r′〉, (12)

is computed from the Dyson equation

G(r,r′; ω) = G0(r,r′; ω)

+V0

∫
C
dsG0(r,R(s); ω)G(R(s),r′; ω).

In this equation, G0(r,r′; ω) is the free-particle GF, i.e., the
GF in the absence of the corral’s wall, but in the presence of
SOC,28,29

G0(r,r′; ω) = G0
0(R; ω)I + G1

0(R; ω)

(
0 −ie−iθ

ieiθ 0

)
,

where

G0
0(R; ω) = −i

m

2k

{
k−H

(1)
0 (Rk−) + k+H

(1)
0 (Rk+)

}
,

(13)
G1

0(R; ω) = − m

2k

{
k−H

(1)
1 (Rk−) − k+H

(1)
1 (Rk+)

}
,

and exp(iθ ) = [(x − x ′) + i(y − y ′)]/R, with H
(1)
0 (x) and

H
(1)
1 (x) being Hankel functions.25 (R and k± are defined

as before.) The LDOS is then obtained from the GF via
A(r,ω) = −(1/π )Im Tr [G(r,r; ω)].

The stadium billiard we consider is shown schematically
in Fig. 3(b). With energy in units of E0 = 1/(2mR2

0) and
SOC in units of α0 = 1/(mR0), where R0 is the radius of
the stadium’s circular cap, we have considered eigenstates
with energy E � 405E0 and have investigated SOCs in the
range 0 � α � 10α0. [Choosing R0 = 70 Å, and m = 0.26me

(with me being the electron’s rest mass), one obtains α0 =
3.7 × 10−11 eVm, a value consistent with, e.g., electrons on
an Au(111) surface.29,30] A spatial scan of the LDOS for
a typical eigenstate considered is shown in Fig. 3(c); from
the LDOS, one- and two-point distribution functions were
computed, going from the GOE to the GSE (with increasing α).

IV. RESULTS

We now analyze the properties of the system, com-
paring results from RMT with those obtained by direct
simulation of Eq. (2) for a stadium billiard. We begin by
determining the regimes which arise as function of the SOC
strength. To this end, we consider the one-point function
P(ν) = 〈δ(ν − A|ψσ (r)|2)〉, which is obtained from Eq. (4)
by integrating out the degrees of freedom except at r.
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FIG. 4. (Color online) P(ν) = 〈δ(ν − A|ψσ (r)|2)〉. From top to
bottom: α = 0 (GOE), α = 0.2, α = 0.5, and α = 1.5 (GSE). Each
curve has been vertically offset by one unit for clarity.

Using Eq. (6), we obtain

P(ν) = ν

4γ1γ2γ3γ4

∫ 1

0
dz

× exp

{
−ν

4

[
(1−z)

(
1

γ 2
1

+ 1

γ 2
2

)
+ z

(
1

γ 2
3

+ 1

γ 2
3

)]}

×I0

[
ν

4

(
1

γ 2
1

− 1

γ 2
2

)
(1 − z)

]
I0

[
ν

4

(
1

γ 2
3

− 1

γ 2
4

)
z

]
,

(14)

where I0(x) is the modified Bessel function of order 0.25

This expression reduces to PGOE(ν) = exp(−ν/2)/
√

2πν in
the GOE (γ1 = 1 and {γi} = 0 for i �= 1) and PGSE(ν) =
4ν exp(−2ν) in the GSE (γi = 1/2 ∀i).

Figure 4 shows numerical results for P(ν) for different
values of the SOC; the results are compared with those of
Eq. (14) in a mean-field description, i.e., with the {γi} evaluated
at their average values—for α = 0.2α0 (α = 0.5α0), we find
λ = 0.04

√
4N (λ = 0.08

√
4N ).31 The physics of Eq. (2) is

determined by its two length scales—the spin-flip length lsf =
1/(mα) and the linear dimension of the system L (�R0).
Figure 4 shows how the system evolves toward the GSE as the
SOC is increased. In particular, we find the system to be in
the GSE for α � 1.5α0, i.e., lsf � 2R0/3; once the system is
in this GSE regime, the statistics do not change further as the
SOC is increased.

We now turn to spatial correlations of eigenfunctions.
We first consider the amplitude correlator Cσσ ′(r,r′) =
〈A|ψσ (r)|2A|ψσ ′(r′)|2〉. Using the parametrization in Eq. (6),
we obtain

Cσσ ′(r,r′) = 1 + 2
[(

γ 4
1 + γ 4

2 + γ 4
3 + γ 4

4

)
f 2

+ 2
(
γ 2

1 γ 2
3 + γ 2

2 γ 2
4

)
g2] . (15)

Notice that this reduces to CGOE
σσ ′ (r,r′) = 1 + 2f 2 in the GOE

and to CGSE
σσ ′ (r,r′) = 1 +V2/2 in the GSE, where V2 = f 2 + g2.

FIG. 5. (Color online) Amplitude correlator Cσσ ′ (r,r′) =
〈A|ψσ (r)|2A|ψσ ′ (r′)|2〉. From top to bottom: α = 0 (GOE), α = 0.2,
α = 0.5, and α = 1.5 (GSE). Each curve has been vertically offset
by 1/4 unit for clarity.

Numerical results for Cσσ ′(r,r′) are shown in Fig. 5 and are
compared with those of Eq. (15), with the {γi} evaluated at
their average values (as before). We see that the maximum is
larger in the GOE; more generally, the correlations decay more
rapidly with SOC—amplitude correlations are suppressed as
σ invariance is broken.

Having determined the parameter regimes and, in particular,
how large the SOC must be to be in the GSE, we now
consider in greater detail the properties of the system in the
GSE. To this end, we consider the joint distribution function
P(ν1,ν2) = 〈δ(ν1 − A|ψσ (r)|2)δ(ν2 − A|ψσ ′(r′)|2)〉, which is
obtained from Eq. (4) by integrating out the degrees of freedom
except those at r and r′. For the GSE we obtain

PGSE(ν1,ν2) = 8
√

ν1ν2

V(1 − V2)
exp (−2XS) I1 (4XP ) , (16)

where I1(x) is the modified Bessel function of order 1;25 for
comparison, we also consider P(ν1,ν2) in the GOE:20

PGOE(ν1,ν2) = exp (−XS/2) cosh (XP )

2π
√

1 − f 2√ν1ν2

.

In the above equations, XS = (ν1 + ν2)/(1 − X 2) and XP =
X√

ν1ν2/(1 − X 2), where X = V (X = f ) for the GSE
(GOE).

We now consider the properties and consequences of
P(ν1,ν2). We begin by considering the conditional probability

Pν1 (ν2) = P(ν1,ν2)/P(ν1), (17)

which describes the wave-function distribution at r2, provided
V |ψ(r1)|2 = ν1. It follows from Eq. (17) that correlations
between fluctuations at different points depend on their
amplitudes32—regions of high amplitude (i.e., large ν1) are
correlated over larger distances, while regions of small am-
plitude are correlated over shorter distances. PGSE

ν1
(ν2) for the

GSE is shown in Fig. 6(a) for several values ofV =
√

f 2 + g2;
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FIG. 6. (Color online) Conditional probabilities (a) PGSE
ν1

(ν2) and
(b) PGOE

ν1
(ν2) for several values of V (f ), for ν1 = 10.

PGOE
ν1

(ν2) for the GOE is shown in Fig. 6(b) for comparison,
for several values of f .

From Eq. (17), one can obtain the average 〈ν2〉ν1 and the
mean squared fluctuation 〈(δν2)2〉ν1 = 〈ν2

2 〉ν1
− 〈ν2〉2

ν1
, where

〈· · ·〉ν1 denotes an average with respect to Pν1 (ν2):

〈ν2〉ν1 = 1 + X 2(ν1 − 1),
(18)

〈(δν2)2〉ν1 = C[1 + 2X 2(ν1 − 1) + X 4(1 − 2ν1)],

where C = 2 for the GOE,13 while C = 1/2 for the GSE.
[As before, X = V (f ) for the GSE (GOE).] From this, we
see that fluctuations are suppressed in the GSE compared to
the GOE. More generally, fluctuations are largest in the GOE
[compared with the GUE32 and the GSE, Eq. (18)], and, hence,
correlations are the weakest.

We now consider the distribution of the product
A|ψσ (r)ψσ ′(r′)|, P(�) = 〈δ(� − A|ψσ (r)ψσ ′(r′)|)〉. P(�) de-
termines a number of experimentally relevant quantities, such
as the form factor in resonant scattering in complex nuclei,12

amplitudes in tunneling measurements, and the conductance
amplitude distribution through (small) quantum dots.10 From
Eq. (16), we obtain for the GSE

PGSE(�) = 32�2

|V|(1 − V2)
I1

(
4|V|�
1 − V2

)
K0

(
4�

1 − V2

)
, (19)

where K0(x) is a modified Bessel function of order 0;25 in the
GOE, we obtain

PGOE(�) = 2

π
√

1 − f 2
K0

(
�

1 − f 2

)
cosh

(
f �

1 − f 2

)
.

Figure 7 shows results for P(�) for several values of V (f )
for the GSE (GOE). We see that the maximum of PGSE(�)
decreases with increasing V with the tail becoming slightly
longer. For comparison, PGOE(�) is shown for different values
of f . We see that correlations play a more significant role in
the GSE—indeed, except for a very small region near � = 0,
PGOE(�) is essentially indistinguishable from the result with
f → 0. This is a consequence of the fact that fluctuations are
largest in the GOE and correlations are the weakest. Shown in

FIG. 7. (Color online) Product distribution P(�) =
〈δ (� − A|ψσ (r)ψσ ′ (r′)|)〉 in the GSE for several values of V .
For comparison, PGOE(�) is also shown for f = 0.5. Inset:
Comparison of numerical and RMT results for R = 0.055R0.

the inset are numerical results for PGSE(�) for r = 0.055R0 in
comparison with the RMT result, Eq. (19).

V. CONCLUDING REMARKS

To summarize, we have investigated the statistical prop-
erties of wave functions in chaotic nanostructures with spin-
orbit interactions, focusing particularly on spatial correlations
of eigenfunctions. Numerical results obtained for a chaotic
stadium billiard were compared with (analytic) results from
RMT. It was found that excellent agreement between RMT
and microscopic simulations are obtained in a mean-field de-
scription of the GOE-GSE crossover. A key observation from
our results is that correlations of wave-function amplitudes
are suppressed with SOC; however, these correlations with
SOC play a more significant role in the two-point distribution
function(s) in the GSE (compared with the GOE).

In this work, we have focused on correlations within a
single eigenfunction. It is worth noting that in the GOE-GSE
crossover and, more generally, in the crossover between
RMT ensembles, there are also correlations between differ-
ent eigenfunctions. These correlations arise because of the
enhanced fluctuations exhibited in the crossover between
RMT ensembles33—more specifically, these correlations arise
because one must average over the parameters characterizing
the crossover. An interesting extension would be to investigate
such correlations between different eigenfunctions and their
consequences.

Our results have implications for a number of systems
of current interest. Indeed, the effects of SOC have been
observed in transport through quantum dots34 and metallic
nanoparticles.35 These effects could also be observed in
quantum corrals defined on Au(111) surfaces, where large
SOC has been observed,36 especially as scanning tunneling
microscopy techniques have exquisite control of positioning
and correlation measurements.
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34J. B. Miller, D. M. Zumbühl, C. M. Marcus, Y. B. Lyanda-Geller,

D. Goldhaber-Gordon, K. Campman, and A. C. Gossard, Phys. Rev.
Lett. 90, 076807 (2003).

35F. Kuemmeth, K. I. Bolotin, S.-F. Shi, and D. C. Ralph, Nano Lett.
8, 4506 (2008).
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