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Thermoelectric properties of finite graphene antidot lattices
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We present calculations of the electronic and thermal transport properties of graphene antidot lattices with
a finite length along the transport direction. The calculations are based on the π -tight-binding model and the
Brenner potential. We show that both electronic and thermal transport properties converge fast toward the bulk
limit with increasing length of the lattice: only a few repetitions (�6) of the fundamental unit cell are required
to recover the electronic band gap of the infinite lattice as a transport gap for the finite lattice. We investigate
how different antidot shapes and sizes affect the thermoelectric properties. The resulting thermoelectric figure of
merit, ZT , can exceed 0.25, and it is highly sensitive to the atomic arrangement of the antidot edges. Specifically,
hexagonal holes with pure armchair edges lead to an order-of-magnitude larger ZT as compared to pure zigzag
edges. We explain this behavior as a consequence of the localization of states, which predominantly occurs for
zigzag edges, and of an increased splitting of the electronic minibands, which reduces the power factor S2Ge

(S is the Seebeck coefficient and Ge is the electric conductance).
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I. INTRODUCTION

Ideal thermoelectric materials conduct electricity very well
while the heat conduction is poor. Their applications include
power generation and refrigeration.1,2 The optimization of
thermoelectric properties has been a topic of wide interest,3,4

and in particular, nanostructured materials for thermoelectrics
is a rapidly expanding field of research. One proposal has
been to increase the Seebeck coefficient S by reducing the
dimensionality of the system.5–7 Another idea is to utilize the
low thermal conductance, together with a sharp resonance in
the electronic conductance Ge, of molecular junctions.8–11 Re-
duction of the thermal conductivity in nanostructured materials
may be achieved using nanomesh structures, surface-disorder
and -decoration, passivation, or by other means. However,
the electronic conductance ideally should not be affected.
Examples of nanostructured thermoelectric materials include
passivated Si nanowires,12 Si antidot lattices,13,14 chevron-
type graphene nanoribbons,15 and connected capped carbon
nanotubes.16 Here we turn our attention toward graphene
antidot lattices (GALs), a nanomesh of holes in graphene with
promising electronic properties such as a tunable band gap.17

The efficiency in converting temperature gradients into an
electric voltage, at an average temperature T , is quantified
by the dimensionless figure of merit ZT = S2GeT /κ , where
high ZT implies a good thermoelectric. We thus seek a high
electronic power factor S2Ge and minimal thermal conduc-
tance κ = κph + κe, which includes contributions both from
phonons and electrons. Thermoelectric materials with ZT ≈ 1
have an efficiency in the range of available thermoelectric
components based on nanostructured bulk materials, whereas
ZT > 3 is needed to compete with conventional refrigerators
and generators.18,19

Graphene can sustain current densities six orders of
magnitude larger than copper, has a measured record high
stiffness, and is foreseen to have numerous applications
ranging from nanoelectronics, spintronics, and nanoelectrome-
chanical devices.20 Graphene is furthermore one of the best

thermal conductors known.21,22 It has been predicted to posses
a giant Seebeck coefficient when gated by a sequence of
metal electrodes.23 However, ways to reduce the superior
thermal conductivity of graphene are needed if one looks
for thermoelectric applications.24 Several ways to reduce the
thermal conductivity have already been examined, such as in-
terface mismatching between graphene and nanoribbons,25,26

the presence of isotopes,27–30 cross-plane phonon coupling
in a few layers of graphene,31 strain,32 random hydrogen
vacancies in graphene,33 and point defects.34–36 Edge disorder
has been predicted theoretically to suppress heat conductance
of graphene nanoribbons,37–39 and ZT exceeding 3 has been
theoretically predicted for such systems in the diffusive
limit.40

GALs have been proposed as a flexible platform for creating
a semiconducting material with a band gap which can be tuned
by varying the antidot size, shape, or lattice symmetry.17,41–43

GALs can be fabricated by electron beam lithography,44,45 by
block copolymer lithography46,47 with hole distances down to
5 nm, and at a larger scale through nanorod photocatalysis48

and anisotropic etching.49 To the best of our knowledge,
no studies have been reported on the thermal properties of
finite GALs. Apart from their intrinsic scientific interest, these
studies are necessary to assess whether the thermal properties
can be engineered in a manner similar to the electronic case.
Of course, all realistic devices are of finite length, and the
study of size effects is important for practical purposes.50

For completeness, we mention here other related studies that
have recently been reported. A number of studies of electron
and/or phonon transport properties of regular defects in ribbons
are available (see, e.g., Refs. 51–53). Recently, Lopata et al.
studied electron transport of infinite GALs.54 Finally, during
the preparation of this manuscript Karamitaheri et al. reported
a combined study of electron and phonon transport properties
based on the band structures of infinite GALs,55,56 and
Tretiakov et al. reported results for topological insulators,57

which share certain key properties (e.g., flatbands) with
GALs.
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FIG. 1. (Color online) System setup and the computational
rectangular unit cell (green rectangle). Two graphene leads are
connected by the finite GAL. The depicted system is a {10,5zz}
GAL with a length of 2 (M = 2) corresponding to four holes in the
direction of transport.

The topic of this paper is thus the electronic and thermal
transport properties of finite graphene antidot lattices. The
finite GALs are viewed as a part of an integrated graphene-
based system, e.g., used as an electrode for molecular
conductors8,58 (see Fig. 1). In order to shed light on the
question of to what extent it may be possible to engineer
the thermoelectric properties, we investigate how different
antidot shapes and sizes affect the thermoelectric properties.
Interestingly, even though the base material—graphene—is
an outstanding thermal conductor, we find that the resulting
thermoelectric figure of merit, ZT , can exceed 0.25. However,
ZT is highly sensitive to the atomic arrangement at the edge
of the etched holes, partly due to electronic quasilocalized
edge states. As we shall show below, this favors antidots with
armchair-type edges for thermoelectrics.

The paper is organized as follows. In Sec. II we introduce
the systems and outline the theoretical and numerical methods
used. In Sec. III we present our results for the electronic
transport properties of GALs. Specifically, we discuss the
convergence with number of repetitions of the basic unit cell
and also consider the localization of electronic states at zigzag
edges. In Sec. IV we examine the influence of the perforation
and geometrical effects on the thermal transport properties.
This leads to the analysis of thermoelectric properties in
Sec. V. The results are summarized and discussed in Sec. VI.

II. SYSTEMS AND METHODS

Throughout in this paper we focus on triangular graphene
antidot lattices: these systems are known to lead to a gap in
the electronic spectrum,42,43 which is essential for the present
purposes. Due to the high lattice symmetry the number of
independent lattice parameters is small, and furthermore, these
systems are the most thoroughly studied, both theoretically
and experimentally. Recent experiments have illustrated that
hexagonal antidots may stabilize with pure zigzag and arm-
chair edge chirality.49 The antidot diameter, shape, position and
the ratio of removed atoms to unit cell size are all important
parameters which we examine to get a full picture of the
electronic, thermal, and thermoelectric properties of GALs.
Another important variable is the length of the region exposed

to the nanoperforation. The systems studied here consist of
an antidot lattice of finite length connected to two pristine
graphene leads (Fig. 1), and the infinite direction perpendicular
to the transport direction is treated using periodic boundary
conditions and corresponding k-point sampling.

We use the nomenclature introduced in Ref. 17 and specify
the GAL by {Ls1,Ss2}, where the L is the length of the side
of a hexagonal Wigner-Seitz cell, and S is the side length of
the antidot (see Fig. 1), both in units of the lattice constant√

3a0, with a0 = 1.42 Å being the carbon-carbon distance.
The label s2 = {zz,arm,cir} indicates whether the hole has
zigzag or armchair edges, or if the hole is circular, resulting in
mixed armchair and zigzag edges. In principle, one could also
consider different sheet orientations compared to the transport
direction; we do not present a systematic study here and fix the
underlying graphene sheet as armchair (s1 = arm, as in Fig. 1).
We have tested a selection of “zigzag sheets” and did not
find any qualitative difference with respect to thermoelectric
properties. As an example, {10,5zz} is a L = 10 antidot
lattice with transport direction perpendicular to the armchair
direction59 and with a hexagonal hole with the same orientation
as the lattice hexagons, resulting in zigzag edges and a side
length of S = 5 (see Fig. 1). Armchair edges are obtained if the
hexagonal holes are rotated opposite to the lattice hexagons
(see also Fig. 2 below).

A. Method

Both electronic and phonon transport properties are calcu-
lated from atomistically determined energy-dependent trans-
mission functions Te and Tph, as described below, and using
these in a Landauer-type formula. For a spin degenerate
electronic system the Landauer formula reads

Ie = 2e

h̄

∫
dE

2π
Te(E)[nF (E,μL) − nF (E,μR)] , (1)

where nF (E,μL/R) is the Fermi-Dirac distribution at the
chemical potential of the left or right lead. We employ this in
the linear-response limit and consider variations with changes
in the chemical potential, e.g., by doping or gating of the
graphene system. The following integrals can be evaluated
from the electronic transmission,

Ln(μ) = 2

h̄

∫
dE

2π
(E − μ)nTe(E)

(
−∂nF

∂E

)
. (2)

They relate the electronic current and the electron heat current
IQ in the linear response regime:(

�Ie

e

�IQ

)
=

(
L0 L1

L1 L2

) (
�μ
�T
T

)
, (3)

where �μ = μL − μR and �T = TL − TR . From these in-
tegrals several physical properties follow;60 the electrical
conductance Ge(μ) = ∂I

∂V
= e2L0, the electron thermal con-

ductance κe(μ) = [L2 − L2
1

L0
]/T , and the Seebeck coefficient

S(μ) = �V
�T

|Ie=0 = L1
eL0T

.
For phonons the Landauer formula takes an analogous form,

Iph =
∫ ∞

0
dω

h̄ω

2π
Tph(ω) [nB(ω,TL) − nB(ω,TR)] , (4)
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FIG. 2. (Color online) Change of bond lengths due to the
relaxation of the graphene antidots. Top: Coloring scheme for the
bond lengths. The distribution of bond lengths after relaxation is
given for five different lattices. From top to bottom the considered
lattices have (a) small armchair holes {10,3arm}, (b) large armchair
holes {10,6arm}, (c) small zigzag holes {10,3zz}, (d) large zigzag
holes {10,5zz}, and (e) mixed edges {10,4.7cir}. When the hole
size is increased the spectrum broadens and peaks occur at different
bond lengths. The peaks occur at different positions characteristic
of different hole types. The highly compressed “pink” bond for
armchair edges is positioned between the two atoms pointing into the
hole.

where nB(ω) is the Bose distribution function. Again we use it
in linear response and consider the thermal conductance from
phonons given by

κph =
∫ ∞

0
dω

(h̄ω)2

2πkBT 2
Tph(ω)

e
h̄ω

kB T(
e

h̄ω
kB T − 1

)2
. (5)

Both transmission functions Te and Tph are obtained using
a recursive Green’s function method (see Ref. 61 and the refer-
ences cited therein), with self-energies representing the semi-
infinite perfect graphene electrodes. The self-energies �L,R

are iteratively constructed from the semi-infinite graphene
left (L) and right (R) leads. The calculation of both electron
and phonon k-averaged Landauer transmissions together with
the thermoelectric properties are performed by an atomistic
Green’s function method,16,62

Te(E) = 1

Nk

Nk∑
i=1

Tr
[
Gr

D(E,ki)�R(E,ki)

× Ga
D(E,ki)�L(E,ki)

]
. (6)

Here the retarded Green’s function Gr
D(E,k) is obtained

from the Hamiltonian H, Gr
D = [EI − H − �r

L − �r
R]−1, and

the broadening matrices due to the electrode coupling are
defined as �L,R = i[�r

L,R − �a
L,R]. The parameter Nk gives

the number of sampled k points.63 Similar equations hold for
the phonon transmission: the Hamiltonian is replaced with the
dynamical matrix H → K, and the energy is replaced with
EI → ω2M, ω being the frequency and M is the diagonal
mass matrix. We first perform a structural relaxation and then
calculate the Hamiltonian/dynamical matrix for three unit cells
(M = 3, 6 holes) between the pristine graphene leads. The
elements corresponding to the center cell (two holes) are then
subsequently repeated to increase the length of the GAL.

The electronic system is modeled by a nearest-neighbor
π model (Vppπ = 2.7 eV) together with the Harrison scaling
law to take into account the changes in the hopping matrix
element due to the edge relaxation.64 Based on the same
method, Guinea and co-workers65 have shown how strain
in graphene can lead to a pseudomagnetic field affecting
the electronic properties. We find that the modulation of the
hopping elements is of minor importance for the present
applications. In order to examine the effect of passivation
we have performed calculations of the band structures with a
model including two d orbitals for each C atom and an explicit
model for the carbon-hydrogen interaction.66 The qualitative
features of the band diagram, and the edge states discussed
below, depend surprisingly little on the presence of hydrogen
passivation. However, the effect of passivation might be more
important in antidot lattices with localized zero energy states
such as in the triangular antidots considered in Ref. 67.

The dynamical matrix is computed using the empirical
Brenner interatomic potential.68 This is done for the system
cell by the finite difference approach after a structure relaxation
performed by the General Utility Lattice Program (GULP).69

Momentum conservation is important for low-frequency
modes, and it is imposed after the finite difference calculation
by adjusting the diagonal elements of the dynamical matrix. A
few representative results of the relaxation are shown in Fig. 2.

We see that the changes in the bond lengths compared
to a0 are below 4%. Compression of bonds at the edge
is followed by a region with elongation of bonds, and the
relaxation is confined in small regions in space. Matching of
edge relaxations can result in longer-ranged relaxations (small
compressions) emanating from the corners. This occurs mainly
for zigzag edges (Fig. 2).
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The results presented below are based on a set of electron
and phonon transport simulations of 20 configurations with
varying hole size and lattice parameters. In addition to this
set, the electronic structure of another 27 systems was studied
to examine the formation of edge states. Finally, a number
of systems has been studied with either the zigzag transport
direction or a rectangular lattice of holes. No qualitative
differences in thermoelectric properties were found for these
systems, and we shall not present these results here.

III. ELECTRON TRANSPORT

In this section we consider the electronic properties of finite
GALs. The result for a series of unit cell repetitions (M) is
shown in Fig. 3. As can be seen the electronic transmission
Te converges fast toward a length-independent result. The
behavior of the transmission function can directly be traced
back to the band structure of the infinite GAL if one defines
a transport gap as the energy range where the transmission is
below a certain small value. The transport gap is in general
found to converge to the band gap of the infinite antidot
lattice found from the band structure, and the system behaves
“bulklike” after only six to seven unit cell repetitions. Thus
the transport gap can be determined from a calculation of the
dispersion on an infinite GAL using a primitive unit cell due
to the fast convergence property illustrated in this section. The
converged values of the transport gap are given in Fig. 4.70

To access the effect of relaxation on the electronic structure,
we have plotted the obtained transport gaps neglecting the
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FIG. 3. (Color online) Top: Convergence with length (M , the
number of unit cells with two holes along the device) of transmission
for a {10,3arm} antidot lattice. Bottom left: Zoom at the transport gap
for the {10,3arm} GAL. The leftmost vertical dashed line marks the
value of the band gap obtained from the band structure of an infinite
GAL. Bottom right: Transmissions close to the Fermi level for the
selected GALs shown in Fig. 2. The transmission curves have been
shifted by an integer to ease the comparison.
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FIG. 4. (Color online) Scaling of the electronic transport gap
Eg with increasing ratio of removed atoms compared to the
simple scaling law estimated for circular holes.17 The systems
considered are {10,Szz} with S = 3, 4, 4.5, 5, 5.5; {10,Sarm} with
S = 3, 4.5, 5, 6; and {10,Scir} with S = 3.5, 4.7, 5. Furthermore,
we include two sets, {L,3arm} and {L,3zz} for L = 6, 8, 10, 12,
with fixed hole geometry.

modulation of the hopping elements for the results with
varying hole size for the armchair holes (black squares) and
zigzag holes (black diamonds). The relaxation is found not to
play a qualitative role in the equilibrium electronic properties
of GALs within this model. The convergence is independent
of the lattice parameters, and in all simulations presented
hereafter between eight and ten unit cells are used.

Besides the transport gap, we observe that it is possible
to approximate the transmission versus energy as linear
curves corresponding to a simple reduction of the pristine
transmission, T0 ∝ |E| (see example in the transmission plots
in Fig. 5). We have calculated envelope lines obtained from
a scaling of the pristine transmission with the width of
the constriction Teff = Reff T0, where T0 is the transmission
of pristine graphene. The reduction factor Reff describes
the amount of pristine transmission that survives the lattice
perturbation in terms of a regular perforation. The actual
reduction factor is estimated as the average reduction found at
each energy point. We find that the electronic transmission is
reduced more than what would be expected from the effective
width reduction Reff = W/W0. Here W is the minimal width
along the device and W0 is the width of the pristine graphene
sheet. For the systems considered in Fig. 2, the hole dimension
is varying between 1.2 and 2.6 nm, giving an effective width
reduction between 71% and 26%. The actual reduction factor
is decreasing linearly with hole dimensions from 24% to
5%. Therefore only a minor part of the average transmission
reduction can be ascribed to the narrowing of the conducting
plane. The present model does not take special account of
the band gap opening. One could instead ask if the peak
transmission is limited by the effective width. The peak
transmission reduction factor is found to be decreasing from
65% to 21% and fits the effective width reduction very well
for small holes. As the hole size increases the effective width
is overestimated due to the triangular lattice structure of the
perforation, and the reduction factor approaches the averaged
value.
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FIG. 5. (Color online) Left: Band structure for {10arm,5zz} (top) and {10arm,6arm} (bottom) antidot lattices, respectively. Middle:
Corresponding electronic transmission around the Fermi level. The energies of the states illustrated and compared further have been marked
with circles. Right: Eigenstates 1, 3, 4, and 6 at the � point with energies as marked in the corresponding band structures. The eigenstates of
the {10,5zz} antidot lattice (top) are very localized at the edges. The eigenstates of the {10,6arm} antidot lattice (bottom) are less localized at
the edges but resemble corner states. A phase of zero and π is colored blue and yellow, respectively.

A. Localization at zigzag edges

There is an important difference between holes of different
atomic arrangements at the edges. In Fig. 5 we compare the
electronic transmission and the band structures for two large
holes with zigzag and armchair edges, respectively. The figure
illustrates how the transmission can be directly traced back
to the band structure of the GAL. It is furthermore seen how
the structure with zigzag edges leads to an additional splitting
into flat minibands around the Fermi level. This feature can be
understood in terms of localized states due to a local excess of
atoms of one of the two sublattices in the graphene bipartite
lattice.67 The local imbalance of A- and B-type atoms at the
edges leads to the corresponding number of defect states. In
hexagonal holes with zigzag edges, each side consists of a
segment of either type A or B atoms. The hybridization will be
small between these defect states, which are partially separated
in space. As illustrated at the rightmost of Fig. 5, the flat
minibands are highly localized at the edges. In the case of
hexagonal holes with armchair edges, each side consists of

an alternating sequence of A and B atoms. Therefore these
defect states hybridize more, resulting in a larger shift from
the Fermi level and a reduced flatness of the bands. As can be
seen from Fig. 5, the first bands with minimal dispersion are
mainly localized in the small zigzag corner region between two
AB sequences. We expect the localized states to be sensitive to
disorder, destroying the pristine edge chirality of the antidots.
However, as is indicated by the {10,6arm} corner states, one
can always expect to have some degree of localization at zigzag
edge segments, which we have also found to be true in the
mixed edges.

It is possible to quantify the degree of localization from the
weight of the eigenstate at each atom. The localization factor
for a given eigenstate in the site basis ψn = [u1,u2, . . . ,uN ] is
here defined as71,72

Lf (ψn) =
∑N

i=1 |ui |4(∑N
i=1 |ui |2

)2 . (7)
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FIG. 6. (Color online) Localization factor as a function of conduction state index for a selection of distances between neighboring holes.
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This factor equals 1/N when the state is fully delocalized,
and all weights ui have the same value. In the case of a state
localized at a single site it gives 1. The inverse localization
factor gives a measure of the number of sites that contribute to
a given state.

A numerical example is given in Fig. 6. For the system with
L = 10 and zigzag edges, we see that the first conduction states
corresponding to the flat minibands are more localized than
the following bands. For the armchair edge the localization
parameter shows a weaker dependence on the state index.
We conclude that the flat minibands of the zigzag edge are
more localized than the corresponding states of an antidot
lattice with armchair edges. Figure 6 further illustrates that
this conclusion is independent of the values considered here
for the unit cell dimension L. The localization factor for
the armchair edge depends more strongly on the dimension
of the unit cell, that is, the hole-hole distance, and is in
general an order of magnitude lower compared to the zigzag
edge. Therefore the band gaps of GALs with armchair
edges are determined by the confinement, as opposed to
the case of zigzag edges where it is governed by edge
state formation. This is the reason the band gap scales
differently depending on the edge type of the hole (Fig. 4).
For very small holes with zigzag edges we find that the
almost dispersionless GAL minibands are positioned further
into the band structure (see the {L,3zz} curve in Fig. 4).
However, as the length of the edge is increased the zigzag
edge-state energies are located directly at the band gap. It is
therefore not to be expected that a larger hole with certainty
results in a larger band gap or transport gap. Even though
this happens for holes with armchair edges, introduction
of zigzag regions may suppress the band gap, which is
important for electronic and optical applications of antidot
lattices.

We conclude that GALs with armchair edge geometry
have a larger band gap as compared to both zigzag edge
geometries and the predicted scaling.17 Furthermore, the
hexagonal antidots with armchair edges show a systematic
scaling of the transport gap with hole size, making this system
preferable for electronic applications.

IV. HEAT TRANSPORT

We now turn to the thermal transport properties of finite
GALs. In Fig. 7 we show the phonon transmission as a
function of M , the number of repeated unit cells. To quantify
the convergence with length we have calculated the thermal
conductance at 300 K for the antidot lattices of Fig. 2
at different lengths. This shows that the thermal properties
converge at a length scale similar to that of the electrons, so
the phonons also behave “bulklike” after six to seven unit
cell repetitions. In all simulations presented hereafter we use
8 − 10 unit cells.

The thermal conductance due to phonons in pristine
graphene at 300 K should be compared to a measured thermal
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FIG. 8. (Color online) Thermal conductance from phonons as a
function of hole dimension. The red squares, blue diamonds, and
green circles label holes with armchair, zigzag, and circular or mixed
edges, respectively. Four different temperatures are plotted for each
system. From top to bottom the thermal conductance is found at
temperatures of [450, 300, 150, 90] K. The thermal conductance at
these four temperatures is for pristine graphene found to be [8.5, 6.1,

2.6, 1.2] nW
K . Inset: fitted dimensionless parameter α describing the

scaling with hole size of the thermal conductance.

conductivity21,73 of σ
exp
ph ≈ 4.5 − 5.5 × 103 W/(m K). Our

result compares well to other theoretical calculations, where
it similarly was reported74 that the reduced ballistic ther-
mal conductance, which we find to be κ

pri
ph/(W0h) ≈ 4.27 ×

109 W/(m2 K), is much larger than the experimentally ex-
tracted partially diffusive result σ

exp
ph /(Lexp) ≈ 0.39 − 0.48 ×

109 W/(m2 K). Here h = 3.35 Å and Lexp ≈ 11.5 μm are the
graphite interlayer distance and traveled distance, respectively,
by the phonons in the experiment by Balandin et al.21 and
W0 is the computational unit cell width. The main difference
here can probably be attributed to isotopes, electron-phonon
scattering, and especially anharmonicity, being important for
long devices.

In analogy with the electronic transmission we have calcu-
lated an average reduction factor for the phonon transmission.
The transmission of the lowest acoustic and especially the
highest optical modes is generally reduced more than the
remaining of the phonon spectrum. Similarly to the electron
case, the average reduction factor decreases linearly with the
hole width for the considered systems. The average phonon
transmission reduction factor is found to be of the same
order of magnitude as compared to the electron transmission.
Once again only a minor part of the transmission reduction

can be ascribed to the reduction in effective width of the
conducting plane due to the perforation. There is a tendency
that the phonons are scattered more than the electrons by the
nanoperforation for small antidot concentrations. Furthermore,
the electronic reduction factor can be much larger at a specific
chemical potential for small holes. For large hole dimensions
both the electrons and phonons are scattered to an extent where
the transmission is reduced by more than 80% on average for
the systems considered. For the largest holes up to 36% of the
atoms have been removed from the pristine graphene plane.

In Fig. 8 the temperature and hole size dependence of
the phonon thermal conductance is given for our selection of
systems with varying hole size and shape. Figure 8 illustrates
how the thermal conductance decreases almost linearly with
the hole size for typical perforation removal ratios (larger than
5% perforation). Furthermore, the graph shows that the thermal
conductance has a tendency to be slightly larger for holes with
zigzag edges (shown as diamonds in Fig. 8). A similar behavior
has been found for graphene nanoribbons with zigzag edges.52

However, compared to the electronic case the thermal transport
features are less sensitive to the exact shape and edge of the
holes.

For the purpose of making it easy to compare our result
with other calculations and experiments, we give an empirical
expression for the thermal conductance. In the regime where
the thermal conductance is linear in the hole dimension, one
can parametrize the thermal conductance as

κph ≈
(

−α(T )
Nrem

Ntot
+ β

)
κ

pri
ph(T ) . (8)

From this approximation we fit the “linear regime offset”
β ≈ 0.25 and the dimensionless parameter α(T ), given in
the inset of Fig. 8. The lines in Fig. 8 are illustrating this
parametrization. Only the variation of absolute hole size is
plotted in Fig. 8, for a fixed unit cell dimension L. No
qualitative difference is found regarding antidot concentration
dependence of the thermal conductance, keeping the hole
geometry fixed and varying the unit cell parameter L. Again,
this illustrates that the phonon properties are less sensitive to
the exact nature of the holes as compared to the corresponding
electronic properties.

In Fig. 9 we have illustrated the electronic contribution
to the thermal conductance at four different temperatures.
Due to the vanishing electronic density of states around
zero chemical potential, the thermal conductance of GALs is
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FIG. 9. (Color online) Electronic contribution to the thermal conduction. Top: {10,6arm} antidot lattice. Bottom: {10,5zz} antidot lattice.
From top to bottom the curves are found at a temperature of [450, 300, 150, 90] K. The corresponding phonon thermal conductance has been
marked to the right of the plot for comparison.
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FIG. 10. (Color online) Seebeck coefficient at the four different temperatures [450, 300, 150, 90] K for the {10,6arm} (top) and {10,5zz}
(bottom) GAL. Notice the different scale on the Seebeck coefficient. The main Seebeck peaks of the GAL with zigzag edges occur at the
energies of the low transmitting localized states, whereas the main contribution to the thermoelectric power of the GAL with armchair edges is
positioned at energies further into the band structure.

dominated by phonons, as is also the case of pristine graphene.
However, the electronic contribution can dominate, even at
room temperature, when a large gate bias is applied.

V. THERMOELECTRIC FIGURE OF MERIT

Next we report the thermoelectric properties of the consid-
ered GALs. In Fig. 10 we compare the Seebeck coefficient
for a GAL with armchair edges (top) and zigzag edges
(bottom). The Seebeck coefficient displays peak values75 of
the order of 0.1 − 1.5 mV/K, which is similar to what has been
obtained for other carbon-based nanosystems and molecular
contacts.8,34,76

For bulk materials the thermoelectric figure of merit is
defined in terms of the electrical and thermal conductivities,
σe,σt , as ZT = T σeS

2/σt . For the ballistic graphene systems
we can write it in terms of their respective conductances
by introducing a width, effective length, and thickness,
ZT = T GeS

2/(κe + κph). The maximal thermoelectric figure
of merit ZT is obtained after length convergence due to
the increased band gap and decreased thermal conductance.
Within the ballistic limit the thermoelectric figure of merit
eventually becomes independent of M at the same scale as
the electron and phonon transmissions (M � 7). Since our
system consists of two graphene leads connected by a perfect
superlattice of holes, it never reaches a diffusive transport limit.
In the following we consider the thermoelectric properties
after length convergence has been achieved. We expect that
a further gain in thermoelectric efficiency could be obtained
in the diffusive limit (in the presence of disorder), as was
seen for edge-disordered nanoribbons.40 This topic should

be investigated in the future. The obtained ZT shown in
Fig. 11 as a function of chemical potential has a number of
peaks corresponding to a large variation of the transmission
with energy. The Seebeck coefficient is a measure of these
changes and their robustness to temperature smoothening.
One important feature is that the high peaks in the Seebeck
coefficient for the {10,5zz} lattice mainly occur at very
low energy, where the transmission is low, whereas for
the {10,6arm} lattice the dominating peaks occur at higher
chemical potential. Therefore the peak ZT is higher for the
{10,6arm} as a result of the higher electronic conductance
at peak position, as illustrated in Fig. 11. The Seebeck
coefficient is highly sensitive to the variations in the electronic
transmission resulting from different hole edges, sizes, and
so forth. In Fig. 12 we collect the maximum ZT values we
have found for a selection of GALs. It seems possible to
obtain larger ZT from GALs based on hexagonal holes with
armchair edges. This is a result of the additional splitting into
minibands for zigzag edges. The reason for this additional
splitting is, as mentioned in Sec. III A, the formation of
edge states at zigzag edges. As a consequence the Seebeck
coefficient can be larger for zigzag edges. However, the power
factor is significantly lower due to the lower transmission
from the isolated energy levels with low dispersion. There
is also a weak trend that the hole dimension compared to
the system size should be maximized. By increasing the hole
dimension we actually reduce the electronic figure of merit,
defined as

ZTel = S2GeT

κe

= κph + κe

κe

ZT , (9)
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FIG. 11. (Color online) ZT for {10,6arm} and {10,5zz} lattices at the four temperatures [450, 300, 150, 90] K. At low temperature the pure
electronic figure of merit ZTel can be very large due to a vanishing thermal conductance from electrons and sharp features in the transmission
spectrum. At low temperature many sharp transmission features also becomes visible in the actual ZT .
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FIG. 12. (Color online) ZT dependence on the ratio of removed
atoms in the nanoperforation at T = 300 K. Systems included in
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S = 3, 4.5, 5, 6 and {10,Scir} with S = 3.5, 4.7, 5 (full lines) and
furthermore, two set of systems with a fixed hole {L,3arm} and
{L,3zz} with L = 6, 8, 10, 12 (dotted lines).

but obtain a larger fraction of it due to a reduced phonon
conductance. Higher ZT could possibly be obtained by
increasing the hole dimension even further, but these systems
will be very challenging to fabricate.

We have presented calculations in which the antidot
concentration is varied either by changing the hole size (and
shapes), while keeping the lattice parameter L fixed, or keeping
the hole size and shape fixed under L variation. However,
the latter examination is computationally possible only for
small antidot dimensions. Therefore it is possible to see if
the thermoelectric properties depend on the absolute hole
size or only on the antidot concentration. For the examined
systems we find that antidots with smaller absolute sizes seem
to result in better thermoelectric performance for holes with
armchair edges. For holes with zigzag edges the exact nature
of the localized states comes into play and seems to keep the
thermoelectric performance less sensitive to the absolute hole
size.

The electrons-only result, ZTel (κph = 0), describes an
upper bound of the figure of merit. However, we find it to be
somewhat artificial, due to the fact that the phonon contribution
to the thermal conductance shifts the position of the peaks and
ZTel possess a (in principle unbound) peak every time the
electronic thermal conductance is zero [Eq. (9)]. Especially
in the presence of gaps in the electronic band structure, the
computation of ZTel can be numerically challenging. However,
evaluating the ZTel expression at the true peak position can
give an estimate of the gain by a further reduction of the
phonon conductance. For the {10,6arm} GAL the first peak
(μ = 0.37 eV) and the highest peak (μ = 1.23 eV) have a
ZT = 0.17 and 0.26 with corresponding ZTel = 4.78 and
0.77, a factor of 28 and 3 larger than the true ZT , respectively.
For the {10,5zz} lattice we have the first peak value ZT = 0.13
with corresponding ZTel = 5.77, a factor of 44 larger at the
same energy. At high chemical potential the main limitation
is the electronic structure and not a further reduction of the
phonon heat conductance. On the contrary, one could obtain
a significant ZT enhancement at low chemical potential by
further reducing the thermal conductance. Isotope scattering,
anharmonic interactions, electron-phonon interactions, and
graphene-substrate interactions could all contribute to a reduc-
tion of the phonon thermal conductance. In Fig. 13 we illustrate
the effect of a reduction of the phonon thermal conductance.
The parameter � gives the fraction of the original phonon
thermal conductance kept in the calculation. For the {10,6arm}
GAL the first peak (μ ≈ 0.37 eV) increases more rapidly than
the high-energy peaks. The peak position crossover happens
at around � ≈ 0.35. When the phonon thermal conductance
dominates, the figure of merit variation goes as ZT/�, clearly
present in the low-energy ZT variation (see Fig. 13, bottom),
even when the phonon thermal conductance is reduced below
5% of its original value.

We propose one of two routes to obtaining higher ZT .
Either one could find a way to reduce the thermal conductance
without affecting the electrons. Surface decoration might be
a promising way to obtain this. Another route could be to
improve the electronic properties of GALs, e.g., by combining
this system with other nanostructured devices. This could
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increase the peak ZT obtained at high chemical potential.
We note that one-dimensional nanosystems may display a large
Seebeck coefficient leading to larger ZT . However, on the
other hand, the two-dimensional (2D) GAL structure may have
an important advantage. In a 2D GAL the system geometry
does not pose inherent limits for the converted power, as it
does for a system of parallel quasi-one-dimensional systems,
such as quantum wires or graphene nanoribbons: the power
can be increased by simply making the GAL system broader.
This provides a strong motivation for further investigations
of GALs as thermoelectric devices, perhaps as an integrated
element in future graphene nanoelectronics. Despite the high
intrinsic thermal conductance of graphene, it is noticeable that
one can utilize the nanoperforation to obtain ZT exceeding
0.25, a factor of 35 enhancement compared to what is found
for bulk graphene.

VI. DISCUSSION AND CONCLUSION

We have theoretically shown that GALs allow the simulta-
neous manipulation of both electronic and thermal transport
properties of graphene sheets. Our calculations have been
carried out in the ballistic limit, which gives a reasonable
first estimate for short devices whose dimensions are smaller
than the various scattering lengths (important scattering mech-
anisms include the anharmonic phonon-phonon interactions,
electron-phonon scattering, and electron-electron scattering).
Also, spin polarization may turn important: recent studies have
shown that one can have spin-splitting and a magnetic moment
in triangular77–79 antidots with pure zigzag edges. Above all,
the most important future task is a systematic study of disorder
effects. Our preliminary results suggest that a low degree of
disorder can increase ZT due to a decrease of the thermal
conductance, whereas a high degree of disorder affects both
electrons and phonons so that the decrease in power factor
outweighs the decrease in thermal conductance.

A key result of our analysis is the convergence of transport
properties with length for GALs. The ballistic transport proper-

ties converge fast toward that of the infinite antidot lattice. We
have also found that the quantization is an important feature
of both electron and phonon transport properties of GALs.
This is seen from the fact that the transmissions are reduced
far more than what would be expected from an effective
width estimation and therefore the exact scattering rate for the
different edge types is important. The average transmission
reduction factor is found to be on the same order of magnitude
for electrons and phonons. In general, the formation of edge
states determine the band gap of GALs with pure zigzag edges
as opposed to pure armchair edges, where the band gap is
determined by the confinement of electrons. Furthermore, the
different edge characteristics play an important role in the
observed difference in thermoelectric properties. ZT is found
to be lower for GALs with zigzag edges due to the additional
splitting into minibands for large structures and a correspond-
ing lower power factor. The maximal thermoelectric efficiency
ZT ≈ 0.3 has been obtained for GALs with pure armchair
edges. Therefore, it is possible to obtain fair thermoelectric
properties of graphene-based nanosystems, even despite lattice
distortions which highly affect both the π -electron-determined
electronic properties and the sp2-bonding-determined ther-
mal conductance, such as the nanoperforations. The main
limitation in thermoelectric applications of GALs at high
chemical potential is set by the electronic structure because the
electronic heat conductance is large at the high-energy peak
position of S and ZT . At low chemical potential we expect
that one could benefit from a further reduction of the phononic
thermal conductance due to isotope scattering and anharmonic
interactions.
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