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Spin and band ferromagnetism in trilayer graphene
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We study the ground-state properties of an ABA-stacked trilayer graphene. The low-energy band structure can
be described by a combination of both a linear and a quadratic particle-hole symmetric dispersion, reminiscent of
monolayer and bilayer graphene, respectively. The multiband structure offers more channels for instability toward
ferromagnetism when the Coulomb interaction is taken into account. Indeed, if one associates a subband-index
1/2 degree of freedom to the bands (parabolic and linear), it is possible to realize also a band-ferromagnetic
state, where there is a shift in the energy bands since they fill up differently. By using a variational procedure, we
compute the exchange energies for all possible variational ground states and identify the parameter space for the
occurrence of spin- and band-ferromagnetic instabilities as a function of doping and interaction strength.
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I. INTRODUCTION

The successful isolation of a one-atom-thick carbon layer,
graphene, has attracted enormous interest in the field of
condensed matter.1,2 One intriguing aspect of the problem
is that, upon coupling a finite number of graphene layers,
novel and unexpected properties emerge. Compared to the
strong sp2 bonding between carbon atoms within the graphene
sheet, the weak van der Waals force between the layers
allows for the formation of different hybridized N -layered
configurations. The resulting system is then different from both
its two-dimensional (2D) (graphene) and its three-dimensional
(3D) (graphite) counterparts, and depends strongly on the
number of layers and on how the stacking is realized. The
investigation of multilayer graphene may open new avenues
in the understanding of graphene’s electronic properties and
in the field of device engineering.3,4

Many of the unique electronic properties of monolayer
graphene, as opposed to the more conventional GaAs 2D elec-
tron gas, originate from the geometry of the honeycomb lattice.
These include the peculiar gapless Dirac-cone dispersion,2

the unconventional integer quantum Hall effect,5 and Klein
tunneling,6 to name a few. On the other hand, multilayer
graphene exhibits different but equally interesting features.
While the particle-hole symmetry is generally preserved in the
band structure obtained in the most simplified descriptions,
the number of conical points and the low-energy dispersion
both depend sensitively on the stacking configuration of the
N -layered structure and on the model used. For example,
in the minimal tight-binding model for the so-called Bernal
stacking of a bilayer graphene, the conduction and valence
bands touch at the same two points in the Brillouin zone as they
do in monolayer graphene, but disperse quadratically instead
of linearly. This feature has attracted much interest because it
allows for strong electron correlations to take place.7,8 On
the other hand, a more in-depth density functional theory
shows that, due to trigonal warping effects, the conduction
and valence bands intersect linearly at points that are no longer
located at the corners of the Brillouin zone, resulting in a more
complex picture.9 Very recently, broken-symmetry states have
been observed due to interaction effects in suspended bilayer
graphene.10–13 Although a complete characterization of their

properties is still lacking, there are some interesting theoretical
proposals for the observed states: a nematic state8 or a quantum
anomalous Hall state with spontaneously broken time-reversal
symmetry.14,15 For another example, the relative twist angle in
a bilayer graphene can lead to a highly complex Moiré band
structure, which requires a description beyond the standard
Bloch’s band picture.16 In fact, at a particular twisting angle,
the van Hove singularity of the usual graphene band structure
can become observable at a relatively low energy of a few
meV.17 Since high-quality samples of N -layered graphene
are now becoming accessible experimentally, their anticipated
new properties are just about to be unraveled.

In trilayer graphene, the transport properties are also
different, depending on the stacking order: at the Dirac point,
the ABA-stacked trilayer (Fig. 1) is a semimetal, whereas the
ABC one is a semiconductor. The electronic band structure
in ABC-stacked trilayer graphene was determined using an
effective mass approximation18 and using an ab initio density
functional theory.19 Both methods indicate a semiconductor
with zero gap, whereas recent transport measurements suggest
a nonzero gap.20 On the other hand, for ABA-stacked trilayer
graphene, the band structure was calculated in the presence of
external gates using a self-consistent Hartree approximation.21

In the absence of a gate, the low-energy spectrum consists
of superimposed linear and quadratic bands, which touch
at k = 0. In the presence of a magnetic field, the plateau
structure in the Hall conductivity is also determined by the
stacking order. Very recently, the integer quantum Hall effect
was experimentally observed in an ABC-stacked sample.22,23

It was shown that the effect is similar to the one observed
in monolayer graphene,5 except for the first plateau at filling
factor ν = 2, which was not observed in the trilayer sample.
Indeed, this plateau is governed by the chirality of the
quasiparticles, which is 1, 2, and 3 for monolayer, bilayer,
and trilayer graphene, respectively. The corresponding Berry
phases are thus π , 2π , and 3π , respectively. With regard to the
ABA stacking, the problem of low mobility has been recently
overcome by growing the sample on a high-quality hexagonal
boron nitride substrate, which reduces the carrier scattering.24

The peculiar crossing of the Landau levels due to the massive
and massless subbands has allowed for a direct determination
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FIG. 1. (Color online) ABA-stacked trilayer graphene with the
various hopping parameters.

of the Slonczweski-Weiss-McClure model parameters used to
describe the electronic structure of the material.25,26

We focus here on the ground-state properties of trilayer
graphene in the ABA-stacking configuration in the presence
of interactions. The ground state of N -layer undoped graphene
is usually assumed to be the state in which the energy bands are
filled up to the Dirac point. However, the energy bands are spin
degenerate and the formation of pockets of opposite sign in the
two spin degenerate bands leads to a gain in exchange energy.
This gain in exchange energy is accompanied by a cost in
kinetic energy. In monolayer graphene, the cost in
kinetic energy is large enough to prevent any ferromagnetic
instabilities;27 only if the interaction would be tuned to unphys-
ical values would one observe the spontaneous generation of
spin-up and spin-down pockets. In bilayer graphene, the situa-
tion is different. The leading-order term in the exchange energy
is one order lower in the pocket size than the kinetic energy
is. Therefore, the exchange interaction dominates and pockets

will form with a size, in k space, of order Q ≈ 0.05t⊥, where t⊥
is the interlayer hopping energy in dimensionless units and Q

is measured in units of some cutoff.28 Hence, bilayer graphene
has a small ferromagnetic instability. The coexistence of
parabolic and linear bands in ABA trilayer graphene opens the
way to investigate, next to ordinary ferromagnetic instabilities
[Fig. 2(a)], also the band-ferromagnetism phenomenon. With
band ferromagnetism, we mean that the two bands (linear
and parabolic) become shifted with respect to each other (the
crossing point of the linear and parabolic conduction and
valence bands no longer overlap) or, alternatively, that the
bands fill up to different Fermi energies [see Fig. 2(b)]. In the
following, we will generalize the approach used in Refs. 27
and 28 to investigate ferromagnetic instabilities in trilayer
graphene. We will show that spin and band ferromagnetism
may occur both separately and simultaneously [Fig. 2(c)]. The
paper is organized as follows: In Sec. II, we introduce the
model that we use in Sec. III to compute (band-) ferromagnetic
instabilities for both undoped and doped trilayer graphene. Our
conclusions are presented in Sec. IV.

II. THE MODEL

In this paper, we use a tight-binding approximation to
model trilayer graphene and perform an expansion around the
K point. The low-energy Hamiltonian around the K point is
given by

H =
∑

�†
p,σH(p)�p,σ ,

where �
†
p,σ = (a†

1,p,σ ,b
†
1,p,σ ,a

†
2,p,σ ,b

†
2,p,σ ,a

†
3,p,σ ,b

†
3,p,σ ),

H(p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 vF peiφ(p) 0 −t⊥ 0 0
vF pe−iφ(p) 0 0 0 0 0

0 0 0 vF peiφ(p) 0 0
−t⊥ 0 vF pe−iφ(p) 0 −t⊥ 0

0 0 0 −t⊥ 0 vF peiφ(p)

0 0 0 0 vF pe−iφ(p) 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

and the sum is over all relevant quantum numbers. Here,
a
†
i,p,σ (b†i,p,σ ) creates a particle with momentum p and

FIG. 2. (Color online) Sketch of (a) the spin-ferromagnetic
state in an undoped trilayer, (b) the band-ferromagnetic state in a
doped trilayer, and (c) a configuration that is both spin and band
ferromagnetic in a doped trilayer.

spin σ at the A (B) sublattice in the ith layer (i = 1,2,3),
t⊥ ≈ 0.35 eV is the interlayer hopping energy, vF = (3/2)at

denotes the Fermi velocity, with a = 0.142 nm the lattice
spacing and t ≈ 3 eV the nearest-neighbor hopping energy,
p is the norm of the momentum vector p = (px,py), and
φ(p) = arctan(py/px). Note that if one would have expanded
around the K ′ point, we would have found a Hamiltonian
where φ(p) would be replaced by π − φ(p) in Eq. (1). Since
we neglect intervalley interactions, we do not need to take
this into account and we simply multiply our results by a
factor of 2.

The low-energy approximation that we use here is only
valid when the momentum is much smaller than some
critical momentum p � kc. In Ref. 29, this momentum is
approximated to be kca ∼ 1/2 for monolayer, and this value is
also valid in our case. If one takes the full band dispersion into
account, the bands differ from their linear and parabolic shapes.
We found that, for pa = 0.1, the low-energy approximation
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is accurate within 4%. Since the momenta that occur in this
paper are well below this value, our low-energy approximation
is applicable.

We perform a change of basis � → U� with

U = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −1 0
0 1 0 0 0 −1
1 0 0 0 1 0
0 1 0 0 0 1

0 0 0
√

2 0 0

0 0
√

2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

to bring the Hamiltonian into the form H̃ = ∑
�̃

†
p,σ H̃(p)�̃p,σ ,

where

�̃†
p,σ = 1√

2
([a†

1,p,σ − a
†
3,p,σ ],[b†1,p,σ − b

†
3,p,σ ],

[a†
1,p,σ + a

†
3,p,σ ],[b†1,p,σ + b

†
3,p,σ ],

√
2b

†
2,p,σ ,

√
2a

†
2,p,σ ),

H̃(p) = UH(p)U−1 =
(Hml(p) 0

0 Hbl(p)

)
,

Hml(p) =
(

0 vF peiφ(p)

vF pe−iφ(p) 0

)
,

Hbl(p)

=

⎛
⎜⎜⎜⎝

0 vF peiφ(p) −√
2t⊥ 0

vF pe−iφ(p) 0 0 0

−√
2t⊥ 0 0 vF peiφ(p)

0 0 vF pe−iφ(p) 0

⎞
⎟⎟⎟⎠ .

Thus, the trilayer can be described as a combination of a
monolayer and a bilayer with a modified interlayer hopping
energy. Note that, in the new basis, the basis vectors that are
associated with the monolayer part are odd under reflection
with respect to the middle plane, while the ones that describe
the bilayer are even under this transformation. The hopping
parameters γ2 and γ5 from the Slonczewski-Weiss-McClure
(SWM) model, or a voltage difference between the top and
bottom layers, break this reflection symmetry and couple the
blocks in the trilayer Hamiltonian.3 We will neglect those terms
here.

Since the Hamiltonian has a block form and we know how
to diagonalize the different blocks, it is now a trivial task to
bring it into a diagonal form. Using the results from Refs. 27
and 28, we find that H̃(p) can be diagonalized as follows:

D(p) = W †(p)H̃(p)W (p) = W †(p)UH(p)U−1W (p)

≡ Z†(p)H(p)Z(p),

W (p) =
(

V (p) 0
0 M(p)

)
,

where V (p) and M(p) are the matrices that diagonalize the
monolayer and bilayer Hamiltonian respectively,

V (p) = 1√
2

(−eiφ(p) 1
1 e−iφ(p)

)
,

M(p) = M1(p)M2M3(p),

M1(p) =

⎛
⎜⎜⎝

1 0 0 0
0 e−iφ(p) 0 0
0 0 1 0
0 0 0 eiφ(p)

⎞
⎟⎟⎠ ,

M2 = 1√
2

⎛
⎜⎜⎝

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞
⎟⎟⎠ ,

M3(p) =

⎛
⎜⎜⎝

cos ϕ(p) sin ϕ(p) 0 0
− sin ϕ(p) cos ϕ(p) 0 0

0 0 cos ϕ(p) − sin ϕ(p)
0 0 sin ϕ(p) cos ϕ(p)

⎞
⎟⎟⎠ .

In the last matrix, ϕ(p) is defined by the relation tan[2ϕ(p)] =
vF

√
2p/t⊥. This result differs by a factor

√
2 from Ref. 28

because of the modified interlayer hopping parameter in Hbl .
The energy bands are given by the nonzero entries of the matrix
D(p):

D(p) = diag{−vF p, vF p, [−t⊥ − ξ (p)]/
√

2,

[−t⊥+ξ (p)]/
√

2,[t⊥ + ξ (p)]/
√

2, [t⊥ − ξ (p)]/
√

2},
where ξ (p) =

√
t2
⊥ + 2v2

F p2.
The next step is to implement the Coulomb interaction in

the model. Since we consider only weakly doped trilayers in
this paper, the Coulomb interaction is only slightly screened
and therefore long ranged,

HI = 1

2

∫
d2x d2y{V D(x − y)[ρ1(x)ρ1(y) + ρ2(x)ρ2(y)

+ ρ3(x)ρ3(y)] + V ND(x − y)[ρ1(x)ρ2(y)

+ ρ2(x)ρ1(y) + ρ2(x)ρ3(y) + ρ3(x)ρ2(y)]

+V 2ND(x − y)[ρ1(x)ρ3(y) + ρ3(x)ρ1(y)]}, (2)

where ρi(x) = ∑
σ (a†

i,σ (x)ai,σ (x) + b
†
i,σ (x)bi,σ (x)) is the den-

sity of electrons in the ith layer and the interaction potentials
for the in-plane (D), the nearest-neighbor planes (ND), and the
next-nearest-neighbor planes (2ND) are given by

V D(x − y) = e2

ε|x − y| ,

V ND(x − y) = e2

ε
√

d2 + |x − y|2 ,

V 2ND(x − y) = e2

ε
√

4d2 + |x − y|2 .

Here, e is the electron charge, ε the dielectric constant of the
substrate (of air in the case of suspended graphene), and d the
interlayer distance (d ≈ 0.32 nm). The form of V ND(x − y)
can be understood by recalling that x is a two-dimensional
vector. We Fourier transform Eq. (2) and express it in terms of
symmetric and antisymmetric combinations of layer densities

HI = 1

2A

′∑
q

∑
α=±

[ρα(q)Vα(q)ρα(−q)

+ ρ̃α(q)Vα(q)ρ̃α(−q) + ρ̌α(q)V̌α(q)ρ̌α(−q)], (3)
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where the prime on the sum indicates that we omit the
q = 0 term since it is canceled by the neutralizing background
(jellium model), A is the area of the unit cell, and the different
quantities are defined by

ρ±(q) = 1√
2

[ρ1(q) ± ρ2(q)] , (4)

ρ̃±(q) = 1√
2

[ρ3(q) ± ρ2(q)] , (5)

ρ̌±(q) = 1√
2

[ρ1(q) ± ρ3(q)] , (6)

V±(q) = 2πe2

εq

(
1

2
± e−qd

)
, (7)

V̌±(q) = 2πe2

εq

(
1

2
± e−2qd

)
. (8)

We want to write this interaction term in the number operators
of the energy bands instead of the number operators of the
layers. We know how to diagonalize the kinetic term and,
therefore, 
p,σ ≡ Z(p)†�p,σ are the operators that annihilate
particles in the different energy bands. As a result, we obtain
(
†

p,σ
p,σ )j = nj,σ (p), the number operator of the j th energy
band, where we have to number the bands as in Fig. 3. It
is convenient to rewrite the density operators in the diagonal
basis as

ρ±(q) =
∑

p



†
p+qχ

±(p + q,p)
p, (9)

ρ̃±(q) =
∑

p



†
p+qχ̃

±(p + q,p)
p, (10)

ρ̌±(q) =
∑

p



†
p+qχ̌

±(p + q,p)
p, (11)

where

χ±(p + q,p) ≡ 1√
2
Z

†
p+qdiag(1,1,±1,±1,0,0)Zp, (12)

χ̃±(p + q,p) ≡ 1√
2
Z

†
p+qdiag(0,0,±1,±1,1,1)Zp, (13)

χ̌±(p + q,p) ≡ 1√
2
Z

†
p+qdiag(1,1,0,0,±1,±1)Zp. (14)

FIG. 3. (Color online) The energy spectrum of trilayer graphene.
The numbering of the bands is such that 


†
p,j
p,j = nj .

Inserting Eqs. (4)–(14) into the interaction Hamiltonian (3)
yields the interaction term that we use for our calculations. We
are only interested in the exchange energy, which is given by

Eex

A
= −1

2

∫
d2 p

(2π )2

d2 p′

(2π )2

∑
α,i,j,σ,a

× [
χα

ij (p′,p)χα
ji(p,p′)Vα(p′ − p)ni,σ,a(p′)nj,σ,a(p)

]
+ [

χ̃α
ij (p′,p)χ̃α

ji(p,p′)Vα(p′ − p)ni,σ,a(p′)nj,σ,a(p)
]

+ [
χ̌α

ij (p′,p)χ̌α
ji(p,p′)V̌α(p′ − p)ni,σ,a(p′)nj,σ,a(p)

]
.

(15)

In the sum, α takes the values ±; i and j label components,
hence run from 1 to 6; σ sums over spin, and a over the valley
index. We neglected the valley index so far since, in our case,
it only gives rise to an extra factor of 2, as we choose the same
pocket structure for both valleys in our studies.

III. FERROMAGNETIC INSTABILITIES

A. Undoped case

For undoped trilayer graphene, the noninteracting ground
state is the configuration in which the three valence bands
are completely filled and the conduction bands are completely
empty. If an electron or hole pocket forms in one of the bands,
this costs kinetic energy. This cost is given by the absolute
value of the integral

∫ E(Q)
0 dE ρ(E)E, where Q is the pocket

size and ρ(E) the density of states. Since for the linear band,
ρ(E) ∼ E and E(Q) ∼ Q, one finds that �Ekin,l ∼ Q3, while
for the parabolic band, ρ(E) ∼ E0, but E(Q) ∼ Q2, hence
�Ekin,p ∼ Q4. In fact, the changes in kinetic energy for a
linear band with pockets of size Ql and a parabolic band with
pockets of size Qp are

�Ekin,l(Ql) = A

6π
h̄vF |Ql|3,

�Ekin,p(Qp) = A

8π

(h̄vF )2

√
2t⊥

|Qp|4.

Since Qi < 1, for i = l/p, the creation of linear pockets
costs more kinetic energy than the creation of parabolic ones.
Trilayer graphene has four energy bands close to the K point,
hence, there are four different pocket parameters: Qlu, Qld ,
Qpu, and Qpd , where l/p stands for linear and parabolic bands
and u/d for up and down spins. We are assuming long-range
interactions and are neglecting the short-range part, hence,
there is no intervalley scattering. We also assume particle
number conservation, thus, Qpd is not independent from the
other variational parameters. For zero doping, one has the
constraint

slu

Q2
lu

4π
+ sld

Q2
ld

4π
+ spu

Q2
pu

4π
+ spd

Q2
pd

4π
= 0, (16)

where siσ = +1 for electronlike pockets and siσ = −1 for
holelike pockets.

One can now vary the pocket parameters and calculate
whether the energy is minimized for nonzero pocket sizes
(at zero temperature). Our formalism is built up in such a way
that the pocket parameters can take both positive and negative
values. A positive Q corresponds to an electron pocket. Hence,
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the corresponding conduction band (linear or parabolic, up or
down) is filled up to momentum Q. A negative Q corresponds
to hole pockets, i.e., the corresponding valence bands are
depleted up to momentum |Q|. This method allows us to obtain
the exchange integrals for all possible pocket configurations
at once. By using this formalism, we find that the bands fill up
according to (see Fig. 3 for the numbering of the bands)

nu(p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − �(−Qlu − p)
�(Qlu − p)

1
�(Qpu − p)

0
1 − �(−Qpu − p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

nd (p) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 − �(−Qld − p)
�(Qld − p)

1
�(Qpd − p)

0
1 − �(−Qpd − p)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where � is the Heaviside step function. Note that one can not
have both electron and hole pockets in the same band at the
same time because if, for example, Qlu > 0, then �(−Qlu −
p) = 0. Hence, in this case, the linear spin-up valence band is
completely filled (band 1 in Fig. 3), while the linear spin-up
conduction band (band 2 in Fig. 3) is filled up to momentum
|Qlu|, corresponding to an electron pocket of size |Qlu|.

The integrals that we have to compute have the same
structure as those in Ref. 28. The expansion in the pocket
parameters is highly nontrivial and very lengthy. Since there
are three variational parameters, we have performed the inte-
grals numerically. The expression for the integrals [Eq. (15)]
has many terms and it is not enlightening to write all of them
out.

From this point on, we work in dimensionless units by
measuring momenta in units of a cutoff �, which is estimated
using a Debye approximation, in which the number of states
is conserved in the Brillouin zone: �2 = 2π/A. We measure
energies in units of h̄vF �(A�2) = hvF �. This dimensionless
energy corresponds with the energy per unit cell in units
of h̄vF �. Let us also introduce a dimensionless interaction
strength g = e2/(εh̄vF ). Furthermore, we set �, h̄, and t equal
to unity. Note that the spin-up and spin-down terms decouple.
This allows us to calculate

�E(Ql,Qp) = �Ekin(Ql,Qp) + �Eex(Ql,Qp)

≡ �Ekin,l(Ql) + �Ekin,p(Qp)

+�Eex,l(Ql) + �Eex,p(Qp)

+�Eex,mixed(Ql,Qp) (17)

on a discrete Nl × Np lattice, where we have chosen the values
of the pocket parameters such that their squares lie on an
equally spaced grid for reasons that will become clear later.
After calculating these data points, one can compute

�Etot(Qlu,Qld,Qpu,Qpd )

= �E(Qlu,Qpu) + �E(Qld,Qpd ). (18)

FIG. 4. (Color online) The energy difference
�E(Qlu,Qld ,Qpu,Qpd ) per unit cell [Eq. (18)] for the undoped
trilayer, where we have chosen Qlu = −Qld ≡ Ql . Because of
particle number conservation, Qpu = −Qpd ≡ Qp . �E is measured
in units of hvF �, and Ql and Qp are both measured in units
of �.

The next step is to select out the points that satisfy the
constraint (16) and find the values of the pocket sizes for
which the energy is minimized.

For the undoped case, it turns out that the energy is
minimized when the pockets in the linear band are zero, while
the pockets in the parabolic band have a nonzero value. This
is the result that one obtains if a monolayer and a bilayer
are superimposed on each other. There is a priori no reason
for this to be the case because in the exchange integrals
there appear terms that are mixed in linear and parabolic
pocket parameters. However, their contribution is too small
to shift the equilibrium value of the pockets in the linear bands
away from zero. In Fig. 4, we have plotted �E as function
of Ql and Qp, where Qpu = −Qpd ≡ Qp due to particle
number conservation and we have chosen Qlu = −Qld ≡ Ql .
Since the spin of the electrons has no preferred direction,
one sees two minima in Fig. 4 for Ql = 0 and some fixed
value of Qp = ±Qmin. The energy increases if the linear
pocket is chosen to be different from zero, while tuning the
parabolic pocket away from zero lowers the energy. Although
�E is small (order of 1 meV per square micrometer), the
equilibrium sizes of the pockets are significant (see Fig. 5).
The effect is comparable in magnitude with the graphene
bilayer. In Fig. 6, we display the equilibrium value for Qp as a
function of the interaction strength g (for suspended graphene,
g is estimated to be g ≈ 2.3). The equilibrium value for the
linear pocket sizes is zero for this range of the interaction
strength.

Since we neglect intervalley scattering, the situation in
which both valleys have the same pocket configuration and
the system is ferromagnetic is degenerate with the situation in
which one valley has a pocket configuration in which the spins
are flipped with respect to the other valley and, hence, there
is no net magnetization. It is necessary to take intervalley
scattering into account to determine which configuration
is more favorable. We have numerically determined and
compared the exchange energy for both cases and we find
that the ferromagnetic state is indeed favorable. Note that this
configuration spontaneously breaks time-reversal symmetry, a
feature that was also observed in the graphene bilayer.28 The
ground state is twofold degenerate and the two minima are
related by time-reversal symmetry.
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FIG. 5. (Color online) The energy difference per unit cell
�E(Qlu = 0, Qld = 0, Qpu = Qp, Qpd = −Qp). This is a cross
section along the Ql = 0 axis of Fig. 4. �E is measured in units
of hvF � and Qp is measured in units of �.

B. Doped case

The doped case in trilayer graphene is more subtle than in
either a monolayer or a bilayer. For a monolayer and bilayer,
one can dope the system (with electrons or holes) and the
bands (spin up and spin down) will fill up to some Fermi
energy, corresponding with this particular doping level. This
will be the noninteracting ground state for the doped system. In
trilayer graphene, this is not the case. If one dopes a graphene
trilayer such that both the linear and the parabolic bands are
filled up to some Fermi energy EF , it turns out that due to
kinetic energy considerations, this is not a stable state. The
kinetic energy is minimized when the parabolic band is filled
up differently than the linear band. Alternatively, since for a
physical system the Fermi energy has a well-defined value, one
can interpret this result as a shift of the linear and parabolic
energy bands with respect to each other. For our discussion, it
is more natural to keep the intersection points of the bands in
place and, as a consequence, use different Fermi energies for
the parabolic and linear bands. By choosing this interpretation,
we allow ourselves to use the formalism developed in the
previous section.

Since the kinetic energy cost of filling up the linear
band goes as ≈k3, this costs more energy than filling up

FIG. 6. (Color online) Qmin, which is the equilibrium value of
Qp as a function of the dimensionless interaction strength g. Qmin is
measured in units of �. The line is a polynomial fit to eighth order
in g.

the parabolic band, for which the energy cost goes as ≈k4

(recall that we work in dimensionless units, such that k < 1).
Let us define k

l/p,u/d

F as the momentum to which the linear
(parabolic) spin up (down) band fills up when the kinetic
energy is minimized. When there is no interaction present,
the bands will be spin degenerate. Furthermore, we can use
the same formalism as for the undoped case. The difference
is that, for g = 0, the pocket sizes of the bands are equal to
Q0

l/p = k
l/p,u/d

F . Hence, the constraint (16) now reads as

slu

Q2
lu

4π
+ sld

Q2
ld

4π
+ spu

Q2
pu

4π
+ spd

Q2
pd

4π

= s0
l

(
Q0

l

)2

2π
+ s0

p

(
Q0

p

)2

2π
≡ n, (19)

where n is the doping level and s0
l/p is the sign of Q0

l/p. To
determine the values of Q0

l/p, one can vary the filling of
the bands respecting the constraint and determine for which
configuration the kinetic energy is minimized. One can show
that Q0

l � Q0
p (see Fig. 7). In fact, the resolution we use

for calculating the integrals is such that Q0
l = 0. Note that,

although Q0
l � Q0

p, the single-particle energies associated
with these momenta are of the same order of magnitude. The
linear band is filled to higher energies than the parabolic one,
since the latter is very flat. However, in our discussion, this
is not relevant because the energies we calculate depend only
on momenta and the fact that Q0

l = 0 in our formalism barely
changes the results. Furthermore, if the effect of interactions
on the linear pockets would be such that it would make them
larger than the threshold value in Fig. 7, we would be able to
detect it. In the language we proposed in the Introduction, this
would be a band-ferromagnetic state as the bands filled up to
different energies, but have no net magnetization.

In the doped case, the reference state with respect to
which we compute energy differences has nonzero ki-
netic and exchange energies E0

kin = Ekin(Q0
l ,Q

0
p) and E0

ex =
2Eex(Q0

l ,Q
0
p). One is now ready to vary the pocket parameters,

FIG. 7. (Color online) Plot of Q0
l (red/grey dots) and Q0

p

(black/black dots) in units of � as a function of doping in units
of �−2. The dashed lines mark the interval in which we have chosen
our datapoints. The solid line is a plot of Q0

p assuming that Q0
l = 0.
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FIG. 8. (Color online) Phase diagram, doping (n) versus interac-
tion strength (g). The doping is dimensionless but can be converted
to experimental units (cm−2) through multiplication with �2. There
is a first-order phase transition from the ferromagnetic state (FM) to
the normal state (N) as doping is increased.

compute the energies, apply the constraint (19), and find the
configuration that minimizes the energy

�E = Ekin(Qlu,Qpu) + Ekin(Qld,Qpd ) − E0
kin

+Eex(Qlu,Qpu) + Eex(Qld,Qpd ) − E0
ex.

The result will depend on the value of the interaction parameter
g. If the graphene trilayer is doped, the system can still
relax into a ferromagnetic state, but a critical interaction
strength is needed. This critical value of the interaction
increases with doping, as it can be seen in Fig. 8. The
linear bands stay empty (up to our resolution) and the
parabolic pockets exhibit a discontinuous jump, indicating
a first-order phase transition. This state is both band ferro-
magnetic, as well as spin ferromagnetic. Note that the jump
is such that in one of the parabolic bands hole pockets will
occur.

So far, we have looked only at configurations in which
the pocket sizes are small. Although for the doped case the
phase transition is first order, the pocket sizes are small and
it is known that, in monolayer graphene, another first-order
transition occurs as the interaction strength exceeds some
critical value (gc ≈ 5.3 for undoped monolayer graphene).27

This transition is to a phase in which the monolayer has
maximal magnetization. Since, for some purposes, one can
regard a trilayer as a combination of monolayer and bilayer
graphene, it is natural to look for this transition in a graphene
trilayer. Although this transition is theoretically present, we
conclude that it can not been seen in any realistic experiment
because the critical coupling is out of any experimental range
(gc > 200).

IV. CONCLUSIONS

In this paper, we have determined the ground state of trilayer
graphene accounting for the long-range Coulomb interaction.
We used a formalism in which we could treat electronlike and
holelike pockets on the same footing. This allowed us to vary
the four pocket parameters (linear or parabolic and spin up or

down) to obtain a large data set. We have chosen the discrete
points to lie on a square-root profile, so that we had many
points that satisfied the constraint (16) for the undoped system
or (19) for the doped one.

For the undoped trilayer, we found that the energy is
minimized for a configuration in which the linear bands are
empty and an electron and a hole pocket occur in the spin-up
and spin-down parabolic bands, which is a spin-ferromagnetic
state [Fig. 2(a)]. Since there is no preferred direction for the
spin, this state is doubly degenerate (Fig. 4). The pockets
increase in size when the interaction is tuned to higher
values. They are only zero when the interaction vanishes (see
Fig. 6).

The doped trilayer is more subtle since the noninteracting
case is already a band-ferromagnetic state in which the bands
(linear and parabolic) fill up differently [Fig. 2(b)]. We named
it a “band-ferromagnetic” state due to the finite polarization
in the subband-index degree of freedom associated with
parabolic and linear bands. Although in physical systems
the bands will shift with respect to each other, resulting in
a well-defined Fermi energy, we chose to keep the bands
fixed and let the bands fill up differently. This gave us two
Fermi momenta (kl/p

F ) and Fermi energies (El/p

F ). Although
E

p

F < El
F , the parabolic band is much flatter than the linear

one and, therefore, k
p

F 
 kl
F . Our resolution was such that

kl
F = 0, but this simplification will not affect the results. If the

linear pockets exceed the threshold value given by the blue
line in Fig. 7 for some value of the interaction strength, we
would have detected this. It turned out, however, that the linear
bands stay empty for all doping levels that we considered.
Furthermore, we saw a transition to a spin-ferromagnetic state.
In contrast with the undoped case, this state is the ground state
only if the coupling exceeds some critical value, which on
its turn increases with doping. The doping versus interaction
strength phase diagram is shown in Fig. 8. The phase transition
from the normal state (N) to a magnetic state (FM) is first
order, i.e., the pocket size jumps discontinuously and the
magnetization also exhibits a jump to some nonzero value.
Note that this magnetic state is both spin ferromagnetic and
band ferromagnetic since the bands fill up to different energies
[Fig. 2(c)].

We have also looked for a phase transition to a maximally
magnetized state, as observed in monolayer graphene. We do
not find such a transition for any interaction strength that would
be experimentally achievable.

Although the graphene trilayer exhibits some features of
both monolayer and bilayer graphene, it is an interesting
system on itself and more complex than either of the two.
The interplay between the filling of the linear and parabolic
bands gives rise to many more possible configurations of the
pocket parameters. For example, already in the noninteracting
ground state of the doped trilayer the bands are shifted with
respect to each other.

It would be interesting to measure this spectrum in ex-
periments using, for example, angle resolved photo-emission
spectroscopy (ARPES). Long-range Coulomb interactions
can give rise to a ferromagnetic ground state as they do
in bilayer graphene, but will not affect the linear bands.
The first-order transition as seen in monolayer graphene is
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not present as a result of interactions between the different
bands.

We are aware that next-nearest-neighbor hopping parame-
ters have effects on the energy spectrum that are of comparable
magnitude as the effect that we describe here.30 However, if the
system is sufficiently doped, this will not alter our results. For
the undoped case, the results may be slightly altered, but our

results could definitely be used as a starting point to investigate
the full parameter model in more detail.
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