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Effects of hexagonal warping on surface transport in topological insulators
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We investigate the charge conductivity and current-induced spin polarization of the surface state of a
three-dimensional topological insulator by including the hexagonal-warping effect of the Fermi surface in
both the classical and quantum diffusion regimes. We present general expressions of conductivity and spin
polarization, which are reduced to simple forms for the usual scattering potential. Due to the hexagonal warping,
the conductivity and spin polarization show an additional quadratic carrier-density dependence both for the
Boltzmann contribution and the quantum correction. In the presence of the warping term, the surface states
still reveal weak antilocalization. Moreover, the dielectric function in the random phase approximation is also
explored, and we find that it may be momentum-angle-dependent.
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I. INTRODUCTION

Topological insulators (TIs) have attracted a great deal
of research both experimentally and theoretically in the past
few years1–3 due to their potential applications in topological
quantum computation4 and spintronics.5 A TI has a full energy
gap in bulk while it has gapless surface states stable against
weak disorder and weak interaction unless the time-reversal
symmetry is broken.6,7 In particular and in vivid contrast with
graphene,8 the number of its Dirac points is odd according to
a no-go theorem.6 Hence, many theoretical studies focus on
a class of TI in which the surface states only consist of one
Dirac cone.

Experimentally, this surface state has been well confirmed
by angle-resolved photoemission spectroscopy (ARPES).9–11

However, the transport observation of the surface state in
the classical diffusion regime encounters an obstacle due to
the large bulk-conduction background. Recently, Checkelsky
et al. claimed to have isolated the surface-band contribution
in Bi2Se3 by electrostatic gate control of the chemical
potential.12 Nevertheless, this work is questionable given that
the chemical potential is still in the bulk conduction band.13

Culcer et al. theoretically investigated the two-dimensional
surface charge transport and obtained results analogous to
those of graphene.13 Recently, Kim et al. showed that the
surface of thin Bi2Se3 was strongly electrostatically coupled.14

They observed the surface transport by using a gate electrode
to remove bulk charge carriers completely and effectively
demonstrated the theoretical prediction.13 It is very likely that
this experiment has overcome the abovementioned obstacle.
Also, the anomalous Hall conductivity of the surface of TIs was
calculated using the quantum Liouville equation.15 The con-
ductivity due to electron-phonon scattering was investigated
for the surface state of a strong TI.16 Moreover, transverse
magnetic heat transport was explored on the topological
surface.17

On the other hand, recently the quantum corrections to
charge conductivity in topological surface states were also
extensively studied.12,18–22 The surface states in the quantum
diffusion regime (lφ � l) reveal a positive correction to the
conductivity correction, i.e., weak antilocalization, which is
related to the π Berry phase.21 Here, l and lφ are the elastic-
scattering length and the phase-coherence length, respectively.

In contrast with graphene in which the weak antilocalization is
suppressed by intervalley scattering,23 the surface state of a TI
forbids this scattering process due to a single Dirac cone, and
many observations have confirmed this enhancement to the
electronic conductivity.12,18–20 Lu et al. found that the surface
state of a TI shows a competing effect of weak localization and
weak antilocalization in quantum transport due to magnetic
doping.21

We have noted that in most of these theoretical studies,
only the k-linear term in the spin-orbit interaction is present
in the effective Hamiltonian. However, in some TIs, for exam-
ple Bi2Te3, ARPES11 and scanning-tunneling-microscopy24

measurements revealed that the shape of the Fermi surface
changes from a circle to a hexagon and then to a snowflakelike
shape with increasing Fermi energy. With the help of a
hexagonal-warping term, this kind of band structure was
explained by Fu.25 Note that the states near the Fermi surface
are responsible for the transport properties at low temperatures.
Hence, it is expected that the warping effect will naturally
play a significant role on surface transport when the Fermi
energy is high enough. So far, only one theoretical work
in the literature has involved the warping effect on the
weak antilocalization.22 Furthermore, they simply replaced the
warping term by its angle-average term; hence, the anisotropy
of the energy spectrum due to warping is neglected completely.
Then they acquired the same form of correction as the usual
two-dimensional electron gas with spin-orbital interaction.
Consequently, it is highly desirable to carefully study the
warping effect on the classical contribution and quantum
correction to the surface transport.

In this paper, we study the hexagonal-warping effect on
the charge conductivity and current-induced spin polarization
(CISP) of the surface state of a three-dimensional TI. Con-
sidering nonmagnetic and magnetic elastic carrier-impurity
scattering, we discuss this problem in both the classical
and quantum diffusive regimes. We also investigate the
warping effect on the dielectric function in the random phase
approximation (RPA). The structure of the paper is as follows.
In Sec. II, the effective Hamiltonian of the surface state is
given. By using a kinetic-equation approach, the conductivity
and CISP in the classical transport regime in the presence of
nonmagnetic and magnetic scattering are calculated in Secs. III
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and IV. In Sec. V, we discuss the quantum correction to the
conductivity and CISP. A brief summary is given in Sec. VI.

II. THE SYSTEM AND HAMILTONIAN

By assuming particle-hole symmetry, the effective Hamil-
tonian of the surface state of a TI, including the hexagonal-
warping effect, has the following form:

Ĥ0 = vF(kxσ̂y − kyσ̂x) + λ

2
(k3

+ + k3
−)σ̂z. (1)

Here, vF and λ are the Fermi velocity and the hexagonal-
warping constant, respectively; σ̂i (i = x,y,z) are the Pauli
matrices; and k± = kx ± iky . The quadratic term k2/(2m) is
in principle also present in the Hamiltonian with m denoting
the effective mass of the particle, but it is smaller than the
k-linear and cubic terms due to the relation 2mvF � √

vF/λ in
Bi2Te3. Consequently, in the regime of density 1013 cm−2 <

N < 1014 cm−2, both the linear and cubic terms contribute
significantly to the transport quantities, and the quadratic term
can be safely neglected. Near the regime k = 0, the cubic
correction is also negligible. However, at high densities, the
cubic term makes the energy spectrum of the surface state angle
dependent, and the Fermi surface becomes snowflakelike.

The eigenenergies of the considered system of Eq. (1) are
εkμ = (−1)μεk, where

εk =
√

(vFk)2 + (λk3 cos 3θk)2 (2)

with an azimuthal angle of k, θk = tan−1(ky/kx), and an index
μ = 1,2. By introducing the angle

βk = tan−1

√
εk − λk3 cos 3θk

εk + λk3 cos 3θk
, (3)

the corresponding eigenstates ϕkμ are written as

ϕk1 =
(

sin βk

−i cos βke
iθk

)
, (4)

ϕk2 =
(

cos βk

i sin βke
iθk

)
. (5)

It should be noted that the above Hamiltonian [Eq. (1)] can
be diagonalized to H0 = U

†
kĤ0Uk = diag(εk1,εk2) with the

help of the local unitary transformation Uk = (ϕk1,ϕk2). This
transformation projects the system from the spin basis to the
eigenbasis of Ĥ0.

III. CLASSICAL TRANSPORT IN THE PRESENCE
OF NONMAGNETIC SCATTERING

A. Kinetic equations

In order to study the transport property of the surface state in
the classical diffusive regime, we limit our system to a spatially
homogeneous one. First, we consider the nonmagnetic carrier-
impurity elastic scattering and focus on the charge transport
at the Fermi level inside the bulk gap of the TI. The kinetic
equation for the single-particle distribution function in the

eigenbasis of Ĥ0, ρ(k), is constructed using the nonequilibrium
Green’s function and is given by26(

∂

∂T
− eE · ∇k

)
ρ + eE · [ρ,U

†
k∇kUk] + i[Ĥ0,ρ] = −Isc.

(6)

Here E is the electric field. It should be noted that here
ρ(k) is a 2 × 2 matrix. In the lowest order of the gradient
expansion, the scattering integral Isc can be written as Isc =∫ T

−∞ dt ′(rG< + <Ga − Gr< − G<a)(T ,t ′)(t ′,T ) with
<,r,a being the lesser, retarded, and advanced self-energies
in the self-consistent Born approximation, respectively. We
consider that the scattering by impurities at random positions
{Rα} has the form Ṽ (r) = ∑

{Rα} V (r − Rα). Therefore, after
impurity averaging,26 the self-energies in the eigenbasis of
Ĥ0 read <,r,a(k) = ni

∑
q |V (k − q)|2U †

kUqG
<,r,a(q)U †

qUk

with ni denoting the impurity density and V (q) being the
Fourier transform of V (r).

Furthermore, we take the generalized Kadanoff-Baym
ansatz26 and ignore the collisional broadening to simplify
the scattering integral. Throughout this paper, we focus
on the situation in which the Fermi energy εF is positive,
i.e., the Fermi energy is in the conduction band of the surface
state, and assume the electric field is along the x direction.
For the lowest order of the impurity density ni and stationary
electric field E = Ex̂, the solution of the equation can be
written as ρ(k) = ρ(0)(k) + ρ(1)(k) + ρ(2)(k). Here, ρ(0)(k) =
diag[nF(εk1),nF(εk2)] [nF(x) is the Fermi-Dirac function] is the
equilibrium distribution function. ρ(1)(k) and ρ(2)(k) are two
distribution functions proportional to the electric field. ρ(1)(k)
is the impurity-independent distribution function, and only the
off-diagonal elements ρ

(1)
12 (k) = ρ

(1)∗
21 (k) = ρ(1)

r (k) + iρ
(1)
i (k)

are nonzero with

ρ(1)
r (k) = eE

4kεk
sin 2βk sin θk[nF(εk1) − nF(εk2)], (7)

ρ
(1)
i (k) = eE

16kεk

sin 4βk(cos 4θk − 5 cos 2θk)

cos 3θk

×[nF(εk1) − nF(εk2)]. (8)

ρ(2)(k) relies on the carrier-impurity scattering, and its ele-
ments are determined by the following set of equations:

eE
∂

∂kx

nF(εk2) = 2πni

∑
q

|V (k − q)|2a1(k,q)

× [
ρ

(2)
22 (k) − ρ

(2)
22 (q)

]
δ(εk2 − εq2), (9)

2εkρ
(2)
i (k) = πni

∑
q

|V (k − q)|2a2(k,q)

× [
ρ

(2)
22 (k) − ρ

(2)
22 (q)

]
δ(εk2 − εq2), (10)

−2εkρ
(2)
r (k) = πni

∑
q

|V (k − q)|2a3(k,q)

× [
ρ

(2)
22 (k) − ρ

(2)
22 (q)

]
δ(εk2 − εq2). (11)
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ρ(2)
r (k) and ρ

(2)
i (k) are the real and imaginary parts of ρ

(2)
12 (k),

respectively. In these equations,

a1(k,q) = 1
2 [sin 2βk sin 2βq cos(θk − θq)

+ cos 2βk cos 2βq + 1], (12)

a2(k,q) = 1
2 [cos 2βk sin 2βq cos(θk − θq)

− sin 2βk cos 2βq], (13)

a3(k,q) = − 1
2 sin 2βq sin(θk − θq). (14)

Note the requirement that εF > 0 despite the assump-
tion that the Fermi energy is in the gap of the bulk
system; hence, the diagonal element ρ

(2)
11 (k) makes no

contribution to the transport equations. We find that
when θk − θq = π , a1(k,q) = 1

2 [cos(2βk − 2βq) + 1] = 0.
This reveals the absence of backscattering, a characteristic
of TIs.

B. Conductivity and CISP

In the eigenbasis of Ĥ0, the average velocity v =
1
N

∑
k Tr[ρ(k)U †

k v̂Uk]. Here, two components of the velocity
operator in the spin basis are written as

v̂x =
(

3λk2 cos 2θk −ivF

ivF −3λk2 cos 2θk

)
, (15)

v̂y =
(−3λk2 sin 2θk −vF

−vF 3λk2 sin 2θk

)
. (16)

It is seen that the diagonal elements of the velocity oper-
ator are also nonzero when we include the warping term.
Therefore, the longitudinal and transverse conductivities
σxx = −Nevx/E and σxy = −Nevy/E can be expressed
as

σxx = − e

E

∑
k

[(vF sin 2βk cos θk + 3λk2 cos 2βk cos 2θk)

× ρ22(k) − 2(vF cos 2βk cos θk − 3λk2 sin 2βk cos 2θk)

× ρr (k) + 2vF sin θkρi(k)], (17)

σxy = − e

E

∑
k

[(vF sin 2βk sin θk − 3λk2 cos 2βk sin 2θk)

× ρ22(k) − 2(vF cos 2βk sin θk + 3λk2 sin 2βk sin 2θk)

× ρr (k) − 2vF cos θkρi(k)]. (18)

The hexagonal-warping term results in the complex forms of
the charge conductivities. In the surface state of a TI, the carrier
spin is directly coupled to the momentum in contrast with
graphene. Hence, in this system an external in-plane electric
field can lead to a uniform spin polarization13 as in spin-orbit-
coupled systems.27–30 This is the so-called CISP. The three
components of the CISP S = ∑

k Tr[ρ(k)U †
k

1
2 σ̂Uk] are given

by

Sx = 1

2

∑
k

[− sin 2βk sin θkρ22(k) + 2 cos 2βk sin θkρr (k)

+ 2 cos θkρi(k)], (19)

Sy = 1

2

∑
k

[sin 2βk cos θkρ22(k) − 2 cos 2βk cos θkρr (k)

+2 sin θkρi(k)], (20)

Sz = 1

2

∑
k

[cos 2βkρ22(k) + 2 sin 2βkρr (k)]. (21)

It is noticeable that the general Eqs. (17)–(21) are applicable
to any scattering potential.

According to the Eqs. (7) and (8), it is seen that
ρ(1)

r (kx,ky) = (−1)nρ(1)
r [(−1)mkx,(−1)nky] and ρ

(1)
i (kx,ky) =

ρ
(1)
i [(−1)mkx,(−1)nky] with m,n = 1,2. We find that the

impurity-independent distribution makes no contribution to
the charge conductivity or the CISP. Furthermore, for normal
nonmagnetic elastic scattering, the potential satisfies the
following relation:31

V (q,θq) = V (q,θq − π ) = V (q,θq + π ). (22)

In connection with the kinetic Eqs. (9)–(11), one
can directly arrive at the symmetrical relation:
ρ

(2)
22 (kx,ky) = (−1)mρ

(2)
22 [(−1)mkx,(−1)nky], ρ(2)

r (kx,ky) =
(−1)nρ(2)

r [(−1)mkx,(−1)nky], and ρ
(2)
i (kx,ky) =

ρ
(2)
i [(−1)mkx,(−1)nky]. Therefore, it is clear that σxy = 0 and

Sx = Sz = 0, and the off-diagonal elements of the distribution
function have no effect on the charge conductivity or spin
polarization. Accordingly, the longitudinal conductivity σxx

and the y component of the spin polarization can be rewritten
as

σxx = − e

E

∑
k

(vF sin 2βk cos θk

+ 3λk2 cos 2βk cos 2θk)ρ(2)
22 (k), (23)

Sy = 1

2

∑
k

sin 2βk cos θkρ
(2)
22 (k). (24)

For vanishing λ, the spin polarization linearly depends on the
longitudinal conductivity:

σxx

Sy

= −2
evF

E
. (25)

This relation is valid for any nonmagnetic elastic scatter-
ing. The CISP can be observed using the Kerr rotation
experiment.32 Since CISP is characteristic of the surface state
and there is no spin polarization in bulk TIs, this relation
may provide a simple transport method to isolate the surface-
conductivity contribution in Bi2Se3. One would first measure
the surface spin polarization, and then the surface-conductivity
contribution can be obtained from this relation. The remaining
contribution of the conductivity can be considered to originate
from the bulk band. However, this method is not applicable for
Bi2Te3 due to its large warping effect.
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The physical reason why only the y component of the CISP
exists is as follows. The CISP arises because an electric field
results in an average momentum 〈k〉 = −eEτtr with τtr being
the transport lifetime. This implies from Hamiltonian (1) that
there is an average spin-orbit field. This effective magnetic
field leads to this spin polarization. When the electric field is
applied along the x direction, only the y and z components of
the average effective magnetic field are nonzero. Furthermore,
the z component is a higher-order term of the electric field
and transport lifetime. Hence, in the limit of a weak electric
field and weak scattering, only the y component of the spin
polarization is nonzero. We emphasize that this argument is
very general and valid for all scattering, including inelastic
phonon scattering.

C. δ-form short-range potential

We first limit ourselves to δ-form short-range nonmagnetic
scattering Ṽ (r) = ∑

{Rα} uδ(r − Rα). This scattering arises
from the surface roughness. For this potential, Eq. (22) is sat-
isfied explicitly. Hence, only the longitudinal conductivity and
y component of the CISP exist. Expanded to the second order
of λ, the diagonal element of the matrix distribution function
ρ

(2)
22 (k) can be obtained analytically. At zero temperature, it

takes the form

ρ
(2)
22 (k) = − 2eE

niu2

[
2v3

F

εF
cos θk + λ2 ε3

F

4v3
F

(18 cos θk

+ 5 cos 5θk − cos 7θk)

]
δ(εk2 − εF). (26)

Substituting the resultant distribution function into Eqs. (23)
and (24), the longitudinal conductivity σxx and spin polariza-
tion Sy read

σxx = e2

πniu2

[
v2

F + 2

(
εF

vF

)4

λ2

]
= e2

πniu2

(
v2

F + 32π2λ2N2
)
, (27)

Sy = − eE

4πniu2

(
2vF + ε4

F

v5
F

λ2

)
= − eE

2πvFniu2

(
v2

F + 8π2λ2N2
)
. (28)

The hexagonal-warping parameter λ leads to quadratic correc-
tions of the carrier density in the longitudinal conductivity σxx

and CISP Sy . At the same time, the linear relation between
σxx and Sy is broken. We emphasize here that the Hamiltonian
for λ = 0 used in this paper is different from that of Ref. 13
for D = 0, replacing σ̂y → σ̂x and σ̂x → −σ̂y . Hence, for
vanishing λ, the above results are in agreement with previous
ones.13 It is noticeable that the effective Hamiltonian (1) is
obtained for low-energy systems, and the above two equations
are valid in the density regime 1013 cm−2 < N < 1014 cm−2

for Bi2Te3. This is the precondition of this entire work. Hence,
all the equations are limited by this concealed condition.

D. Screened Coulomb potential

We now consider the screened Coulomb potential for
which the screening function is in the RPA: εRPA(q,ω) =

1 − vc(q)�(q; ω) with vc(q) = e2/(2ε0κq) being the two-
dimensional Coulomb interaction. The charged-impurity scat-
tering on the surface of a TI can be modeled by this potential
well. The corresponding polarizability function takes the form

�(q; ω) =
∑

k,μ,μ′
(ϕ†

k+qμϕkμ′)(ϕ†
kμ′ϕk+qμ)

× nF(εkμ′) − nF(εk+qμ)

ω + εkμ′ − εk+qμ + iη
. (29)

The warping term complicates the calculation of the polar-
izability function, and we cannot determine an analytical
result even for a static case and vanishing temperature. The
screened scattering potential is related to the static dielectric
function and is written as V (q) = vc(q)/εRPA(q). Here, the
static dielectric function εRPA(q) = 1 − vc(q)�(q; 0).

1. Static polarizability function

The static polarizability �(q; 0) for εF to be in the
conduction band of the surface of a TI is given by �(q; 0) =
�+(q; 0) + �−(q; 0), where

�+(q; 0) =
∑

k

[
a1(k,k + q)

nF(εk2) − nF(εk+q2)

εk2 − εk+q2

+ ā1(k,k + q)
nF(εk2) + nF(εk+q2)

εk2 + εk+q2

]
, (30)

�−(q; 0) =
∑

k

[
ā1(k,k + q)

nF(εk1) + nF(εk+q1)

εk1 + εk+q1

]
. (31)

Here, ā1(k,k + q) = 1 − a1(k,k + q). The long-wavelength
Thomas-Fermi (TF) screening is important for charged-
impurity scattering. In the q → 0 limit, it is found that
a1(k,k + q) → 1. Hence, �−(q → 0,θq ; 0) → 0, and the
polarizability �(q → 0,θq ; 0) is determined by the first term
of Eq. (30). At zero temperature, we have

�(q → 0,θq ; 0) = − εF

2π2

∫ 2π

0
dθk

cos(θk − θq)

�(θk,θq)
, (32)

where the angle-related function �(θk,θq) = 2v2
F cos(θk −

θq) + 3λ2k4
F(θk)[cos(θk − θq) + cos(5θk + θq)]. kF(θk) is the

Fermi momentum relying on the azimuthal angle, determined
by

√
v2

Fk
2
F(θk) + λ2k6

F(θk)(cos 3θk)2 = εF. For weak λ, it has
the form

kF(θk) = εF

vF
− 1

4

λ2ε5
F

v7
F

(1 + cos 6θk). (33)

In the λ → 0 limit, the Fermi momentum tends to the
previous result.13 According to N = 1/(8π2)

∫ 2π

0 dθkk
2
F(θk),

the relation between the carrier density and Fermi energy is
given by

N = 1

4π

[(
εF

vF

)2

− 1

2

ε6
F

v8
F

λ2

]
. (34)

It should be noted that for our case, only the magnitude of
momentum q tends to zero in the long-wavelength limit.
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Therefore, the resultant polarizability �(q → 0,θq ; 0) may
still rely on the azimuthal angle of q, which is completely
different from the two-dimensional Lindhard function33 and
the corresponding polarizability function of graphene.34,35 For
weak λ, the integral of Eq. (32) can be calculated analytically,
and the TF dielectric function reduces to

εTF(q) = 1 + kTF(θq)

q
(35)

with the angle-dependent TF wave vector kTF(θq) where

kTF(θq) = e2εF

8πε0κv8
F

[
2v6

F − 3λ2ε4
F(1 + cos 6θq)

]
. (36)

This dielectric function εTF(q) tends to the previous result13,35

when λ → 0. We emphasize again that the angle dependence
of the dielectric function originates from the cubic term in
the Hamiltonian. The λ-related term becomes important when
v6

F = λ2ε4
F, corresponding to εF = 0.26 eV in Bi2Te3, a density

of 1013 cm−2, which is a realistic density in the Bi2Te3

sample.11

2. Numerical results

It is seen that the polarizability function of Eq. (29) sat-
isfies �(q,θq ; ω) = �(q,θq − π ; ω) = �(q,θq + π ; ω). Con-
sequently, the angle relation of the scattering potential of
Eq. (22) still holds for this screened Coulomb potential. Hence,
when the carriers are scattered by the screened Coulomb
form, only the longitudinal conductivity and y component
of the CISP are nonzero. Now we numerically calculate
the longitudinal conductivity and spin polarization for both
TF screening and RPA screening. The following parameters
in Bi2Te3 are used in the calculation:13,25 Fermi velocity
vF = 2.55 eV Å, warping parameter λ = 250 eV Å3, impurity
density ni = 1013 cm−2, static dielectric constant κ = 200, and
DC electric field E = 10 V/m. The results are plotted in Fig. 1.
The corresponding conductivity and CISP for λ = 0 are also
plotted for comparison. For vanishing λ, the conductivity and
spin polarization linearly rely on the surface-carrier density
N , which agrees with the previous theoretical calculation.13

With increasing density N , the hexagonal-warping effect
becomes important for both TF- and RPA-screened Coulomb
potentials, leading to nonlinear characters of the conductivity
and CISP. The magnitudes of the conductivity and spin
polarization in the presence of the warping effect are larger
than those in the absence of warping. Furthermore, we verify
that σxx = c1N + c2N

2 and Sy = c3N + c4N
2 in contrast to

short-range scattering. We note that the TF screening is the
long-wavelength limit of the RPA dielectric function. At the
same time, for a finite magnitude of momentum, the RPA
screening is weaker than that of the TF. Hence, the conductivity
of the TF-screened Coulomb potential is larger than that of the
RPA at the same λ.

Here, we have assumed that the impurities are located right
on the surface. However, the charged impurities in the bulk of
TIs may also contribute to the surface transport. These remote
impurities will enhance the magnitude of the conductivity and
spin polarization. One can deduce that the warping will lead
to a large increase of the magnitude of the surface-transport
quantities even in the presence of remote impurities.
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FIG. 1. (Color online) The longitudinal conductivity and CISP
scattered by screened charged impurities as functions of the surface-
carrier density for both TF screening and RPA screening.

Note that the classical surface conductivity of Bi2Se3 was
observed by using a gate electrode.14 It showed a linear
carrier-density dependence when the density was smaller than
the carrier density above which the bulk conduction band is
populated. In Bi2Se3, the hexagonal warping is small enough
to be omitted completely. Hence, this experiment verified the
previous theoretical prediction well.13 However, for the surface
states of TIs for which the warping term cannot be neglected
such as Bi2Te3, the linear dependence will be broken, and
a quadratic relation also appears. Therefore, our prediction
suggests that the surface transport in Bi2Te3 should be different
from that of Bi2Se3, and one should be very careful when one
analyzes the surface-transport data of Bi2Te3.

IV. CLASSICAL TRANSPORT IN THE PRESENCE
OF MAGNETIC SCATTERING

Let us now address the magnetic-scattering case in the
classical diffusion regime for which the scattering potential
reads36

Ṽ (r) =
∑
{Rα}

{J‖[sx(r)S̃x(Rα) + sy(r)S̃y(Rα)]

+ Jzsz(r)S̃z(Rα)}δ(r − Rα). (37)

Here, s = 1
2σ is the spin vector of the electron, S̃ is the impurity

spin, and J‖ and Jz are the coupling parameters.
For simplicity, we assume classical magnetic impurities

and their spins, which are polarized in the z direction. This
kind of potential conserves the z component of the carrier
spin. It is known that magnetic doping will open a gap in the
helical Dirac cone.37 From the mean-field approximation, the
gap has the form15 � = 2niJzS̃. Hence, for a high-mobility
sample, the density of magnetic impurities is small enough,
and then the gap opened by the magnetic doping is considered
to be very small. When � � εF, the effect of the gap on
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the energy spectrum, group velocity, etc. can be neglected
safely. Therefore, we can only consider the scattering effect of
magnetic impurities. Applying a similar procedure as that used
for the nonmagnetic-scattering situation, the analogous kinetic
equations can be derived only by replacing V (k − q), a1(k,q),
a2(k,q), and a3(k,q) in Eqs. (9)–(11) with uM, aM

1 (k,q),
aM

2 (k,q), and aM
3 (k,q), respectively. Here, uM = JzS̃/2 and

aM
1 (k,q) = − 1

2 [sin 2βk sin 2βq cos(θk − θq)

− cos 2βk cos 2βq − 1], (38)

aM
2 (k,q) = − 1

2 [cos 2βk sin 2βq cos(θk − θq)

+ sin 2βk cos 2βq], (39)

aM
3 (k,q) = 1

2 sin 2βq sin(θk − θq). (40)

Taking into account the symmetrical property of the distri-
bution function, it is also verified that only the longitudinal
conductivity and y component of the CISP are nonzero for this
magnetic scattering. Eventually, their expressions are given by
Eqs. (23) and (24).

We first assume that the warping parameter is weak.
Thus the kinetic equation can be solved analytically, and the
diagonal element of the impurity-related distribution is

ρ
(2)
22 (k) = − 2eE

3niu
2
M

[
2v3

F

εF
cos θk + λ2 ε3

F

2v3
F

(
35

3
cos θk

+ 17

2
cos 5θk − 1

2
cos 7θk

)]
δ(εk2 − εF). (41)

Hence, the charge conductivity and CISP are written as

σxx = e2

9πniu
2
M

[
3v2

F + 8

(
εF

vF

)4

λ2

]
= e2

9πniu
2
M

(
3v2

F + 128π2λ2N2) , (42)

Sy = − eE

36πniu
2
M

(
6vF + 7

ε4
F

v5
F

λ2

)
= − eE

18πvFniu
2
M

(
3v2

F + 56π2λ2N2
)
. (43)

Compared with the short-range nonmagnetic scattering, sim-
ilar density-dependent behaviors have also been seen for
this magnetic one. However, the concrete coefficients are
completely distinct.

To go beyond the weak warping case, we now numerically
solve the kinetic equations. Setting the relaxation time τ =
2vF/(niu

2
M

√
4πN0) = 1 ps with N0 = 1012 cm−2, the obtained

longitudinal conductivity and spin polarization are plotted in
Fig. 2. For comparison, the conductivity and CISP without the
warping effect are also calculated. It is seen that for a fixed re-
laxation time, the warping term also has an important role in the
surface transport of a three-dimensional TI. The magnitudes
of the longitudinal conductivity and spin polarization increase
drastically with increasing surface density. Note that the above
analytical results of Eqs. (42) and (43) are valid for weak
warping, that is, a density N � vF/(5πλ) ≈ 5 × 1012 cm−2.
For example, if we use the approximation result of Eq. (42)

0 10 20 30 40 50
4

5

6

7

8

9

10

N (1012 cm-2)

σ xx
 (

e2 /h
)

-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

τ = 1 ps

λ = 0
λ = 250 eV·Å3

S
y  ( 10

10
)

FIG. 2. (Color online) The longitudinal conductivity and y

component of the CISP scattered by magnetic impurities as a function
of the surface-carrier density. The other parameters are the same as
those in Sec. III D 2.

to estimate the conductivity, the resultant σxx ≈ 171.3 e2/h
when N = 30 × 1012 cm−2. This value is much larger than
the numerical one. At the same time, it can be confirmed
from the numerical calculation that the additional terms ∝N

also contribute to the conductivity and spin polarization for
nonvanishing warping.

V. QUANTUM CORRECTION

We now focus on the effect of weak warping on the quantum
corrections to the conductivity and spin polarization. For this
surface state, the Berry phase is calculated as

γ = −i

∫ 2π

0
dθk〈ϕk2| ∂

∂θk
|ϕk2〉

= 1

2

∫ 2π

0
dθk

[
1 + λk3

F(θk)

εF
cos 3θk

]
. (44)

In connection with Eq. (33), the Berry phase equals
π . Hence, weak antilocalization is expected for the
surface state even in the presence of the warping
effect.

Using the equilibrium Green’s function, the quantum
corrections are described by the diagrams in Fig. 3. Firstly,
we consider the short-range nonmagnetic scattering. Note
that in the previous work, the authors replaced the energy
spectrum with its angle-average one to investigate the quantum
correction. In our situation the angle dependence of the
warping is taken into account; hence, our treatment is beyond
this approximation. We also assume that the Fermi energy
is in the gap of the bulk band and crosses the upper band
of the surface state. Under the Born approximation, the
impurity-averaged-equilibrium retarded and advanced Green’s
functions are given by

Ĝ
r/a

k (ε) = 1

ε − εk ± i/2τe

(45)
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ṽx (s̃y) ṽx

r

r

a

a

C

(a)

ṽx (s̃y) ṽx

r

r

a

a
C

(b)

= +
r

a

(d)

ṽx (s̃y) ṽx

r

r

a

a

(c)

C

(e)

C = + C

FIG. 3. Diagrams for the quantum corrections to the surface
conductivity and spin polarization of a TI. (a) Bare and (b) and
(c) two dressed Hikami boxes. (d) Equation for the vertex correction
to the velocity and the average spin in the ladder approximation.
(e) Bethe-Salpeter equation for the Cooperon. The arrowed-solid and
dashed lines represent the retarded and advanced Green’s functions
and scattering potential, respectively.

with the relaxation time 1/τe = niu
2[εF/(4v8

F)](2v6
F − 3ε4

Fλ
2).

We add hats to the equilibrium Green’s functions to dis-
tinguish them from the nonequilibrium Green’s functions.
Notice that we have used a matrix distribution function
to discuss the classical transport. However, in the absence
of an interband-transition process and for usual elastic
scattering, the matrix distribution reduces to a scalar one
[see Eqs. (9), (23), and (24)]. Hence, the kinetic-equation
approach is in principle equivalent to that of the one-band
equilibrium Green’s functions. The kinetic-equation approach
can easily deal with momentum-dependent scattering in
classical transport, but it is difficult to discuss the quantum
correction. Therefore, we treat the weak antilocalization in
the diagrammatic approach by using equilibrium Green’s
functions. Below, the word equilibrium will be omitted for
brevity.

In the calculation, the vertex corrections to the bare velocity
and average spin [Fig. 3(d)] should be taken into account, and
they are written as

ṽx
k = 2vF cos θk + λ2k4

2vF

(
3 cos θk + 5

2
cos 5θk − 1

2
cos 7θk

)
,

(46)

s̃
y

k = cos θk − λ2k4

4v2
F

(
3 cos θk + 1

2
cos 5θk + 1

2
cos 7θk

)
.

(47)

Different from the topological surface states in the ab-
sence of hexagonal warping, the velocity and spin vertices
become anisotropic. This anisotropy is very important and
will lead to the density dependence of the quantum cor-
rection. Note that in the absence of warping, the group
velocity vx

k = ∂εk/∂kx |λ=0 = vF cos θk and average spin s
y

k =
1
2 〈ϕk2|σ̂y |ϕk2〉|λ=0 = 1

2 cos θk. Therefore, for vanishing λ, the
velocity vertex reduces to ṽx

k = 2vx
k .23

In addition to the bare Hikami box of Fig. 3(a), two dressed
Hikami boxes [Figs. 3(b) and 3(c)] are also needed in the
calculation of quantum corrections, and the total correction of
the charge conductivity is given by

δσxx = δσ (1)
xx + δσ (2)

xx + δσ (3)
xx , (48)

where the quantum correction due to a bare Hikami box is

δσ (1)
xx = e2

2π

∑
k,q

ṽx
kĜ

r
kĜ

r
q−kṽ

x
q−kĜ

a
q−kĜ

a
kC(q), (49)

and the quantum corrections due to two dressed Hikami boxes
are

δσ (2)
xx = e2

2π

∑
k,q,k′

ṽx
kĜ

r
kĜ

r
k′ 〈|ξkk′ |2〉impĜ

r
q−kĜ

r
q−k′

× ṽx
q−k′Ĝ

a
q−k′Ĝ

a
kC(q), (50)

δσ (3)
xx = e2

2π

∑
k,q,k′

ṽx
kĜ

r
kĜ

r
q−k′ 〈|ξkk′ |2〉impĜ

a
q−k′Ĝ

a
q−k

× ṽx
q−k′Ĝ

a
k′Ĝ

a
kC(q). (51)

Here, ξkk′ = ∫
d rei(k′−k)·r〈ϕk2|Ṽ (r)|ϕk′2〉 is the scattering

amplitude between two eigenstates. 〈· · ·〉imp indicates the
average over all possible configurations of random impurities.
Consequently, for δ-form impurity scattering, 〈|ξkk′ |2〉imp =
niu

2〈ϕk2|ϕk′2〉〈ϕk′2|ϕk2〉. Since the Cooperon C(q) diverges
as q → 0, the most divergent terms can be obtained by setting
q = 0 for the velocity vertex and the retarded and advanced
Green’s functions in the above expressions. Calculating mo-
mentum k and k′ integrals, the total conductivity correction is
written as

δσxx = −e2

π
εFτ

3
e

(
1 + λ2ε4

F

2v6
F

)∑
q

C(q). (52)

For vanishing λ, this result is in accordance with that of Ref. 21.
Similarly, the total spin-polarization correction is given by

δSy = eE

2π

εFτ
3
e

vF

(
1 − λ2ε4

F

v6
F

) ∑
q

C(q). (53)

The Cooperon satisfies the Bethe-Salpeter equation [Fig. 3(e)]:

Ck1 k2 = C
(0)
k1 k2

+
∑

k′
C

(0)
k1 k′G

r
k′G

a
q−k′Ck′k2

= C
(0)
k1 k2

+
∫

dk′dθk′

(2π )2
F (k1,k′,q)Ck′k2 , (54)

where k1 + k2 = q and F (k1,k′,q) = k′C(0)
k1 k′Ĝ

r
k′Ĝ

a
q−k′ , and

by expanding up to λ2, the bare vertex C
(0)
k1 k2

for small q is
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written as

C
(0)
k1 k2

= ϒ
(0)
k1 k2

+ λ2ϒ
(2)
k1 k2

(55)

with

ϒ
(0)
k1 k2

= v2
F

2εFτe

[1 + 2ei(θk1 −θk2 ) + e2i(θk1 −θk2 )]. (56)

The expression of ϒ
(2)
k1 k2

is long, and we do not present it here.
For weak warping, the solution of Eq. (54) is found as Ck1 k2 =
�

(0)
k1 k2

+ λ2�
(2)
k1 k2

. �
(0)
k1 k2

and �
(2)
k1 k2

are independent of λ.
With the help of the expansion F (k1,k′,q) = F (0)(k1,k′,q) +
λ2F (2)(k1,k′,q), �

(0)
k1 k2

and �
(2)
k1 k2

are determined from the
following equations:

�
(0)
k1 k2

= ϒ
(0)
k1 k2

+
∫

dk′dθk′

(2π )2
F (0)(k1,k′,q)�(0)

k1 k2
, (57)

�
(2)
k1 k2

= ϒ
(2)
k1 k2

+
∫

dk′dθk′

(2π )2
F (2)(k1,k′,q)�(0)

k′k2

+
∫

dk′dθk′

(2π )2
F (0)(k1,k′,q)�(2)

k′k2
. (58)

�
(0)
k1 k2

can be acquired from Eq. (57), and then we can obtain

�
(2)
k1 k2

from Eq. (58). It is found that F (0)(k1,k′,q) relies on θk1

through cos θk1 , sin θk1 , cos 2θk1 , and sin 2θk1 . Hence, �
(0)
k1 k2

and �
(2)
k1 k2

have the forms

�
(0)
k1 k2

= ϒ
(0)
k1 k2

+ A0 + A1 cos θk1 + B1 sin θk1

+A2 cos 2θk1 + B2 sin 2θk1 , (59)

�
(2)
k1 k2

= ϒ
(2)
k1 k2

+
∫

dk′dθk′

(2π )2
F (2)(k1,k′,q)�(0)

k′k2

+ C0 + C1 cos θk1 + D1 sin θk1 + C2 cos 2θk1

+D2 sin 2θk1 . (60)

The above coefficients Ai , Bj , Ci , and Dj (i = 0,1,2 and
j = 1,2) are independent of θk1 and can be determined by
Eqs. (57) and (58). The derivations are tedious but direct.
By setting k1 = k, k2 = q − k and θk1 − θk2 = π for small
q, and collecting the most divergent terms, the Cooperon is
finally obtained as

C(q) = − 1

εFτ 3
e q2

− 5

4

λ2ε3
F

v6
Fτ

3
e q2

. (61)

By performing the integration over q between 1/lφ and
1/l, the logarithmic corrections to the conductivity and spin
polarization are found as

δσxx = e2

4π2

(
1 + 3

4

λ2ε4
F

v6
F

)
ln

τφ

τe

, (62)

δSy = − eE

8π2vF

(
1 + 1

4

λ2ε4
F

v6
F

)
ln

τφ

τe

. (63)

Here, we use the relations l = √
Dτe and lφ = √

Dτφ , where D

is the diffusion constant. It is useful to rewrite the conductivity

correction as δσxx = −α[e2/(2π2)] ln(τφ/τe). Therefore, α

has the form

α = −1

2

(
1 + 3

4

λ2ε4
F

v6
F

)
= −1

2

(
1 + 12π2λ2

v2
F

N2

)
. (64)

The hexagonal warping makes the prefactor α quadratically de-
pend on the carrier density, and it is always smaller than −1/2
in vivid contrast with the angle-average approximation.22 For
vanishing warping, this factor becomes −1/2 in agreement
with the theoretical work.21 We note that the above formula is
fulfilled for weak warping. On the other hand, one can estimate
the α for Bi2Te3 at the low surface density N � 1013 cm−2.
For instance, α ≈ −0.506 when N = 1012 cm−2. However, the
value of the α obtained from a fit in a recent experiment19 was
−0.39, which is larger than −0.5, conflicting with our formula.
This may be due to the inevitable bulk-state contribution in
three-dimensional TIs.38 The experimental observation of α is
a collective result of the surface bands and bulk bands. The
bulk channels may result in a weak localization term, which
could reduce or even compensate the weak antilocalization
arising from the surface states. Therefore, a larger value
of α is obtained experimentally. In contrast to the surface
band, the bulk sub-band of a TI has a quadratic term and
large band gap. As a result, a different density-dependent
behavior of the quantum correction is expected for the
bulk channels. A quantitative measurement of the carrier-
density-dependent surface-conductivity correction could be
helpful for distinguishing the surface contribution from the
bulk one.

In the presence of magnetic scattering, the divergence
of C(q) when q → 0 vanishes, which is analogous to the
case without warping.21 Therefore, the logarithmic correction
disappears, and it can be deduced that the magnetic scattering
suppresses the weak antilocalization effect in the presence
of both magnetic and nonmagnetic scattering. This is in
accordance with experimental observation.19

VI. CONCLUSION

In summary, we have investigated the surface transport
of a three-dimensional TI in both the classical and quantum
diffusive regimes. In this study, we include the role of the
hexagonal-warping correction of the Fermi surface. It is found
that the hexagonal warping has drastic effects on the surface
conductivity and CISP of a three-dimensional TI for both
nonmagnetic and magnetic elastic scattering. For a surface
state with large warping, such as that of Bi2Te3, an additional
quadratic carrier-density dependence is found in both regimes.
Because the carrier density can be controlled by the gate
voltage, we hope that our predictions will soon be verified
experimentally.
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