
PHYSICAL REVIEW B 84, 155431 (2011)

Revised periodic boundary conditions: Fundamentals, electrostatics,
and the tight-binding approximation

Oleg O. Kit,1 Lars Pastewka,2,* and Pekka Koskinen1,†
1NanoScience Center, Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland
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Many nanostructures today are low-dimensional and flimsy, and therefore get easily distorted. Distortion-
induced symmetry breaking makes conventional, translation-periodic simulations invalid, which has triggered
developments for new methods. Revised periodic boundary conditions (RPBC) is a simple method that enables
simulations of complex material distortions, either classically or quantum mechanically. The mathematical
details of this easy-to-implement approach, however, have not been discussed before. Therefore, in this paper,
we summarize the underlying theory, present the practical details of RPBC, especially related to a nonorthogonal
tight-binding formulation, discuss selected features, electrostatics in particular, and suggest some examples
of usage. We hope this article can give more insight into RPBC, and it will help and inspire new software
implementations capable of exploring the physics and chemistry of distorted nanomaterials.
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I. MATERIAL SYMMETRIES BEYOND TRANSLATIONS

Translational symmetry and Bloch’s theorem has been the
backbone of materials research for a long time.1 Bloch’s
theorem was originally associated with simulations of bulk
crystals and translational symmetry in three dimensions, and
this association is still strong. Together with periodic boundary
conditions (PBC), or Born-von Kármán boundary conditions,
Bloch’s theorem has enabled simulating the infinite bulk using
a single, minimal unit cell.

Nanoscience, however, has introduced novel material struc-
tures that often lack the translational symmetry. These struc-
tures include nanotubes, nanowires, ribbons, nanopeapods,
DNA, polymers, proteins, to mention only a few examples.
Some structures such as nanotubes are often modeled with
translational symmetry, which is, however, dangerous be-
cause of their low-dimensional character and flimsiness; in
experiments, the real structures get distorted and Bloch’s
theorem and conventional PBC becomes invalid. To remedy
this problem, during the course of time, different research
groups have independently developed new methodological
improvements.

The seminal ideas to use generalized symmetries were
presented by White, Robertson, and Mintmire, who used
helical (rototranslational) symmetry to simulate model carbon
nanotubes (CNTs) using a two-atom unit cell,2 which enabled
calculating CNT properties that were inaccessible before.3,4

A similar approach, also applied to CNTs, was followed
by Popov.5,6 Liu and Ding used rotational symmetry to
simulate the electronic structure of carbon nanotori within
a tight-binding model, although with a static geometry.7 Du-
mitrică and James presented their clever objective molecular
dynamics (OMD), using classical formulation;8 later, OMD
was extended to tight-binding language.9 Also Cai et al.
presented boundary conditions for twisting and bending, using
nanowires as their target application.10 These approaches
toward generalized symmetries have been applied to vari-
ous materials and systems, such as Si nanowires,9 MoS2-
nanotubes,11 nanoribbons,12 the bending of single-walled7,13,14

and multi-walled15 CNTs, and vibrational properties of single-
walled CNTs16.

Recently, in Ref. 17, we introduced revised periodic bound-
ary conditions (RPBC), a unified method to simulate materials
with versatile distortions. This method has a particularly
simple formulation, with both classical and fully quantum-
mechanical treatments. It can be used in conjunction with
molecular dynamics and Monte Carlo simulation schemes, it is
designed for general distortions and all material systems, and
it can be regarded as a generalization of previous work.2–10

Because we only presented the overall outline of RPBCs in
Ref. 17, the purpose of this paper is, above all, to be the
mathematical and technical companion of that work. We give
in-depth formulation of the approach, suggest few examples
of usage, and discuss the long-range electrostatic interactions
carefully, as to provide a detailed-enough overview to aid
implementing and applying RPBC in practice. Examples of
earlier simulations with RPBC include bending of single-
walled CNTs,18 twisting of graphene nanoribbons,17,19 and
spherical wrapping of graphene.20

The idea of using general symmetries in material simu-
lations should not be surprising, as in physics and chemistry,
symmetry has always played a special role. What is surprising,
though, is that symmetries beyond the translational ones have
not quite reached the mainstream of materials modeling. Using
generalized symmetries does not imply material distortions;
they can be used also merely to reduce computational costs.
For example, RPBC is based on a revised Bloch’s theorem,
which in turn is based on the validity of Bloch’s theorem for any
cyclic group—an age-old group-theory common knowledge.21

However, it is not until nanoscience and its low-dimensional
distorted structures that have brought the motivation to
finally go beyond the conventional translational symmetry,
especially in practical simulations. We hope this paper could
demonstrate how simple the RPBC formulation is, and what
kind of ingredients are required in the implementation. Using
symmetries beyond translation should be in reach also for the
simulation community mainstream.
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II. REVISED BLOCH’S THEOREM

Let us first, to have a common starting point, repeat the
translational Bloch’s theorem, as it is found in all solid state
textbooks.22 In its conventional form, Bloch’s theorem

ψak(r − Tn) = e−ik·Tnψak(r) (1)

is valid for a system of electrons in a periodic potential
V (r) = V (r + Tn), where Tn = n1T1 + n2T2 + n3T3 and Ti

are lattice vectors. In Eq. (1), the wave function ψak(r), labeled
with band index a and k-vector, is the solution to Schrödinger
equation,

Ĥψak(r) = [p̂2/2m + V (r)]ψak(r) = εψak(r), (2)

where V (r) could also be the Kohn-Sham potential of
the density functional theory. The system is subjected to
periodic boundary conditions (or Born-von Kármán boundary
conditions), which mean that translation by Lj = Mj Tj , the
system’s length in direction j , leaves the system unchanged.
What has made the theorem (1) so powerful is that the
knowledge of the wave function within a single unit cell
is sufficient to solve the electronic structure and structural
properties of the crystal as a whole.

Next, we restate Bloch’s theorem (1) in a form easier to
generalize. First, we introduce the notation T nr ≡ r + Tn for
the coordinate transformation of translation with the inverse
transformation T −nr = r + T−n = r − Tn. Hence the left-
hand side of Eq. (1) becomes ψak(T −nr). Second, we define
an operator D̂(T n) acting on wave functions that induces
the real-space translation T n. For this, recall that shifting a
function “forward” [action by D̂(T n)] is equivalent to shifting
the coordinate system “backward” (r′ = T −nr),

D̂(T n)ψ(r) = ψ(T −nr). (3)

The way to arrive at Eq. (3) is the following. Let us make
a forward translation T n from the state ψ in the coordinate
system r to a state ψ ′ in the coordinate system r′ = T nr. The
wave function does not change, meaning ψ(r) = ψ ′(r′) or
ψ(r) = ψ ′(T nr), which holds for any r. In particular, it holds
for r = T −nr′′, so (dropping the double prime) ψ(T −nr) =
ψ ′(r). Now, since the state ψ ′ is the state induced by the
forward translation, we define D̂(T n) by D̂(T n)ψ(r) = ψ ′(r),
which leads to Eq. (3). With this notation the Bloch’s theorem
becomes

D̂(T n)ψak(r) = ψak(T −nr) = e−ik·Tnψak(r). (4)

Now we proceed to the revised Bloch’s theorem, as it was
presented in Ref. 17. It holds for a system of electrons in
any external potential invariant under a general (isometric)
symmetry operation r′ = Snr, that is, when

V (Snr) = V (r) (5)

for any set of commuting symmetry operations Sni

i , Sn ≡
Sn1

1 Sn2
2 · · ·. Using Sn instead of T n in Eq. (4), the revised

version of Bloch’s theorem, valid for any symmetry, reads

D̂(Sn)ψaκ (r) = ψaκ (S−nr) = e−iκ·nψaκ (r). (6)

Here, the vector κ generalizes the conventional k vec-
tor and the vector of integers n = (n1,n2, . . .) gives the

number of transformations Sn ≡ Sn1
1 Sn2

2 · · · for each sym-
metry Si . Knowing the wave function ψaκ (r) for an arbi-
trarily chosen simulation cell is sufficient to calculate the
wave function for atoms belonging to any (nth) image, and
thereby to solve, again, the electronic structure of the whole
system.

Let us next clarify the conditions when the revised Bloch’s
theorem (6) holds. Because the system should be left un-
changed, the symmetry operations should commute; therefore
the operators D̂(Snj

j ) must commute as well,[
D̂

(
Snj

j

)
,D̂

(
S li

i

)] = 0. (7)

The condition (5) is equivalent to [V (r),D̂(Sn)] = 0 and since
D̂(Sn) commutes also with p̂2, the requirement of potential
invariance (5) becomes

[Ĥ ,D̂(Sn)] = 0. (8)

The periodic boundary conditions are generalized in the
following way. First, write the condition ψak(r − Lj ) =
ψak(r) in terms of the translation operator, D̂(T Mj )ψak(r) =
ψak(T −Mj r) = ψak(r), where Mj = Lj/Tj is the number of
lattice points along direction j . (Lj is the the length of the
entire crystal in direction j .) Next, replace the symmetry
operation T → S and k → κ . This gives D̂(SM)ψaκ (r) =
ψaκ (r) or

D̂(SM) = D̂
(
SM ′

1
1 SM ′

2
2 . . .

) = 1, (9)

where, in general, M = (M ′
1,M

′
2, . . .), with M ′

j being 0 or Mj ,
where Mj is the number of transformations upon which the
system is mapped onto itself. (�jMj = N is the total number
of unit cells in the crystal.)

In mathematical terms, Bloch’s theorem deals with sym-
metries of the Hamiltonian alone and follows from the group
representation theory for cyclic groups. Indeed, considering,
for simplicity, the one dimensional case, n → n, the set of
transformations

{1,D̂(S1),D̂(S2), . . . ,D̂(SM−1) | D̂(SM ) = 1} (10)

forms a cyclic group with one-dimensional representation
ei2πm/M, m = 0,1, . . . , M − 1. Due to the condition (8), this
group is also a symmetry group of the Hamiltonian. Therefore,
the eigenfunctions of the Hamiltonian transform according to
representation of its symmetry group, which is equivalent to
Eq. (6).

Since any unitary operator can be uniquely represented by
an exponent of a Hermitian operator,23 we have D̂(S) = e−iκ̂ .
Then, D̂(Sn) = e−iκ̂n or in multidimensional notation,

D̂(Sn) = e−iκ̂·n. (11)

The operator κ̂ is commonly called the generator of the
group. Due to the condition (8), κ̂ commutes with Ĥ , and
its components κ̂j commute among themselves. Therefore
eigenfunctions of the operator κ̂ , with κ̂|κ〉 = κ|κ〉, form a
common set of eigenstates with the Hamiltonian operator.
The vector κ is the eigenvalue of the operator κ̂ , and thus
a good quantum number that can be used to label the
energy eigenstates [as evident already in Eq.(6)]. The physical
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meaning of vector κ relies on the symmetry of the system and
is thus specific to a given symmetry (see Sec. II A).

Now, consider the eigenvalue problem for D̂(Sn),

D̂(Sn)|ψ〉 = e−iκ̂·n|ψ〉 = Cn|ψ〉, (12)

where Cn is a constant. We close Eq. (12) with 〈κ| to find

〈κ|e−iκ̂·n|ψ〉 = e−iκ·nψ(κ) = Cnψ(κ), (13)

yielding Cn = e−iκ·n with ψ(κ) ≡ 〈κ|ψ〉. Next, we note
that it is equivalent to define D̂(Sn) by ψ(r) = ψ ′(r′) ≡
D̂(Sn)ψ(Snr) and by D̂(Sn)|r〉 ≡ |Snr〉; the unitarity property
D̂†(Sn) = D̂−1(Sn) = D̂(S−n) results in 〈r|D̂(Sn) = 〈S−nr|.
Taking this into account, we close Eq. (12) with 〈r| to find

〈r|D̂(Sn)|ψ〉 = 〈S−nr|ψ〉 = e−iκ·n〈r|ψ〉 (14)

or in coordinate representation,

D̂(Sn)ψ(r) = ψ(S−nr) = e−iκ·nψ(r). (15)

Applying the cyclic condition (9), we arrive at a set of allowed
values for κ: eiκj Mj = 1 = ei2πmj or

κ = 2π

(
m1

M1
,
m2

M2
, . . .

)
, (16)

where mj = 0,1, . . . ,Mj −1. Finally, labeling the eigenfunc-
tion with band index a and the good quantum number κ ,
Eq. (15) becomes Eq. (6).

We thus proved the revised Bloch’s theorem of Eq. (6): for
a system of electrons in an external potential resulting from
any symmetric arrangement of atoms (or any other external
potential for that matter), wave functions separated by Sn

transformations differ only by a phase factor. Therefore by
calculating the wave functions in a single unit cell—whatever
its form—one can simulate the electronic structure of the
symmetric system as a whole.

Alternatively, the revised Bloch’s theorem can be formu-
lated by saying that the Hamiltonian eigenfunctions are of the
form

ψaκ (r) = eiκ·n(r)uaκ (r), (17)

where uaκ (Smr) = uaκ (r) is a periodic function and n(r) is
a generalized dimensionless coordinate, chosen in a way to
satisfy

n(Smr) = n(r) + m, (18)

with m = (m1,m2, . . .) being a vector of integers, so that
Eq. (17) with the condition (18) would satisfy Eq. (6) by
construction. The choice of n(r), however, is not unique.
For most transformations, n(r) can be a continuous function,
yielding a fraction of the unit transformation for a given r;
for example, in one-dimensional case (n → n), at the origin,
which also gives the beginning of the simulation cell, n(r) = 0,
at the middle of the simulation cell n(r) = 0.5, at the border
between the simulation cell and the first copy of the simulation
cell, n(r) = 1. With improper transformation, it works as well
but requires a discontinuous n(r).

For translations in Cartesian coordinates, we have
nj (r) ≡ xj/Tj and κj = 2πmj/Mj [Eq. (16)], which yields

FIG. 1. (Color online) Revised Bloch’s theorem: (a) the product
of the modulating phase factor, eik·r, and a periodic function uak(r)
gives the translational Bloch state. (b) The very same principle applies
to other symmetries.

κ · n(r) = ∑
j 2πmj/(MjTj ) xj ≡ k · r, and we recover the

well-known Bloch state,

ψak(r) = eik·ruak(r), (19)

where uak(r) = uak(r + Tn) is a lattice-periodic function. The
general idea behind formulation (17) is illustrated in Fig. 1.
Next, we illustrate this formulation using selected familiar
symmetries.

A. Illustrations with familiar symmetries

A simple transformation to consider is a two-fold rotation
(π -radian rotation). When twice repeated, it yields the original
system (that is, S2 = 1, M = 2, and m = 0,1), the κ-point
sampling is κ = 0 and κ = π . Therefore

D̂(Sn)ψaκ (r) = ψaκ (S−nr) = (±1)nψaκ (r); (20)

the wave function for κ = π becomes negative upon odd
number of transformations.

For M-fold rotation around z axis in cylindrical coordinates
r = (ρ,ϕ,z), Sm(ρ,ϕ,z) = (ρ,ϕ + mα,z), where α = 2π/M

is the angle of rotation. The condition (18) is satisfied with
n(r) ≡ ϕ/α, and we further take κ = 2πm/M = αm to write
Eq. (17) in terms of azimuthal angle ϕ and quantum number m

(which is nothing but the familiar magnetic quantum number):

ψam(ρ,ϕ,z) = eimϕuam(ρ,ϕ,z), (21)

where uam(ρ,ϕ + αn,z) = uam(ρ,ϕ,z) for any αn ≡ nα

(n = 0,±1, . . .). For example, with α = π , we arrive at
an alternative form of Eq. (20). By considering a sixfold
rotational symmetry, we can simulate the 12-atom benzene
C6H6 by a two-atom generalized unit cell (one CH unit);
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TABLE I. Generators of one-parameter symmetry transformations. Translations are generated by momentum operator p̂j , rotations by
angular momentum operator L̂z, and helical transformations along z axis by p̂z and L̂z together.

Symmetry Sn : r → Snr D̂(Sn) generator κ̂j

Translational T n : r → r + Tn Tn = nTj e−iTnp̂j /h̄ p̂j Tj p̂j /h̄

Rotational R(αn) : r → R(αn) r αn = nα e−iαnL̂z/h̄ L̂z αL̂z/h̄

Helical Xn : r → R(χn) r + Tn

{
χn = nχ

Tn = nTz

e−i(Tnp̂z+χnL̂z)/h̄ Tnp̂z + χnL̂z (Tzp̂z + χL̂z)/h̄

we know the wave function of the whole system if we know
the wave function ψam(ρ,ϕ,z) in the wedge-shaped region
ϕ ∈ [0,α], α = π/3. On the other hand, the spatial region for
simulation cell does not need to be connected; in benzene,
for example, the CH unit could be constructed from a spatial
region for C and H even on opposite sides of the molecule.

A helical transformation with pitch length Lz = MTz, is
a combination of a rotation by an angle χ = 2π/M and
a translation by Tz, where the translation goes along the
axis of rotation (here z axis), Sm(ρ,ϕ,z) = (ρ,ϕ + mα,z +
mTz). The condition (18) can be satisfied with different
choices for n(r), for example, n(r) = z/Tz, n(r) = ϕ/χ , or
n(r) = (z/Tz + ϕ/χ )/2, meaning that z/Tz, ϕ/χ , or their
combination, can serve as a dimensionless coordinate. Further,
take κ = 2πm/M = mχ to write Eq. (17) as

ψam(ρ,ϕ,z) = eim(2πz/(MTz)+ϕ)/2uam(ρ,ϕ,z), (22)

where uam obeys symmetry via the relation uam(ρ,ϕ +
αn,z + Tn) = uam(ρ,ϕ,z) for any Tn = nTz and αn = nχ (n =
0,±1, . . .).

The above examples of proper symmetry transformations
can be described in terms of the corresponding generators κ̂

(Table I). The foundations of the revised Bloch’s theorem, as
this section has shown, are very familiar.

III. THE κ-POINT SAMPLING

One of the central practical issues in the RPBC approach
is the sampling of the κ values (κ points). It is essentially
similar to the familiar k sampling with translational symmetry,
although there are some differences. Depending on symmetry,
the values of a given component κj of the κ vector may or
may not be quantized, and sampling of κj hence falls in two
schemes, in either discrete or continuous sampling.

First, in discrete sampling, the component κj accepts
only the values given by Eq. (16), {2πmj/Mj | mj =
0,1, . . . ,Mj − 1}, where κj correspond to symmetry trans-
formation Sj . This usually means a small Mj , say Mj = 2
or Mj = 6, but even if Mj would be large, say thousand, all
thousand values do not necessarily need to be sampled. Nonal-
lowed κj ’s result in nonphysical wave functions and ultimately
problems in numerical evaluations. Discrete sampling suggests
that the corresponding symmetry is genuinely periodic, and the
periodic boundary condition is a real physical condition. The
simplest example of this case is the two-fold transformation
discussed around Eq. (20).

Second, in continuous sampling, Mj goes to infinity
(or can be treated that way), such that κj = 2πmj/Mj

points can be sampled freely between [0,2π ), or within
the Brillouin zone [−π,π ). Continuous sampling happens
for symmetry operations involving translation, for which the
periodic boundary is not a real physical condition, but rather a
convenient mathematical trick that has turned out useful. Note
that in a regular three-dimensional system, PBC means all
dimensions to be periodic in an intertwined and bogus fashion;
in two-dimensional system, PBC represents topologically a
toroid.

Since RPBC works also with translational symmetry, there
must be a relation between the κ vector and the conventional
k vector; this was already shown in Ref. 17. It is obtained by
equating the exponential factors in Eqs. (4) and (6), e−ik·Tn =
e−iκ·n. For a given k, by choosing n such that only nj = 1, we
get

κ · n = κj = Tj · k =
3∑

l=1

Tj,lkl (j = 1,2,3), (23)

here, l runs though the Cartesian components of vectors Tj and
k. Solving Eq. (23) hence yields κ(k) or vice versa. It is easy to
check that plugging k = ∑3

j=1 mj/Mj bj into Eq. (23) yields
the condition (16), where bj are the reciprocal lattice vectors
with bj · Tj ′ = 2πδjj ′ . Equation (23) suggests also that the κ

points are sampled continuously when k points are.
Usually for two symmetries, say Si and Sj , the sampling

schemes are independent, meaning that, for example, κi can
have discrete sampling, while κj has continuous sampling.
Yet sometimes, the symmetry transformations can be coupled,
which leads to coupling of κi and κj samplings. This can
happen when the system is such that mapping of simulation
cell atoms l1 times withS1 is identical to mapping of simulation
cell atoms l2 times with S2, or S l1

1 = S l2
2 , which leads to the

coupling of κ points for symmetries S1 and S2. From the
theorem (6), it follows that e−iκ1l1 = e−iκ2l2 , and the coupling
of the sampling is given by the condition

l1κ1 = l2κ2 + 2πm (m integer). (24)

Here, values of κ1 are governed by Eq. (24), where m =
0,1, . . . , l1 − 1 and κ2 acts as an independent parameter [alter-
natively, κ1 may act as an independent parameter; then, values
of κ2 would be given by Eq. (24) with m = 0,1, . . . , l2 − 1].
The sampling of the independent parameter κ2 [or κ1] follows
either one of the two sampling schemes discussed above. In
the general case, we have Sni = Snj , and the couplings of the
sampling schemes can be obtained from e−iκ·ni = e−iκ·nj +2πm.

In the next section, we list cookbook-type recipes on how
certain symmetries can be used with the RPBC approach. For
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each symmetry, we point out the pertinent κ-point sampling
scheme.

IV. SELECTED SYMMETRY SETUPS

The symmetry of the system determines the coordinate
transformations Sn and the shape of the simulation cell. Every
particle in the simulation cell, located at RI , has N images
located at Rn

I ≡ SnRI with n = (n1,n2, . . .). A fairly general
symmetry transformation for particles’ coordinates is the affine
transformation

Snr ≡ R(ωn) r + Tn, (25)

where Tn ≡ n1T1 + n2T2 + n3T3 is translation and R(ωn)
is rotation for an angle ωn = n1χ1 + n2χ2 + n3α around an
axis given by the vector ωn. This is not, however, the most
general form [cf. Eqs. (34)–(38)]. When rotation is a part
of transformation, there can be at most one translation that
should be collinear with the rotation axis (ωn ‖ Ti). At the
same time, the number of translational transformations along
this direction (possibly for different lengths) is unlimited; so is
the number of coaxial rotational and helical transformations.
Selecting some of the angles χ1, χ2, α and vectors T1, T2, T3

yields the special cases we discuss next (see also Table II).
The different symmetries are referred to, from a practical
simulation viewpoint, as simulation setups. The titles in the
following refer to the nomenclature of these setups.

A. Bravais: translational symmetry revisited

Transformations of this setup consist of up to three
translations [χ1,χ2,α ≡ 0 in Eq. (25)]:

Sni

i r ≡ r + niTi , i = 1,2,3; (26)

Sn = Sn1
1 Sn2

2 Sn3
3 . This is the typical triclinic setup, mostly used

for solids with Bravais lattices. The κ points, as the k points,
can be freely sampled. [The direct relation between a given κ

point and a k point is given by Eq. (23).]
Note that, for demonstrative purposes only, one-

dimensional translation can also be constructed from two
symmetry operations of the form (26), with T1 = L1 and
T2 = 2L1, Sn = Sn1

1 Sn2
2 . In this case, the κ points are coupled

due to the relationS2
1 = S2. Equation (24) holds, yielding κ1 =

κ2/2 + πm, M1 = 2, and M2 → ∞. This kind of treatment is,
of course, silly and artificial, but demonstrates the flexibility
of the RPBC approach.

B. Wedge: cylindrical symmetry

The main transformation of this setup is rotation
[T2,T3,χ1,χ2 ≡ 0 in Eq. (25); notations of Si are kept
consistent with the discussion following Eq. (25)],

Sn3
3 r ≡ R(n3α) r, (27)

possibly combined with one translation,

Sn1
1 r ≡ r + n1T1, (28)

Sn = Sn1
1 Sn3

3 . Translational periodicity in axial direction is
either present (α ‖ T1 
= 0,M1 →∞) or not present (T1 ≡ 0).

This setup is for cylindrically-symmetric systems. The param-
eter α is the angle of the wedge-shaped simulation cell. For a
large angle α, κ3’s are strictly discrete (α = 2π/smallinteger),
while for a sufficiently small angle α, κ3’s can be sampled
freely (the smallness is somewhat subjective, but α � 2π/20
is “small” for most practical calculations).

C. Chiral: helical symmetry

Transformation of this setup is helical [α,χ2,T2,T3 ≡ 0 in
Eq. (25)],

Sn1
1 r ≡ R(n1χ1) r + n1T1, (29)

where rotation and translation are coupled (χ1 ‖ T1). This
setup is for chiral systems. The parameter χ1 is an angle of
a shift between two closest chiral units at distance Tz apart.
The helix makes a full turn in 2π/χ1 transformations and its
pitch length is (2π/χ1)Tz. κ1 can be sampled freely, since the
system is infinitely long (M1 → ∞).

D. Double chiral: helical symmetry

The helical setup can be extended with a second helical
transformation [α,T3 ≡ 0 in Eq. (25)]:

Sn1
1 r ≡ R(n1χ1) r + n1T1, (30)

Sn2
2 r ≡ R(n2χ2) r + n2T2, (31)

both angles χ1 and χ2 and both T1 and T2 can be different
(χ1 ‖ χ2 ‖ T1 ‖ T2). This setup is for chiral systems that
do not need the whole circumferential part to represent
the smallest unit cell. Representative examples are carbon
nanotubes, where helical transformation has been discussed
before.2–5 The symmetry implies the condition SM2

2 = S l1
1 ,

and hence the restriction κ2M2 = κ1l1 + 2πm, where either
κ1 or κ2 is sampled freely. An important special case comes
from χ2 = π , enabling, for example, an efficient simulation of
twisted ribbons.17 Yet another special case arises from T2 = 0,
where helical transformation is extended by an independent
rotation.

E. Slab: surfaces and edges

The transformations in this setup are two translations,

Sn1
1 r ≡ r + n1T2, (32)

Sn2
2 r ≡ r + n2T1, (33)

and a reflection with partial translations,

Sn3
3 r ≡ σn3 r + τ1n3T1 + τ2n3T2, (34)

where τ1,τ2 are half-integers and σn3 r ≡ [r − 2(r · ẑ)ẑ]n3 is a
reflection in xy plane. This setup is for two-dimensional (2D)
surfaces and one-dimensional (1D) edges (T2 = 0), and allows
halving the atom count. Values of (τ1,τ2) are determined by
the lattice structure of the system in question, being either
(0,0),(1/2,0),(0,1/2), or (1/2,1/2). They imply the identity
S2

3 = S2τ1
1 S2τ2

2 , leading to condition κ3 = τ1κ1 + τ2κ2 + πm;
κ1 and κ2 can be sampled freely, while sampling of κ3 is
given by m = 0,1. Two values for κ3 therefore introduce

155431-5



OLEG O. KIT, LARS PASTEWKA, AND PEKKA KOSKINEN PHYSICAL REVIEW B 84, 155431 (2011)

TABLE II. (Color online) Application of RPBC for distorting materials or for improving computational efficiency. Some familiar and
conventional examples, not particularly special for RPBC, are added for completeness. Setup names refer to the naming scheme used within
the HOTBIT code.24,30

Illustrations Examples for structures and distortions

Bravais lattices (setup: Bravais)
• conventional crystal lattices
• translational symmetry in one or more dimensions

Setup: Wedge
• finite, symmetric molecules, clusters, marcomolecules, and
viruses with cyclic axes (e.g., giant and high genus fullerenes,
nanocones, dendrimers)
• stretching and bending of one-dimensional structures
(nanowires, fibers, rings, tori, rod micelles, polymers, viruses)
• bending of planar structures (ribbons, membranes, graphene,
thin sheets)
• adsorption and catalysis on cylindrical surface

Setups: Chiral
• stretching, winding and unwinding of helical structures (chiral
and achiral nanotubes, springs, coils, helices, DNA, proteins,
polymers, viruses)
• twisting of one-dimensional structures tubes, wires, fibers,
ribbons)

Setup: DoubleChiral
• calculating flat or twisted one-dimensional structures with
additional (generalized) reflection symmetry

Setups: Sphere and Saddle
• approximate treatment only (small curvature)
• spherical wrapping of planar structures (graphene, thin films,
lipid membranes, vesicles and micelles)
• distorting planar structures to a negative Gaussian curvature
• adsorption and catalysis on distorted surface

Setup: Slab
• one- and two-dimensional wires and slabs with with
(generalized) reflection symmetry
• symmetric finite molecules and clusters

an additional component in two-dimensional band structure
plots.

F. Sphere: spherical symmetry (approximate treatment)

As discussed in Ref. 20, symmetries can be treated
also in an approximate fashion. Since for small angles,

rotations commute to the linear order, R(α1)R(α2) ≈
R(α2)R(α1) , two rotations around different axes but same
origin,

Sn1
1 r ≡ R(n1α1) r, (35)

Sn2
2 r ≡ R(n2α2) r, (36)
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approximately represents a spherical system with a simulation
cell of a square-conical shape. The κ points can be freely
sampled. This setup was recently used to calculate mean and
Gaussian curvature moduli of graphene layers.20

G. Saddle: negative Gaussian curvature
(approximate treatment)

Similarly, two rotations around different axes,

Sn1
1 r ≡ R(n1α1) r, (37)

Sn2
2 r ≡ R(n2α2) (r − R0) + R0, (38)

such that the origin of the first rotation (origin of the coordinate
system) and the origin of the second rotation, R0, are located
on different sides of the surface, approximately representing
a saddle system. The κ points can be freely sampled. This
setup can be used to study membranes with negative Gaussian
curvature in an approximate fashion.20

H. On choosing the symmetry setup

Above all, various symmetry setups introduced by RPBC
offer flexible access to different geometries, opening possibil-
ities for distortion studies (see Table II). Besides, using sym-
metry setups for symmetric structures—whether classically or
quantum mechanically—brings reduction of simulation costs;
the atom count reduction is proportional to the number of
simulation cell images used in the setup.

Because RPBC approach is centered around the simple
coordinate mapping r′ =Snr, the computational overhead
introduced by RPBC, as compared to translation-periodic im-
plementations, should be in principle small; in the nonorthogo-
nal tight-binding implementation HOTBIT,24 the computational
overhead turned out negligible.

It is important to choose the setup and the symmetry that
fit the system best. On one hand, a too symmetric setup will
restrict natural conformations—regarding statistical sampling,
for instance, RPBC faces the same artifacts as PBC—should
the simulation cell be too small. On the other hand, exploiting
too little symmetry will result in unnecessary simulation costs.

Finally, general symmetries may require tighter geometry
optimization criteria in the case of small rotational angles.
Consider, for example, Fig. 2(b) and the total force on the
atom in the simulation cell. Although the direct forces due
to neighboring images may be large, the small wedge angle
projects the combined force to have only a small radial
component; geometrical arguments suggest that the radial
component is diminished by a factor α (with α measured
in radians), as compared to the direct forces. In other words,
radial forces, although small, may cause certain type of center-
of-mass creeping in the radial direction, requiring a more
lengthy and demanding optimization process. With translation
symmetry, the center-of-mass movements never cost energy.

V. TOWARDS PRACTICE: WARM-UP USING
CLASSICAL POTENTIAL

Let us first illustrate the practical aspects of the RPBC
formalism with a classical treatment. Consider the interaction

via pair potentials VIJ (RIJ ), such that VJI (RIJ ) = VIJ (RIJ )
and VII ≡ 0 for all I and J , where RIJ is the length of vector
RIJ = RJ − RI separating particles I and J . The energy of
the entire system, including all N images of the unit cell, with
N particles in each cell, is

E′ = 1

2

∑
IJ

VIJ (RIJ ), (39)

where I and J still run over K = NN particles. In order
to reduce this expression to a single simulation cell, let I

and J run over N particles in one arbitrarily selected cell,
while introducing an index n that runs over all its N images
(
∑

n 1 = N ), giving

E′ = 1

2

N∑
IJ

N∑
nm

VIJ

(∣∣Rm
J − Rn

I

∣∣). (40)

Then Rm
J − Rn

I = Sn(Rm−n
J − RI ) ≡ SnR m−n

IJ , where R n
IJ =

Rn
J − RI is the vector separating the nth image of particle J

and particle I . Since transformations Sn are isometric, the
energy expression simplifies further to

E′ = 1

2

N∑
IJ

N∑
nm

VIJ

(
R m−n

IJ

) = N
2

N∑
IJ

N∑
n

VIJ

(
R n

IJ

)
.

Thus the energy per simulation cell is

E = 1

2

∑
IJ

∑
n

VIJ

(
R n

IJ

)
. (41)

Here and below, indices I and J run over N particles in the
selected simulation cell only; n runs over all unit cells where
atom I at RI still interacts with atom J at Rn

J . Comparing
energy expressions (40) and (41), one notices the obvious gain
in the RPBC approach: Eq. (41) has one summation less.

To calculate forces as derivatives of energy with respect to
particles’ positions, regard Rn

I as a function of RI . In general,
the partial derivatives of Rn

I are elements of the rotation matrix
R(ωn) ,

∂
[
Rn

I

]
i

∂ [RI ]j
= [R(ωn) ]ij , (42)

where i and j stand for the Cartesian components. Starting
from FI = −∇IE, we first arrive at

FI = 1

2

∑
J, n

{
V ′

IJ

(
R n

IJ

)
R̂ n

IJ − V ′
JI

(
R n

JI

)
×

∑
ij

[
R̂ n

JI

]
i
[R(ωn) ]ij êj

}
, (43)

where V ′ is the derivative of V and R̂ n
IJ is the unit vector

R n
IJ /R n

IJ ; note that R̂ n
IJ 
= −R̂ n

JI . The second term in Eq. (43)
may seem to be different from the first one, but it is not; this
can be seen by observing the property

R̂ n
JI = −R(ωn) R̂ −n

IJ , (44)

and by using the orthogonality of rotational matrix,
[R(ωn) ]ij = [R(ω−n) ]ji , to simplify the double sum in the
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second line of Eq. (43) to −R̂ −n
IJ . Thus the total force acting

on ion I in the simulation cell is

FI =
∑

J

∑
n

V ′
IJ

(
R n

IJ

)
R̂ n

IJ . (45)

This expression looks as simple as it should be: the total force
exerted on atom I is the sum of the forces from all images of
the other atoms J .

Note that the expressions (41) and (45) are already sufficient
to use RPBC in molecular dynamics with classical pair
potentials. Generalization to three- or many-body terms is
straightforward; a bond-order type energy expression, for
example, would yield in expressions like

E = 1

2

N∑
IJK

∑
nm

VIJK

(
Rn

IJ ; Rm
K

)
. (46)

VI. SOME PECULIARITIES OF REVISED PBC

Differences between orientations of simulation cell images
lead to properties worth noting. Since we are all used to trans-
lational setups, these properties appear somewhat peculiar,
although their origins are natural. Although applicable also
in quantum mechanical methods, for simplicity, we illustrate
these properties here using classical pair potentials.

First, consider the force exerted on the nth image of atom I .
It can be shown to be symmetric in the sense that Fn

I = SnFI

[note here that action ofSn on forces goes as for r12 = r2 − r1;
the operation of Sn, loosely defined for both r1 and r2 by
Snr = R(ωn) r + Tn, givesSnr12 = R(ωn) r12, as Tn’s cancel
out]. In the case of translational symmetry, the force exerted on
a given particle in any cell is the same (lengths and directions
of vectors Fn

I and FI are the same). However, for symmetries
that contain rotational transformation, we have

Fn
I = R(ωn) FI , (47)

i.e., the vector of the force in nth cell is rotated by ωn with
respect to the force in simulation cell. In wedge setup, for
example, the forces resulting from cyclic potential demonstrate
cyclic pattern.

Related to this, consider a system with rotational geometry
and one atom in the simulation cell. Contrary to translations,
when the forces exerted on any atom of a crystal with a
monoatomic basis always cancel each other [sum up to zero;
see Fig. 2(a)], in the wedge setup, it turns out that the resulting
force exerted on the atom by its images may differ from zero;
this is evident in Fig. 2(b). Therefore a single atom in the
simulation cell can perform work on itself. In general, the
force exerted on an atom due to its own images is

fI,I =
∑

n

V ′
II

(
R n

II

)
R̂ n

II ; (48)

it may differ from zero if rotations or reflections are involved.
Further, consider a system with wedge geometry and two

atoms (I and J ) in the simulation cell. Now, the total force
exerted on each of these atoms consists of two contributions:

FI = fI,J + fI,I , (49)

FIG. 2. (Color online) Peculiarities of symmetry setups illustrated
on systems with one particle the in simulation cell (shaded). (a) While
for translational symmetry the total force exerted on any atom is zero,
(b) in general, the total force (blue or light-gray) can be nonzero: a
single particle in a simulation cell can perform work on itself.

and

FJ = fJ,I + fJ,J , (50)

where

fI,J =
∑

n

V ′
IJ

(
R n

IJ

)
R̂ n

IJ (51)

is the force exerted on atom I due to atom J and all the images
of J , and

fJ,I =
∑

n

V ′
IJ

(
R n

IJ

)
R̂ n

JI (52)

is the force exerted on atom J due to atom I and all the images
of I [note that for a many-atom system, additional terms
accounting for all the other atoms would appear in Eqs. (49)
and (50)]. If only translations are involved, rotation matrix
becomes the identity matrix, Eq. (44) gives R̂ n

JI = −R̂ −n
IJ ,

and consequently fI,J = −fJ,I . It is tempting to regard this
accidental property as Newton’s third law. In general, however,
we can have fI,J 
= −fJ,I , but notice that this property is just
an artifact of atom indexing. Namely, by atom I we mean
atom I and all its periodic images, collectively. As defined
by Eqs. (51)–(52), the forces fI,J and fJ,I are not the forces
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between two atoms I and J and, therefore, they do not have
to follow Newton’s third law in an atom-indexing sense.

VII. REVISED PBC WITH A PRACTICAL
QUANTUM METHOD

Here, we present the RPBC formulation with a practical
quantum-mechanical method; we use a nonorthogonal tight-
binding (NOTB) as our method of choice to illustrate the
main concepts. To include the main aspects of the present-day
standard density-functional (DFT) calculation, we discuss
also charge self-consistency and use the concepts from self-
consistent charge density-functional tight-binding (DFTB),
which has been shown to be a rigorous approximation to full
DFT.25 As it will turn out, for an NOTB method, RPBC merely
introduces a simple transformation for the Hamiltonian and
overlap matrix elements. The electrostatic charge fluctuation
correction is discussed separately in the next section. The
NOTB-related classical repulsion energy has the form of a
pair potential, which was already discussed above. But we
start by giving short comments regarding practical basis sets.

A. Comments on basis sets

Numerically, there are many methods to solve the
Schrödinger equation (2), and most of them can be used with
RPBC—but some are more practical than others. Real-space
grids and especially local basis are particularly suitable for
RPBC implementation because they have more freedom to
be rotated and adapted to various symmetries. This paper
illustrates RPBC with local basis. On the other hand, plane
waves are, by their very name, unsuitable for RPBC at least as
such.

The plane-wave method relies on building a basis from
plane waves, which are constituted by the factor eik·r in
Eq. (19). The wave function and potential V (r) are expanded
in a Fourier series, in terms of ek(r) ≡ eik·r, in order for the
Schrödinger equation (2) to attain a practical algebraic form.22

Yet, Eq. (17) suggests that a similar type of method could be
established also in the general case. Namely, one can build
“symmetry-adapted plane waves” from the prefactors eiκ·n(r),
with the function n(r) chosen such that it properly reflects
the symmetry of the system. Once the wave function and
potential V (r) are expanded in a series with respect to these
symmetry-adapted waves eiκ·n(r), however, the Schrödinger
equation (2) does not necessarily attain a neat algebraic form.
Unraveling these issues is a work in progress, and it remains
a question whether this basis is numerically practical. On the
other hand, for analytical investigations, Eq. (17) is useful.

B. Introducing notations: a short primer to NOTB

The quantum-mechanical method that we use with RPBC
is nonorthogonal tight-binding (NOTB) in general, and self-
consistent charge density-functional tight-binding (DFTB) in
particular.26–30 For establishing notations, we hence review
DFTB very briefly; readers familiar with it can proceed directly
to the next section.

To represent a single-particle state ψa , the DFTB uses a
(typically minimal) local basis of ϕμ (LCAO ansatz),

ψa(r) =
∑

μ

ca
μϕμ(r), (53)

where ϕμ(r) ≡ ϕ0
μ(r − RI ) is the orbital belonging to the atom

I (μ ∈ I ); ϕ0
μ(r) is localized at the origin, oriented with respect

to fixed Cartesian coordinates.30 The total energy is

Etot =
∑

a

fa

∑
μν

ca∗
μ ca

ν H̃μν + 1

2

∑
IJ

γIJ (RIJ )�qI�qJ

+
∑
I<J

V
rep
IJ (RIJ ), (54)

where fa is the occupation of the state ψa and the Hamiltonian
matrix elements H̃μν ≡ 〈ϕμ|Ĥ [n0]|ϕν〉. (Notation H̃ , instead
of the usual H 0, is chosen to avoid superscript confusions
later.25) In the second term, the excess Mulliken charges
�qI ≡ qI − q0

I , as compared to charges q0
I of valence elec-

trons from neutral system, interact with effective electrostatic
interaction γIJ .

The efficiency of the DFTB relies on the fact that matrix
elements H̃μν ,

H̃μν =
∫

d3r ϕ∗
μ(r)Ĥϕν(r)

=
∫

d3r ϕ0∗
μ (r − RI )Ĥϕ0

ν (r − RJ ) (55)

with μ ∈ I,ν ∈ J as well as Sμν are tabulated with respect
to distances between orbital centers RIJ = |RJ − RI |. The
matrix elements with all the possible orientations of the orbitals
ϕ0∗

μ and ϕ0
ν are accounted for by a superposition of the matrix

elements with Slater-Koster transformation tables31 and just a
few basic matrix elements.

C. Revised Bloch waves

The Bloch basis functions for translational symmetry, or
Bloch waves, are given with a local basis ϕμ(r) by the familiar
expression30

ϕμk(r) ≡ 1√
N

∑
Tn

eik·TnT nϕμ(r), (56)

where T nϕμ(r) = ϕμ(r − Tn); Bloch waves extend through
the entire system. Analogously, for general symmetries, atomic
orbitals of all N images,

ϕn
μ(r) ≡ D̂(Sn)ϕμ(r), (57)

are assembled to create new basis functions according to

ϕμκ (r) ≡ 1√
N

∑
n

eiκ·nD̂(Sn)ϕμ(r), (58)

with ϕμκ (r) ≡ 〈r|ϕκ
μ〉.

Single-particle states

ψaκ (r) ≡
∑

μ

ca
μ(κ)ϕμκ (r) (59)

then fulfill the revised Bloch’s theorem (6) by construction.
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FIG. 3. (Color online) (a) Illustration of Eq. (60): three-step
transformation of orbital ϕμ(r) to orbital ϕn

μ(r). (b) Illustration of
orbitals ϕn

μ(r) for the entire system in wedge setup. Orbitals are
symmetrically aligned (simulation cell is shaded).

The image orbital ϕn
μ(r) is the simulation cell orbital ϕμ(r)

transformed by D̂(Sn) and is not an eigenfunction of D̂(Sn).
When acting on the orbital ϕμ(r), located on atom I at
RI and oriented along Cartesian axes, transformation D̂(Sn)
can be thought to be the superposition of three consecutive
transformations of (i) translation of the orbital from atom I to
origin [becoming hence the orbital ϕ0

μ(r)], (ii) rotation of the
orbital though αn radians to adapt to the “orientation” of the
image n, and (iii) translation of the orbital to Rn

I , the position
of atom I in the image n (Fig. 3 a), i.e.,

D̂(Sn) = D̂
(
T Rn

A

)
D̂(R(αn))D̂†(T RA ). (60)

This gives

ϕn
μ(r) =

∑
μ′

D0
μ′μ(R(αn))ϕμ′(r − (

Rn
μ′ − Rμ′

)
), (61)

where ϕμ′(r − (Rn
μ′ − Rμ′)) = ϕ0

μ′(r − Rn
μ′), with Rμ meaning

RI such that μ ∈ I , and

D0
μν(R(αn)) ≡ 〈

ϕ0
μ

∣∣D̂(R(αn))
∣∣ϕ0

ν

〉
(62)

being the representation of rotation D̂(R(αn)) in basis of
orbitals ϕ0

μ(r) located at the origin with the conventional orien-
tation along Cartesian axes; the explicit form for D0

μν(R(αn))
is given in Appendix A. The orientation of the orbitals ϕn

μ(r) in
different images n hence follows the symmetry, as illustrated
in Fig. 3(b).

D. Transformation of matrix elements

In the revised Bloch basis, Eq. (58), the Hamiltonian
and overlap matrix elements Hμν(κ,κ ′) ≡ 〈ϕκ

μ|Ĥ |ϕκ ′
ν 〉 and

Sμν(κ,κ ′) ≡ 〈ϕκ
μ|ϕκ ′

ν 〉 transform as well; we need to account for
orbital rotations. While here we consider Hamiltonian matrix
elements only, similar expressions hold for overlap matrix
elements as well. Using the explicit form (58) for new basis
functions, we obtain

Hμν(κ,κ ′) ≡ 〈
ϕκ

μ

∣∣Ĥ ∣∣ϕκ ′
ν

〉
= 1

N
∑
m,n

e−iκ·m+iκ ′ ·nHμν(m,n),

where

Hμν(m,n) ≡ 〈
ϕm

μ

∣∣Ĥ ∣∣ϕn
ν

〉
(63)

(H and H̃ transform the same way, so we use H instead of H̃ ).
Since Ĥ and D̂(Sn) commute, 〈ϕm

μ |Ĥ |ϕn
ν 〉 = 〈ϕμ|Ĥ |ϕn−m

ν 〉, or
with a shorter notation,

Hμν(m,n) = Hμν(0,n − m) ≡ Hμν(n − m). (64)

Hence the matrix elements become diagonal in κ , as expected,

Hμν(κ) ≡
∑

n

eiκ·nHμν(n), (65)

and the κ dependence of matrix elements ends up resem-
bling translation-periodic formalism30 precisely—only k has
changed to κ .

However, the matrix element, Eq. (64), is now given by

Hμν(n) =
∫

d3r ϕ∗
μ(r)Ĥ [D̂(Sn)ϕν(r)], (66)

and becomes hence more complex due to rotations induced by
D̂(Sn). By substituting Eq. (61) inside the square brackets, a
short manipulation yields

Hμν(n) =
∑
ν ′

H ′
μν ′(n)D0

ν ′ν(R(αn)), (67)

where

H ′
μν(n) ≡

∫
d3r ϕ∗

μ(r)Ĥϕν

(
r − (

Rn
ν − Rν

))
=

∫
d3r ϕ0∗

μ (r − Rμ)Ĥϕ0
ν

(
r − Rn

ν

)
(68)

is the matrix element involving translations only, with orbitals
ϕμ, centered at Rμ, orbitals ϕ0

μ, centered at the origin, all or-
bitals having a fixed orientation. (Orbitals oriented with respect
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to the fixed Cartesian coordinates of the simulation cell.) The
matrix element H ′

μν as given by Eq. (68) is practically the same
as the one in Eq. (55), and it is straightforward to calculate in
any tight-binding implementation. Equation (67) is a simple
matrix multiplication, and in compact matrix notation,

H(n) = H′(n) · D0(R(αn)). (69)

Thus, compared to the translation-periodic formalism,30 ma-
trix elements need simply to be transformed by D0(R(αn)).
Equation (69) is valid within the two-center approximation,
otherwise one needs to return to Eq. (66).

E. Total energy and forces in NOTB

The total energy expression for NOTB with revised PBC is
therefore

Etot =
∑

κ

wκTr[ρ(κ) · H̃(κ)]

+E2nd +
∑
I<J

V
rep
IJ (RIJ ), (70)

where wκ are weights for equivalent κ points (
∑

κ wκ = 1)
and

ρνμ(κ) =
∑

a

fa(κ)
[
ca∗
μ (κ)ca

ν (κ)
]

(71)

is the κ-dependent density matrix. Mulliken charge analysis is
done as before (although with a transformed S matrix), and the
electrostatic charge-fluctuation correction remains the same,

E2nd = 1

2

∑
IJ

GIJ �qI�qJ , (72)

except that the expression

GIJ =
∑

n

γIJ

(
R n

IJ

)
(73)

is different, now using the generalized symmetry.
Minimizing Etot − ∑

a fa(κ)εa(κ)[〈ψa|ψa〉 − 1] with re-
spect to ca∗

μ (κ) yields the generalized eigenvalue problem∑
ν

ca
ν (κ)[Hμν(κ) − εa(κ)Sμν(κ)] = 0, ∀κ,μ,a, (74)

where

Hμν(κ) ≡ H̃μν(κ) + Sμν(κ)
∑
K

1

2
(GIK + GJK )�qK

for μ ∈ I and ν ∈ J . The secular Eq. (74) looks very
familiar—RPBC does not alter the appearance of the NOTB
formalism at all.

Differentiation of the band structure energy with respect to
the atoms’ positions yields band-structure forces straightfor-
wardly as

FI = −
∑

κ

wκT rI [dH(κ)ρ(κ) − dS(κ)ρen(κ)]. (75)

Here, TrI stands for partial trace over orbitals of atom I only,

ρen
νμ(κ) ≡

∑
a

fa(κ)εa(κ)
[
ca∗
μ (κ)ca

ν (κ)
]

(76)

is the energy-weighted density matrix, and

dHμν(κ) ≡ −
∑

n

eiκ·n∇J Hμν(n), ν ∈ J (77)

with the same for dS(κ). Gradients ∇J Hμν(n), ∇J Sμν(n) can
be straightforwardly calculated from the gradients of H ′

μν(n)
and S ′

μν(n), Eqs. (67)–(68).
We still wish to emphasize the obvious result: while the

internal structure of the Hamiltonian and overlap matrix
elements, Hμν(κ) and Sμν(κ), for general symmetries are
different from the translational case, the final equations are
trivially the same—k only changes to κ .

VIII. ELECTROSTATICS

A crucial component of the interatomic interaction in ionic
or partially polarized solids is electrostatics. Naive direct
summation of the long-ranged electrostatic pair interaction,
while possibly using the approach outlined in Sec. V, is
slow and only conditionally convergent and hence numerically
prohibited.

Methods with better convergence properties have been
established for periodic systems with translational symmetry
in three dimensions. Most of these are based on Ewald
summation,32 which do not straightforwardly generalize to
partially periodic systems. Hence, we use a direct summation
method whose convergence is accelerated by the use of a
hierarchically telescoped multipole expansion,33 in the spirit
of the fast multipole method (FMM).34–36 In a multipole
expansion scheme, the charge distribution ρ and electrostatic
potential � are expanded around suitably chosen origins.
These expansions are called the multipole expansion M and
the local expansion L, respectively. We will carry out the
expansion in terms of spherical harmonics, but also Taylor
expansions have been reported.37

The determination of the electrostatic potential and field
requires three operations (see also Fig. 4). First operation is
to shift the origin of the multipole expansion; it is commonly
called the multipole-to-multipole transformation. This oper-
ation is required to telescope the multipoles, i.e., to join a
number of adjacent multipole expansions into a single one. The
second operation is to determine the local expansion from the
multipole expansion, the multipole-to-local transformation.
This operation solves the electrostatic problem and is typically
the most computationally demanding step. The third and final
operation is to shift the origin of the local expansion to arbitrary
points in space, the local-to-local transformation.

Since the method operates in real space, RPBCs are
straightforwardly implemented in such a scheme, because it
requires only the mapping r′ = Snr. Basically, in addition
to translation (i.e., the multipole-to-multipole transformation)
the multipole moments of the expansion need to be rotated.
For spherical harmonics, such a rotation is described by the
Wigner d matrix38 and hence the rotation operation is similar
to the rotation of the orbitals described in Sec. VII. The
general scheme for electrostatics in RPBCs, that includes
reflection and inflection operations, is described in more detail
in the following. Figure 4 shows a graphical illustration of the
individual operations.
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FIG. 4. (Color online) Sketch of the operations needed for the
telescoped fast-multipole expansion demonstrated for an example
one-dimensional Bravais lattice and N1 = 3. The value of α denotes
the level of the expansion. The method computes the electrostatic
potential and field within the simulation cell (yellow). Multipole-
to-multipole operation: at α = 0, the multipole moment M0 is the
moment of the simulation cell (yellow). At each successive level,
Mα is the combined multipole moment of N (here N = 3, red) units
of level α − 1, where the basic repeat unit at level α is denoted
by the broken lines. Multipole-to-local operation: at each level α,
the local expansion at the origin is determined from the multipole
expansion at level α (from the green cells). Local-to-local operation:
within the simulation cell (yellow), the local expansion is shifted
to each particle to determine the electrostatic potential and field at
the particle’s position. This is then combined with the near-field
contribution (from the gray repeat units).

We would like to note that such multipole expansion
scheme is also straightforwardly transferable to full DFT with
Gaussian or other atom-centered basis functions. An example
of such a method for nonperiodic systems is the Gaussian
very fast multipole method (GvFMM)39,40 and the continuous
fast multipole method (CFMM).41 Since in the far field, the
only relevant moment of the Gaussian charge densities is the
monopole, the far-field solution for Gaussians is identical to
that obtained in the FMM for point charges. The near-field
solution contains two-electron repulsion integrals, which need
to be evaluated directly.42 Indeed, the γIJ Coulomb integral of
the self-consistent charge NOTB formalism is the two-center
expression of such an overlap contribution for the interaction
of Gaussian charge distributions with s symmetry.

A. Multipole expansion

The multipole moments are given by

Mm
l =

∑
I

�qIR
m
l (�RI ), (78)

where I denotes atoms and �RI is the position vector of atom
I computed with respect to some expansion origin R0, i.e.,
�RI = RI − R0. Note that |m| � l. The Rm

l (r) in Eq. (78) are
the regular solid harmonics,

Rm
l (r) = 1

(l + m)!
rle−imϕP m

l (cos θ ), (79)

where P m
l (x) are the associated Legendre polynomials and r ,

θ , and ϕ are the length, inclination, and azimuth angle of r,
respectively. The corresponding conjugates are the irregular

solid harmonics Im
l (r) given by

Im
l (r) = (l − m)!r−(l+1)eimϕP m

l (cos θ ). (80)

The expansion of the electrostatic interaction into multipoles
is based on the identity43

1

|r − r′| =
∞∑

λ=0

λ∑
μ=−λ

Rm
l (r)Im

l (r′) (81)

for the free-space Green’s functions. The overall scheme is
hence a real-space method. A multiplicative decomposition
of the kernel such as Eq. (81) can also be achieved using
wavelets44,45 that are indeed related to the fast multipole
method.46 It is hence conceivable that wavelet-based
algorithms could be used here instead of the currently
proposed scheme.

Note that the normalization used in Eqs. (79) and (80)
is nonstandard. The usual solid harmonics are given by√

(l − m)!(l + m)!Rm
l (r). This particular choice of normal-

ization is motivated by numerical considerations. At large
expansion orders l, the value of rl becomes large and the
factor (l + m)! provides some compensation. While this is not
a rigorous approach toward numerical stability, in all practical
situations the expansion is cut-off at a value lmax. The approach
outlined here is stable up to at least lmax = 10. Well-converged
solutions are typically obtained for lmax = 8.

B. Multipole-to-multipole, multipole-to-local, and
local-to-local transformations

The general transformations underlying the fast-multipole
expansion method have been described in detail elsewhere35,47

and can indeed be found in textbooks on electricity and
magnetism.43 We will therefore only summarize the basic
equations, and indicate where the symmetry transformation
operators Sn need to be applied.

Multipole-to-multipole. Let R0 denote the origin of the
multipole expansion M. The expansion M̃ is located at 0. Then,
the expansion coefficients Mm

l are given by the convolution

Mm
l =

l∑
λ=0

l∑
μ=−l

M̃
μ
λ R

m−μ

l−λ (R0) = [M̃ ◦ R(R0)]ml , (82)

where M̃m
l = 0 if |m| > l. Equation (82) defines the convolu-

tion operator ◦.
Direct evaluation of the telescoped sum of repeating cells

requires to compute the joint multipole moments. Let Mα be
the multipole moment at stage α of that telescoping process
(with M0 being the bare multipole moment of the simulation
cell). The multipole moment at stage α is then given by the
recursion formula

Mα =
∑

n

Mα−1 ◦ D̂(SNαn)R(0), (83)

where n = (n1,n2, . . .) is the usual symmetry index and the
sum runs from −(Ni − 1)/2 to (Ni − 1)/2 for each ni . Fur-
thermore, Nαn denotes a component-wise multiplication and
Nα = ((N1)α,(N2)α, . . . ), hence summing up the contributions
of Ni repeat units for the symmetry Si . Note that Nα gives the
distance of neighboring repeat units at stage α (in numbers of
simulation cells).
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Since D̂ is an affine transformation, we can split it according
to D̂ = T̂ + D̂0 [see also Eq. (25)], where T̂ contains the
translation operation and D̂0 the linear transformation. We
now absorb the translational contribution into the regular solid
harmonics and rotate the multipole expansion. Equation (83)
then becomes

Mα =
∑

n

D̂0(S−Nαn)Mα−1 ◦ R(S−Nαn0), (84)

where S−Nαn0 is the Cartesian distance between individual
repeat units at stage α. Intuitively, the multipole moment of
a single stage in the telescoped expansion has to be given by
a combination of rotated moments, which leads directly to
Eq. (84).

Multipole-to-local. Let the multipole expansion M be
localized at 0. Then the expansion L of the local potential
at R0 is given by

Lm
l =

lmax∑
λ=0

λ∑
μ=−λ

M
μ
λ I

m+μ

l+λ (R0) = [M ∗ I(R0)]ml , (85)

where ∗ is another convolution operator. In analogy to Eq. (84)
the local expansion of the potential at the center of the unit
cell is given by

Lm
l =

αmax−2∑
α=0

∑
n

D̂0(S−Nαn)Mα ∗ I(S−Nαn0), (86)

where the sum over n now runs from −Ni to Ni excluding
the terms where the well-separateness criterion does not hold,
i.e., where |ni | � Ni−1

2 for any i. In total, this sums up N
αmax
i

images of the simulation cell for symmetry Si .
Local-to-local. Let the local expansion L̃ be located at 0.

Then the expansion L located at R0 is given by

Lm
l =

lmax∑
λ=0

λ∑
μ=−λ

L̃
m+μ

l+λ R
μ
λ (R0). (87)

Note that since the local expansion is only applied within the
simulation cell, no symmetry operation needs to be applied
here.

Near field. The contribution of the neighboring Ni repeat
units to the electrostatic potential is computed by direct
summation, as discussed in detail in Sec. V.

C. Transformation of multipole moments

We apply a general linear transformation L to all coordi-
nates. In particular, in R3, such linear transformation has a
representation in a 3 × 3 matrix T and hence the transformed
positions rLi are given by rLi = Lri = T ri . Under this trans-
formation, the solid harmonics transform as D̂(L)Rm

l (ri) =
Rm

l (T ri) and from group-theoretical arguments,21 it becomes
clear that L has a block-diagonal matrix representation in the
function space of the solid harmonics. In particular,

D̂(L)Rm
l (ri) =

l∑
m′=−l

D̃
(l)
mm′R

m′
l (ri) = D̃(l)(T) Rl(ri) (88)

for each l and m with |m| � l. [Compare also Eq. (69) for
the rotation of Hamiltonian and overlap matrix elements.] The

FIG. 5. (Color online) Conformations of polyalanine in vacuum.
(a) π helix and (b) α helix. Atoms colored in black show the
simulation cell consisting of ten atoms. Blue dotted lines indicate
hydrogen bonds between the oxygen and hydrogen atoms.

computation of matrix D̃(l) up to arbitrary order in l is described
in Appendix B.

IX. APPLICATION EXAMPLE: POLYALANINE

We are now in a position to use the RPBC in combination
with the self-consistent charge tight-binding model, using
polyalanine in vacuum as an example system. This chiral
molecule belongs to the class of polypeptides, where the
peptide unit alanine has a single methyl sidegroup. The
RPBCs allow to continuously search for conformations of this
molecule without the need to choose conformations that are
commensurate with a Bravais unit cell.48

The molecule is modeled using chiral symmetry. We
use the O-C-N-H tight-binding parametrization of Elstner
et al.,49 augmented by van-der-Waals interactions50 using
the polarization data of Miller,51 and sample κ space using
20 equally spaced κ points. The electrostatics interaction
is computed using lmax = 8, N1 = 11, and αmax = 5. For
each conformation, we vary the recurrence length along the
molecular axis z and optimize the chiral angle χ .

The equilibrium conformations obtained for the π helix and
the α helix are shown in Fig. 5, where the atoms shown in black
highlight the atoms within a single unit cell. We find an equilib-
rium repeat length along the molecule’s axis of 1.21 and 1.57 Å
for the π and α helixes, respectively, which corresponds to a
chiral angle of 82.5◦ and 100.84◦. This compares well to full
density-functional calculations where a repeat length of 1.17
and 1.50 Å is found for the π and α helixes, respectively.48

Note that using a Bravais unit cell, the chiral angle is given
by θ = 360◦m/N , where m is the number of chain turns and
N the number of residues per unit cell. Hence, for m = 1, the
peptide’s chiral angle is fixed to either 90◦ or 120◦. If the goal
is to bracket the chiral angle of the α helix in an interval smaller
than 1◦ the Bravais cell needs to contain at least m = 32 turns
and N = 114 residues, compared to a single residue when
using the RPBC approach.

X. CONCLUSIONS

We have demonstrated that RPBC is a simple but powerful
atomistic simulation technique with easy implementation. It
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brings considerable efficiency gains and creates an access
to distorted material simulations. Implementations of RPBC
in quantum and classical codes will open possibilities for
new types of simulations, such as studies on crack prop-
agation under complex load conditions, DNA stretching,
catalysis on curved surfaces, and studies of macromolecules in
nanochemical and nanobiological systems. We acknowledge
that an implementation of RPBC in plane-wave DFT codes is
not straightforward and requires further theoretical research.
Nevertheless, the present paper shows that an implementation
in self-consistent charge NOTB is possible and it contains all
the ingredients for an implementation into full DFT codes that
employ local basis sets and the fast multipole method, such as,
for example, Q-CHEM.52 We believe, that RPBC, both in clas-
sical and quantum-mechanical formulation, has the potential
to become a truly useful tool in computational nanoscience.
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APPENDIX A: THE TRANSFORMATION
MATRIX D0(R(αn))

In quantum mechanics, the transformation of wave func-
tions (e.g., orbitals) upon rotation is found in group represen-
tation theory. For atom’s basis orbitals ordered as{∣∣ϕ0

μ

〉} = {|s〉, |px〉,|py〉,|pz〉,
|dx2−y2〉,|dxy〉,|dyz〉,|dzx〉,|dz2〉, . . .}, (A1)

the rotation representation has block-diagonal form:

D0(R(αn)) =

⎛⎜⎜⎜⎜⎜⎜⎝
D

(0)
0 0 0 . . .

0 D(1)
0 0 . . .

0 0 D(2)
0 . . .

...
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ , (A2)

where D(l)
0 are (2l + 1) × (2l + 1) matrix blocks that rotate

orbitals with angular momenta l = 0,1,2, . . .. Since the

orientation of s orbitals does not change upon rotation,
D

(0)
0 = 1. Since tight-binding basis orbitals are chosen real

(see Ref. 30), three p orbitals, px,py,pz, transform as x,y,z

coordinates: D(1)
0 = R(αn) .

One way to obtain a general expression for D0(R(αn)) in
tight-binding basis (A1) is to carry out a similarity transforma-
tion of the rotation representation, which in commonly used
basis of angular momentum eigenstates |l,m〉 is given by23,38

D
(l)
m′m(α,β,γ ) = e−im′αd

(l)
m′m(β)e−imγ , (A3)

where d
(l)
m′m are Wigner d matrices and α,β,γ are Euler’s

angles. For d orbitals, the explicit expression for D(2)
0 becomes

tedious; we omit it here. For illustration, however, we present a
special case relevant for wedge and chiral setups. For rotations
about z axis, p orbitals transform with

D(1)
0 (R(αn)) =

⎛⎜⎝cos(αn) − sin(αn) 0

sin(αn) cos(αn) 0

0 0 1

⎞⎟⎠ , (A4)

and d orbitals transform with

D(2)
0 (R(αn))

=

⎛⎜⎜⎜⎜⎜⎝
cos(2αn) − sin(2αn) 0 0 0

sin(2αn) cos(2αn) 0 0 0

0 0 cos(αn) sin(αn) 0

0 0 − sin(αn) cos(αn) 0

0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ ;

(A5)

note that it is the transpose of these matrices that is acting in
Eq. (61).

APPENDIX B: THE TRANSFORMATION MATRIX D̃(l)(T)

The matrices D̃(l) are related to the Wigner d matrix,
which describes the rotation of spherical harmonics, with
normalization factors:

D̃
(l)
mm′ =

√
(l − m′)!(l + m′)!
(l − m)!(l + m)!

d
(l)
mm′ ; (B1)

note the difference between D̃(l), D(l), and D(l)
0 from the

previous section.
The D̃(l) matrix for l = 0 and 1 can be evaluated explicitly.

In particular, D̃
(0)
0,0 = 1 and

D̃(1) = 1

2

⎛⎜⎝ Tyy + Txx + i(Txy − Tyx) Txz − iTyz Tyy − Txx + i(Txy + Tyx)

2(Tzx + iTzy) 2Tzz 2(−Tzx + iTzy)

−Txx + Tyy − i(Txy + Tyx) −Txz − iTyz Txx + Tyy − i(Txy − Tyx)

⎞⎟⎠, (B2)

where the latter one is the equivalent of Eq. (A4) for the transformation of p orbitals around z axis.
In order to evaluate the matrices D̃(l) for l � 2 up to arbitrary order in l, we use a recursion scheme that has been

developed for the rotation of spherical harmonics.53,54 In terms of the regular solid harmonics given by Eq. (79), the recursion
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becomes

D̃
(l)
−l,n = 1

a
−1,−l+1
l−1

(
a

−1,n+1
l−1 D̃

(1)
−1,−1D̃

(l−1)
−l+1,n+1 + a

0,n
l−1D̃

(1)
−1,0D̃

(l−1)
−l+1,n + a

1,n−1
l−1 D̃

(1)
−1,1D̃

(l−1)
−l+1,n−1

)
, (B3)

−l < m < l : D̃(l)
mn = 1

a
0,m
l−1

(
a

−1,n+1
l−1 D̃

(1)
0,−1D̃

(l−1)
m,n+1 + a

0,n
l−1D̃

(1)
0,0D̃

(l−1)
m,n + a

1,n−1
l−1 D̃

(1)
0,1D̃

(l−1)
m,n−1

)
(B4)

D̃
(l)
ln = 1

a
1,l−1
l−1

(
a

−1,n+1
l−1 D̃

(1)
1,−1D̃

(l−1)
l−1,n+1 + a

0,n
l−1D̃

(1)
1,0D̃

(l−1)
l−1,n + a

1,n−1
l−1 D̃

(1)
1,1D̃

(l−1)
l−1,n−1

)
, (B5)

where, as opposed to a rotation of spherical harmonics,53,54 Eqs. (B3)–(B5) hold for general linear transformations L with
det T 
= 1 (i.e., inversion or shear). The prefactors a

α,m
l are given by

a
−1,m
l = (l − m + 2)(l − m + 1)

2(2l + 1)
, (B6)

a
0,m
l = (l + m + 1)(l − m + 1)

2l + 1
, (B7)

a
1,m
l = (l + m + 2)(l + m + 1)

2(2l + 1)
. (B8)

Equations (B2)–(B8) are the explicit representation of the rotation operation.
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