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The electrodynamics of a one-dimensional split-ring resonator (SRR) based nonlinear metamaterial is studied.
The metamaterial is a one-dimensional periodic array of weakly coupled SRRs, with each SRR represented by
a nonlinear resistor-inductor-capacitor (RLC) equivalent resonator circuit. Nonlinearity is introduced into the
system by the addition of Kerr-type dielectric medium within the SRRs or by the introduction into the system
of certain other nonlinear elements (e.g. diodes). In the continuum limit of the system, variations of the charge
stored within the capacitive slits of the SRRs in both time and space are shown to be described along the array
by a nonlinear Klein-Gordon equation. Analytical solutions of the nonlinear Klein-Gordon equation for various
dark and bright envelope, breather, and pulse soliton solutions are obtained and studied. A discussion is given
of the relationship between the Klein-Gordon solutions and the solutions of the nonlinear Schrödinger equation
approximation to the nonlinear Klein-Gordon equation. A comparison is made of the Klein-Gordon solutions
with intrinsic localized mode (discrete breather) solutions of the discrete system and their continuum limits. An
additional continuum limit differential equation for the breather modes of the system is obtained which is not
bound by a weak coupling assumption, and its relation to the Klein-Gordon equation is studied. Analytic forms
are given for the effects of dissipation in the system on the various bright and dark envelope, breather, and pulse
solitons. Discussions are given of the effects of further than first neighbor couplings in the SRR system.
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I. INTRODUCTION

The electrodynamics of substances with simultaneous
negative values of dielectric permittivity (ε) and magnetic
permeability (μ) has been a subject of much study, with current
interests in possible technological applications.1 Substances
with both negative ε and μ are predicted to posses a negative
refractive index and, consequently, to exhibit a variety of
optical properties not found in positive indexed materials.
Negative index materials, however, do not occur in nature, and
only recently has it been shown that they can be artificially
fabricated. The experimental realization of such materials was
demonstrated by Smith et al.2 based on theoretical work of
Pendry et al.3,4 Smith et al. made a type of metamaterial (MM)
as an artificial structure with negative refractive properties.
The structure consists of metallic wires responsible for the
negative permittivity and metallic split-ring resonators (SRR)
responsible for the negative permeability. The optical and
electrical properties of the MM are modulated by the proper
use of SRRs to give ε, μ < 0 within a region of frequencies,
and it is the SRRs that are key in setting negative μ within a
material with ε < 0. In particular, unlike naturally occurring
materials, the designed MMs show a relatively large magnetic
response at THz frequencies. This, in combination with its
negative permitivity in the THz, is responsible for an effective
negative index in this range of frequencies.

From the standpoint of theory, linear and nonlinear SRR
have been shown to be described by equivalent resistor-
inductor-capacitor (RLC) circuits5 featuring a self-inductance
L from the ring, a ring Ohmic resistance R, and a capacitance

C from the split in the ring. Metamaterials with negative
refractive properties are then formed as a periodic array of
SRR, which are coupled by mutual inductance and arrayed
in a material of dielectric constant ε. From the standpoint of
experiment, the requirements for the effective electromagnetic
application of metamaterials in the THz region introduce the
necessity of very high accuracy in the fabrication of SRR-
based MMs to produce materials of uniform and consistent
properties.

The electrodynamics of MM consisting of large numbers
of loosely coupled SRRs has recently been studied for discrete
lattices,5 treating the array as a set of capacitively loaded
loops6 (see references therein). It was shown that the system
of capacitively loaded loops support wave propagation. Since
the coupling between the SSRs is due to induced voltages,
these extended wave solutions are referred to as magneto-
inductive waves (MI waves)7–10 and represent a vast area
of active research in the field of (a) artificial delay lines
and filters, (b) dielectric Bragg reflectors, (c) slow-wave
structures in microwave tubes, and (d) coupled cavities in
accelerators, modulators, antenna array applications, etc. The
RLC configuration of the SRRs cause the MMs based on them
to exhibit a resonant frequency for both linear and nonlinear
systems, and MI waves are observed to propagate within a
frequency band near the resonant frequency.

In linear MMs, the SRRs are composed of both linear
dielectric and magnetic materials so that the MI dispersion
relations do not depend on the EM field intensities. Non-
linearity is incorporated into MMs by embedding Kerr-type
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medium11,12 in the SRRs or by inserting certain nonlinear
elements (e.g. diodes) in the SRR.13–15 In the presence of
nonlinearity, the excitations of the MMs become more complex
and include additional excitations than just the MI waves
and their modifications. In such systems, the self-modulation
of MI wave propagation has recently been investigated by
Kourakis et al.,16 based on a nonlinear Schrödinger equation
formulation. It was shown that the MI waves exhibit a
transition leading to spontaneous energy localization through
the generation of localized envelope structures, i.e. so called
envelope solitons. In addition to the MI waves, new sets of
solutions of the nature of bright and dark discrete breathers
or intrinsic localized modes5 are also found. These excitations
are defined on a discrete lattice and are localized within a finite
region of space. Unlike MI waves which continue to exist in
the absence of nonlinearity in the system, discrete breathers
and envelope solitons are no longer present in the linear limit
of the system.

In this paper, we will look at the continuum limit of
a one-dimensional discrete lattice model similar to that
treated previously by Lazarides et al.5 in studies of discrete
lattice bright and dark breather (soliton-like) solutions. The
continuum limit is valid in cases in which the envelope of the
excitations changes slowly compared to the lattice constant
of the periodic array of SRR. In this limit, the dynamics
of the excitations of the system are found to be described
by a nonlinear Klein-Gordon equation in both space and
time variables, which is valid for weak coupling between
the SRRs. This is convenient as the nonlinear Klein-Gordon
equation has been used in a number of studies on different
nonlinear systems (i.e. see references in Refs. 17–19), and in
addition, it lends itself to a treatment of dissipative effects
in the system. It is a well-known equation of mathematical
physics, exhibiting a wide variety of interesting properties.
As we shall see, the nonlinear Klein-Gordon equation gives a
more general treatment of the system than does the nonlinear
Schrödinger Equation approach used in Ref. 5. The nonlinear
Schrödinger equation approach arises in a multiple-scale,
small-amplitude perturbation theory treatment of the modes
of the nonlinear Klein-Gordon equation. Consequently, from
the mathematical standpoint, the solutions of the nonlinear
Klein-Gordon equations are valid for arbitrary mode ampli-
tudes, whereas the nonlinear Schrödinger equations solutions
give small amplitude approximations to the modes of the
nonlinear Klein-Gordon equations. A brief comparison of
the nonlinear Klein-Gordon and Schrödinger equation en-
velope and breather modes is given. While both equations
give envelope and breather soliton modes, the nonlinear
Klein-Gordon equation has additional pulse soliton solutions.
These modes are briefly discussed.

In the case of discrete breathers, we will develop a more
general differential equation than either the nonlinear Klein-
Gordon or Schrödinger equations to treat the system. The
resulting equation handles the case of multiple large couplings
between the SRR and is correct for arbitrary mode amplitude.
A discussion of the solutions is given with a comparison of the
solutions to the discrete system.

Our focus is on the continuum limit model of the one-
dimensional array of loosely coupled SRRs. The formulation

is obtained from the discrete model by applying a Taylor
expansion in the lattice site indices, taking into account
the magnetization of the metamaterial20 to obtain the field
behavior of the SRR array. The soliton solutions of the
Klein-Gordon equation (envelope, breather, and pulse modes)
for both bright and dark types are derived and studied for
different cases of the system, and a comparison is then made
of the dispersive properties of the discrete and continuum
limit modes of the system. Despite voluminous work done
on SRR-based metamaterials, to the best of our knowledge, no
derivation of classical dynamics from the Hamiltonian of the
system has been attempted. Hence, an attempt is made in this
direction in the this paper.

The order of the paper is as follows. In Sec. II, the model
of the one-dimensional chain of inductively coupled SRRs
is described. A brief overview of the theory of the discrete
system is given, the continuum limit is taken to obtain the
Klein-Gordon equation for the system, and bright and dark
soliton solutions are obtained with comparisons to appropriate
modes in the nonlinear Schrödinger equation approximation.
Discussions are given of dissipative effects in the system. In
Sec. III, the intrinsic localized mode solutions of the discrete
limit of the system are given, and their limiting forms in the
continuum limit are discussed. A differential equation for the
breather modes is developed for general couplings between
the SRRs. These are compared to the bright and dark soliton
solutions obtained in Sec. II. The effects of further neighbor
and strong couplings between the SRRs are discussed. In
Sec. IV, numerical results are presented to illustrate the
equations generated in Secs. II and III. Section V contains
conclusions.

II. THEORETICAL DEVELOPMENT

We consider a model of weakly coupled SRRs similar to
that treated in Ref. 5 for the discrete limit. A brief review
of the discrete model is given followed by discussions of its
continuum limit and continuum limit solutions.

A typical SRR unit is a wire ring with a single cut made
perpendicular to the plane of the ring so as to form a slit
in the ring. The resulting unit then looks roughly like a
letter C. The ring operates as an inductor-resistor and the
slit as a capacitor so that the SRR is essentially an LRC
resonant circuit. Adding Kerr nonlinear dielectric filling to
the SRRs’ capacitor slits makes the SRRs give a nonlinear
response to applied electormagnetic fields. This comes from
the field dependence of the Kerr permittivity ε which is
given by:

ε(|E|2) = ε0

(
εl + α

|E|2
E2

c

)
. (1)

Here, E is the electric field in the Kerr medium, Ec is a
characteristic (large) electric field, εl is the linear part of the
permittivity, ε0 is the permittivity of vacuum, and α = +1 (−1)
corresponds to a self-focusing (self-defocusing) Kerr medium.
The Kerr filled SRRs acquire a field-dependent capacitance
described by:

C(Eg) = ε(|Eg|2)A/dg, (2)

155429-2



KLEIN-GORDON EQUATION APPROACH TO NONLINEAR . . . PHYSICAL REVIEW B 84, 155429 (2011)

where A is the cross-sectional area of the SRR wire and slit, Eg

is the electric field within and along the axis of the SRR slit,
and dg is the distance between the upper and lower edges of the
SRR slit. From the general relationship for a voltage-dependent
capacitance, C(U) = Q/U, and Eq. (2), the charge, Q, stored
within the capacitor slit of an SRR is given by

Q = Cl

(
1 + α

U 2

εlU 2
c

)
U (3)

where U = dgEg , Cl = ε0εl(A/dg) is the linear capacitance,
and Uc = dgEc.

The SRR interacts as an LRC circuit with an externally
applied EM field, giving a characteristic frequency response
as determined by its inductive, capacitive, and resistive
components. In the limit, considered here, of weak nonlinearity
and very small resistance, the resonant frequency of the
freestanding SRR is approximately that of its linear limit, i.e.
ωl = 1√

LCl
. In the presence of a time-dependent magnetic field

of the form

H = H0 cos(ωt) (4)

applied perpendicular to the plane of the SRR loop, an induced
electromotive force (emf) proportional to the area, S, of the
SRR loop is generated within the loop. This emf is given
by

emf = μ0ωSH0 sin(ωt). (5)

In addition to interactions with external fields, the SRR
can have self interactions and interactions with other SRRs.
As discussed later, a time-varying current within a single
SRR leads to a self-inductive interaction, and two or more
neighboring SRR interact with one another through mutual
inductive couplings. For the periodic arrays of SRRs we
consider here, it was shown in Ref. 5 that only nearest neighbor
SRR couplings are important.

The MMs under study are one-dimensional, discrete,
periodic chains formed of identical nonlinear SRR units. The
SRR units forming the one-dimensional chain are labeled
consecutively by integers, n. In a first case, the loops of all
of the SRRs lie in a common plane. The electromagnetic
modes of interest have magnetic components perpendicular
to the common plane of the SRRs, with electric components
transverse to the SRR slits. Only the magnetic component
excites an emf in the SRRs, resulting in an oscillating current
in each SRR loop and the development of an oscillating
voltage difference U (electric field Eg) across (within) the
slits. The additional possibility of a small externally applied
magnetic field of the form given in Eq. (4) is also taken into
account in our calculations. Neighboring SRRs of the linear
chain have their centers separated by a distance d such that
{xn = nd} for n an integer gives the coordinates of the SRR
along the x axis. Each SRR has a self-inductance, L, and a weak
mutual inductance, M, between its nearest neighbor loops.
However, more general, device-oriented, optimized models,
with a greater range of L and M values must be taken into
account in practical applications.5

In a second case, the loops of the SRR units in our first
system are rotated by 90◦ about the axis perpendicular to the

chain and in the common plane of the loops of the first system.
This forms a one-dimensional chain of SRRs lying in parallel
planes perpendicular to the axis of the chain and cutting the
x axis at {xn = nd} for n an integer. Again the coupling
between SRRs is inductive, and externally applied fields have
magnetic components perpendicular to the planes of the SRRs.
As shown in Ref. 5, the difference in the equations describing
these two systems with differing SRR orientations is the sign
of the mutual inductance, M. For the case in which the SRR
are in a common plane M < 0, for the case in which the SRR
lie in planes perpendicular to the axis of the one-dimensional
array M > 0.

Following Lazarides et al.,5 the Hamiltonian of these
two systems (in a modified notation, which brings it into
closer analogy with systems of classical mechanics) is given
by:

H =
∑

n

[
1

2
q̇2

n + λq̇nq̇n+1 + V (qn)

]
(6)

where dqn

dτ
= q̇n = in is the current in the SRR centered about

x = nd, λ = M/L is a coupling parameter, the connonical
momenta are given by pn = q̇n + λ(q̇n+1 + q̇n−1), V (qn) =
− ∫ qn

0 f (q ′
n)dq ′

n is the nonlinear on-site potential, and we make
the approximation thatf (qn) ≈ −[qn − ( α

εl
)q3

n + 3( α
εl

)2q5
n].

Here, from Eq. (3), we have defined a dimensionless time
τ = tωl and dimensionless charge qn = Qn/Qc where Qc =
ClUc. As a further generalization, in the presence of an
external field of the type in Eq. (4), the Hamiltonian in
Eq. (6) applies where now the connonical momenta are given
by pn = q̇n + λ(q̇n+1 + q̇n−1) + � cos(�τ ) with � = μ0SH0ωl

Uc

and � = ω/ωl . The definitions of the other terms in the
Hamiltonian are unchanged in the presence of the external
field.

The Langrangian for the system with general external field
interactions is

L =
∑

n

[
1

2
q̇2

n + λq̇n+1q̇n − V (qn) + �q̇n cos(�τ )

]
. (7)

From Eq. (7) the connonical momenta, pn = ∂L
∂q̇n

=
q̇n + λ(q̇n+1 + q̇n−1) + � cos(�τ ), and the equations of
motion,

q̈n + λ(q̈n+1 + q̈n−1) − f (qn) − �� sin(�τ ) = 0, (8)

are obtained, consistent with the Hamiltonian formulation
given above.

In the continuum limit, we make the expansion q̈n±1 =
[q̈ ± d

∂q̈

∂x
+ 1

2d2 ∂2q̈

∂x2 + · · ·]x=nd where q = q(x) is the general-
ized continuum variable of ql . Retaining terms of order q3 in
f(qn), Eq. (8) in this approximation is given by

q̈ + ad2 ∂2q̈

∂x2
+ b

[
q − α

εl

q3

]
− b�� sin(�τ ) = 0 (9)

where a = λ/(1 + 2λ) and b = 1/(1 + 2λ) and is then rewritten
as

[1 + ad2D]q̈ = −b

[
q − α

εl

q3

]
+ b�� sin(�τ ) (10)
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TABLE I. (a) Parameters for the solutions of the Klein-Gordon and nonlinear Schrödinger equations that are of the general form q(x,τ ) =√
εl

α
a0sech[βx − δτ ] exp[i(px − ωτ )] exp[− γ

2 τ ] + cc. (b) Parameters of the solutions of the Klein-Gordon and nonlinear Schrödinger

equations that have solutions of the general form q(x,τ ) =
√

εl

α
a0 tanh(βx − δτ ) exp[i(px − ωτ )] exp[− γ

2 τ ] + cc.

p ω β2 δ

K G k ω2 = b
[
1 − 3

2 a2
0 + ak2

]
3
2

a2
0

a(1−abk2/ω2) ab
(

kβ

ω

)
γ= 0

K G k ω2 = b
[
1 − 3

2 a2
0 + ak2

] − γ 2

4
3
2

a2
0

a(1−abk2/ω2) ab
(

kβ

ω

)
γ �= 0

NLS

γ= 0 k − d ω = φ − d abk

φ
− 3

4
b

φ
a2

0 + ab(1−abk2/φ2)
2φ

d2 3
2

a2
0

a(1−abk2/φ2)
ab

(
β

φ

)[
k − d + abk2

φ2 d
]

where φ2 = b + abk2

K G k ω2 = b
[
1 − 3a2

0 + ak2
]

3
2

a2
0

a

(
abk2

ω2 −1

) ab
(

kβ

ω

)
γ= 0

K G k ω2 = b
[
1 − 3a2

0 + ak2
] − γ 2

4
3
2

a2
0

a

(
abk2

ω2 −1

) ab
(

kβ

ω

)
γ �= 0

NLS k − d ω = φ − abkd

φ
− 3

2

ba2
0

φ
− ab(abk2/φ2−1)

2φ
d2 3

2

a2
0

a

(
abk2

φ2 −1

) ab
(

β

φ

)[
k − d + abk2

φ2 d
]

γ= 0 where φ2 = b + abk2

where D = ∂2

∂x2 . Using the formal relationship 1
[1+ad2D] = 1 −

ad2D + · · · (i.e. for modes slowly varying in space and/or for
λ � 1) the nonlinear Klein-Gordon equation is obtained as

∂2q

∂τ 2
− ab

∂2q

∂x2
+ b

[
q − α

εl

q3

]
− b�� sin(�τ ) + γ

∂q

∂τ
= 0

(11)

where x is rescaled to be expressed in units of d (i.e. x/d → x)
and a term in γ is added to include the possibility of dissipation
in the system. In the following, we shall discuss the rich variety
of solutions of Eq. (11). These include: bright and dark breather
and envelope solitons and pulse soliton modes.

Following the discussions of Bandyopadhyay et al.17,18 the
solutions of Eq. (11) for � = 0 and γ = 0 for breather
and envelope soliton modes are obtained within the rotating
wave approximation (RWA). We assume a solution of the form
q(x,τ ) =

√
εl

α
A(βx − δτ )ei(kx−ωτ ) + cc for εl

α
> 0, substitute

into Eq. (11), and use the RWA to retain only terms in e−iωτ .
The resulting equation is

d2A

dy2
+ 2i

δω − abβk

δ2 − abβ2

dA

dy
+ b − ω2 + abk2

δ2 − abβ2
A

+ 3b

abβ2 − δ2
A|A|2 = 0, (12)

where y = βx − δτ . Two solutions of interest of this equation
for amplitude

√
εl

α
a0 give:

q(x,τ ) =
√

εl

α
a0 sech[βx − δτ ] exp[i(kx − ωτ )] + cc

(13a)

where ω2 = b[1 − 3
2a2

0 + ak2], β2 = 3
2

a2
0

a(1−abk2/ω2) , δ =
ab( kβ

ω
), and

q(x,τ ) =
√

εl

α
a0 tanh[βx − δτ ] exp[i(kx − ωτ )] + cc

(13b)

where ω2 = b[1 − 3a2
0 + ak2], β2 = 3

2
a2

0
a(abk2/ω2−1) , δ =

ab( kβ

ω
). These results are summarized in Table I. The breather

modes are obtained from the δ = 0 solutions and the envelope
modes have δ �= 0, giving a mode envelope which moves
with a constant velocity along the x axis. Solutions for εl

α
< 0

are obtained by making a few simple changes in the above
Eqs. (12) and (13).21

The case including γ �= 0 is much more difficult, but
a limiting form for τ � 1

γ
can be obtained by making a

few changes in the parameters entering into Eqs. (13). For
the sech form of the solution, Eq. (13a) is multiplied by
exp(−γ τ /2), and we redefine ω2 = b[1 − 3

2a2
0 + ak2] − γ 2

4 ,

β2 = 3
2

a2
0

a(1−abk2/ω2) , and δ = ab( kβ

ω
). For the tanh form of

the solution, Eq. (13b) is multiplied by exp(−γ τ /2), and we

redefine ω2 = b[1 − 3a2
0 + ak2] − γ 2

4 , β2 = 3
2

a2
0

a( abk2

ω2 −1)
, and

δ = ab( kβ

ω
). These results are summarized in Table I. The

approximation made to obtain these forms can be understood
by substituting the forms into Eq. (11) and apply the RAW
to the frequency terms. Upon substitution into Eq. (11) and
multiplying by exp(γ τ /2) an explicit time dependent factor
of exp(−γ τ ) is retained only in the small nonlinear term of
the resulting equation. For the conditions on time mentioned
above, we may take exp(−γ τ ) ≈ 1 with the resulting equation
being solved by the proposed sech and tanh forms. The results
give an indication of the timescale over which a mode may
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be expected to exist and retain its shape as a bright or dark
pulse before it decays into a combination of other modes in
the system. It is important to note that in the expressions for
β2 and δ, ω now depends on γ , and the resulting forms give
the leading dependence in γ .

For comparison, we look at results for the envelope and
breather modes from the nonlinear Schrödinger equation,
which is an approximation to the nonlinear Klein-Gordon
equation and gives approximate solutions to the nonlinear
Klein-Gordon equation.22,23 The nonlinear Schrödinger equa-
tion is obtained from the nonlinear Klein-Gordon equation by
treating it in a multiple scale perturbation theory approach
within the context of the rotating wave approximation.22,23

This approximation is briefly reviewed in the Appendix,
where it is shown to be an expansion in the mode amplitude
taken as a small parameter. The theory is correct to the third
order in the small parameter of the mode amplitude, whereas
our discussions above are valid for a general amplitude,
as they are not based on perturbation theory in the mode
amplitude. In the nonlinear Schrödinger equation approach,
approximate sech and tanh forms similar to those discussed
above are obtained and given in detail in the Appendix.
The approximations closest to the nonlinear Klein-Gordon
solutions in Eqs. (13a) and (13b) are obtained for d = 0 where
d is defined in the Appendix. Taking ω = φ − 3

4
b
φ
a2

0, β2 =
3
2

a2
0

a(1− abk2

φ2 )
, φ2 = b(1 + ak2), and δ = ( abβk

φ
) in Eq. (13a) gives

the nonlinear Schrödinger equation sech form mode. Taking

ω = φ − 3
2

b
φ
a2

0, β2 = 3
2

a2
0

a( abk2

φ2 −1)
, and δ = ( abβk

φ
) in Eq. (13b)

gives the nonlinear Schrödinger equation tanh form mode.
The most general forms for the sech and tanh modes of the
nonlinear Schrödinger equation as discussed in the Appendix
are listed in Table I. Notice that the expressions for the pulse
width and velocity are similar to the nonlinear Klein-Gordon
equation, but the nonlinear Klein-Gordon solutions are not
restricted to small values of a0.

In addition to the bright and dark breather and envelope
pulse solutions discussed above, another set of solutions,
known as pulse solitons, exist for the nonlinear Klein-Gordon
equation in Eq. (11). These modes are not found in the
nonlinear Schrödinger equation. In addition, they do not
require the RWA approximation and are exact solutions of
the nonlinear Klein-Gordon equation. They are pure pulses
that are not modulated by an exp[−iωτ ] time dependence or
an exp[i(kx − ωτ )] space time dependence as are the breather
and envelope solitions, respectively. A first solution is a dark
soliton-type given by

q(x,τ ) = A tanh(Bx − Cτ ) (14)

where substitution into Eq. (11) gives A = ±
√

εl

α
, and the

coefficients B and C are related by 2[C2 − abB2] = b so

that C = ±
√

b( 1
2 + aB2). The velocity, C

B
, of the excitation

is, consequently, related to its width, 2
B
. A second solution is

a bright soliton solution given by

q(x,τ ) = Asech(Bx − Cτ ) (15)

where substitution into Eq. (11) gives A = ∓
√

2εl

α
. Here, B

and C are now related by [C2 − abB2] = −b so that C =
±

√
b(aB2 − 1). Again, the velocity, C

B
, of the excitation is

related to its width, 2
B
.

The behavior of the pulse modes in the presence of
dissipation can be handled in a similar manner to the envelope
and breather modes. For the case that γ �= 0, for τ � 1

γ
,

the dark soliton solution in Eq. (14) changes so that the
tanh function becomes multiplied by exp[− γ

2 τ ]. In addition,

A changes to A = ±
√

εl

α
(1 − 1

b

γ 2

4 ), and B and C are related

by C2 = b[ 1
2 + aB2] − γ 2

8 . Likewise, for γ �= 0 in the limit
τ � 1

γ
the bright soliton solution in Eq. (15) changes so

that the sech function becomes multiplied by exp[− γ

2 τ ]

and A, B, and C are given by A = ±
√

2 εl

α
(1 − 1

b

γ 2

4 ) and

C2 = b[aB2 − 1] + γ 2

4 . These later forms indicate the time
over which the pulses retain their basic initial forms. It should
be noted that, while the pulse modes are formal solutions of the
nonlinear Klein-Gordon equation in Eq. (11), the expansion of
f(qn) given below Eq. (6) give significant corrections from the
q5

n terms for the case γ = 0 due to the magnitude of the pulse
amplitude. As γ �= 0 tends to decrease the mode amplitude, it
may be possible for this case to observe pulses which decay in
the system.

Another exact solution case of Eq. (11) is that in which
γ �= 0.17,18 This mode is again not present in the nonlinear
Schrödinger equation approximation. A solution in this limit
exists and is of the form:

q(x,τ ) = A√
1 + B exp[Cx − Dτ ]

. (16)

Upon substitution into Eq. (11), it is found that A = ±
√

εl

α
,

C = ±
√

4b
aγ 2 , and D = − 2b

γ
, and B fixes the initial conditions

at x = 0 and τ = 0. At τ = 0 and a > 0, the characteristic width

of the excitation is 1
2

√
aγ 2

b
with a rate of decay given by

√
ab.

For a < 0, however, there are no real solutions for q(x, τ ).

III. RELATIONSHIP TO DISCRETE MODES

In this section, the intrinsic localized (breather) modes of
the discrete limit of the system are briefly discussed. These are
stationary modes which are periodically modulated in time.
This is followed by a development of the continuum limit
for the intrinsic localized modes in terms of a differential
equation and a comparison with the bright and dark soliton
modes obtained in the previous section. The continuum limit
equation developed covers the behavior of the system over
a parameter range that is different than that treated by the
nonlinear Klein-Gordon equation or its nonlinear Schrödinger
equation approximation.

The discrete breathers are obtained by looking for time-
dependent solutions of Eq. (8) of the form qn = qn,0e

−iωτ + cc
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and retaining the terms in e±iωτ , i.e. applying the RWA. This
reduces Eq. (8) to

−ω2[qn,0 + λ(qn+1,0 + qn−1,0)]+qn,0 − 3α

εl

|qn,0|2qn,0 = 0.

(17)

A good analytical approximation to the breather modes of
Eq. (17) and their dispersion relation is obtained using methods
developed by Sievers et al.24–26 In this method a pulse form
with adjustable parameters is assumed, and the parameters
are determined which give the best approximate solution of
Eq. (17).

Two types of discrete breathers are encountered. The first
type is a pulse centered at n = 0 and taken to be of the form
q0,0 = α0 and qn,0 = α0Ae−(|n|−1)r for n �= 0. The second type
is a pulse centered at n = 0 and taken to be of the form q0,0 =
α0 and qn,0 = α0(−1)ne−(|n|−1)r for n �= 0. In the method of
Sievers et al., the parameters A, r, and ω are determined as
functions of the pulse height, α0, by choosing them to satisfy
Eq. (17) for n = 0, 1, and n → ∞. This method is effective
for highly localized pulses and for our system yields three
nonlinear equations for A, r, and ω:

3α

εl

α2
0 ± 2λA ∓ 2λ

[
1 − 3α

εl

α2
0

]
cosh(r) = 0, (18a)

λ(1 + Ae−r ) ± 3α

εl

α2
0A

3 − 2λ

[
A−3α

εl

α2
0A

3

]
cosh(r) = 0,

(18b)

and

ω2 = [1 ± 2λ cosh(r)]−1. (18c)

Here, the upper (lower) signs are for the first (second) type
of excitations discussed above Eq. (18).

We next use the expansion of qn and qn±1 in terms of the
continuous variable x, as made in going from Eqs. (8) to (9)
in Sec. II, to investigate the continuum limit form of Eq. (17)
and its solutions. This is valid for broad pulse forms. In this
limit, Eq. (17) becomes

ω2λ
∂2q

∂x2
− [1 − (1 + 2λ)ω2]q + 3α

εl

|q|2 q = 0 (19)

where x is again rescaled to be measure in units of d. Notice
that unlike in the derivation of Eq. (11), a weak coupling
approximation for λ is not made in obtaining Eq. (19) from
Eqs. (17) and (19) holds for arbitrary coupling strength λ.
Consequently, for the case of the breather modes, Eq. (19) is
mathematically more general than Eq. (11), as its solution does
not formally restrict the range of λ.

Equation (19) yields a first type of solution of the
form

q(x) = ±
√

−εl[(1 + 2λ)ω2 − 1]

3α
tanh

{[
(1 + 2λ)ω2 − 1

2λω2

]1/2

x

}
exp[−iωτ ] (20a)

and a second type of solution of the form

q(x) = ±
√

2εl[1 − (1 + 2λ)ω2]

3α
sech

{[
1 − (1 + 2λ) ω2

λω2

]1/2

x

}
exp[−iωτ ]. (20b)

For − εl

α
, λ > 0, Eq. (20a) gives real values of q(x) when [1 +

2λ]−1 < ω2, and for − εl

α
, λ < 0 when [1 + 2λ]−1 > ω2. For

εl

α
, λ > 0, Eq. (20b) gives real values of q(x) when [1 + 2λ]−1

> ω2, and for εl

α
, λ < 0 when [1 + 2λ]−1 < ω2. Both of these

modes, which are stationary and have frequency modulated
envelopes, are distinct from the envelope modes discussed
in Sec. II. In addition, to exist as independent, nonresonant
modes, they must have frequencies outside the band of MI
waves that occur in the interval [1 + 2|λ|]−1 � ω2 � [1 −
2|λ|]−1. The solution in Eq. (20b) is the limiting form of the
first type of intrinsic localized mode solution considered below
Eq. (17). There is no continuum limit of the second type of
intrinsic localized mode solution considered below Eq. (17).

IV. RESULTS AND DISCUSSION

We shall study the behavior of the various modal solutions
of the nonlinear SRRs arrays obtained above, using parameters
based on those found in Ref. 5. Comparisons are made of the
different types of continuum limit excitations, in which the

excitation wave functions change slowly over the position on
the chain, and the discrete limit excitations5 in which the wave
functions of the excitations are rapidly varying functions of the
position on the chain. The parameters used for the generation
of the numerical results are taken from Ref. 5 with an allowance
made for a slight change in notation between the two papers.
A primary focus will be on the breather modes, which are
stationary on the chain.

A. Continuum limit

The envelope and breather solutions of the nonlin-
ear Klein-Gordon equation have dispersion relations ω2 =
b[1 − 3

2a2
0 + ak2] and ω2 = b[1 − 3a2

0 + ak2] for the sech
and tanh modes, respectively. These expressions are valid
for arbitrary a0, and should be compared with the dispersion
relation of the long wavelength limit of the plain wave
modes given by ω2 = b[1 − a2

0 + ak2]. Consequently, the
frequencies of these modes fall below those of the plain wave
modes. In all cases, the dispersion relations depend only on

155429-6



KLEIN-GORDON EQUATION APPROACH TO NONLINEAR . . . PHYSICAL REVIEW B 84, 155429 (2011)

b = 1/(1 − λ) where λ is given by the mutual inductance and is
assumed to be small. From Table I, it is noted that the nonlinear
Schrödinger equation gives the leading term in the expansion
of ω in a small parameter a0. In the presence of dissipation,
a factor of − γ 2

4 is added to the expression for ω2 from the
nonlinear Klein-Gordon equation for both the tanh and sech
solitons. For the systems discussed below, it was shown in
Ref. 16 that γ ≈ 0.0016 gives a reasonable approximation to
the dissipative effects of the system so that, for that particular
realization of the SRR system, the correction from γ is small
and can be accounted for by the leading order terms discussed
earlier.

In Sec. III, a more general continuum equation for the
breather modes was obtained in Eq. (19). Equation (19) applies
to the case of general λ, whereas the results from Eq. (11)
require λ to be small. In addition, Eq. (19) can be generalized to
treat further neighbor couplings. In this case, Eq. (19) becomes

ω2b1
∂2q

∂x2
− [1 − (1 + 2b2)ω2]q + 3α

εl

|q|2q = 0 (21)

where b1 = ∑∞
j=1 j 2λj and b2 = ∑∞

j=1 λj and λj for j = 1, 2,
3, etc. at the first, second, etc. neighbor couplings. Solutions
in tanh and sech forms similar to those in Eq. (20) are readily
obtained. Consequently, Eqs. (19) and (21) are generalizations
of the nonlinear Klein-Gordon equation to handle general
couplings, and their solutions reduce to those in Sec. II in
the small coupling limit. We shall focus on a comparison of
the results of Eq. (19) with the discrete theory of the breather
mode in discussions in the next subsection.

The other types of nondissipative modes arising as exact
solutions of the nonlinear Klein-Gordon equation are the
pulsed modes in Eqs. (14) and (15). These are not modulated
by plain wave forms but are pure pulses that travel along the
x axis. The condition for the observation of both the tanh and
sech modes is that the pulse amplitudes must be small enough
so that A � 1.

For the case in which �= 0 and γ �= 0, a dissipative solution
of the nonlinear Klein-Gordon equation has been given in
Eq. (16). The solution involves an exponential factor, exp[Cx
− Dτ ], that sets the space-time dependence of the excitation. A
natural characterization of the wave function from this form is
given by the width, 1

C
, of the region over which the variation

of the exponential factor is significant at τ = 0; the rate of
change of the exponential factor in time, D

C
; and the amplitude,

A = ±
√

εl

α
, which only depends on the linear part of the Kerr

dielectric constant.
The rate of decay of the solution in Eq. (16) for a > 0 is

independent of the width of the excitation. For λ = 0.02 and
0.05, the rate is

√
ab = 0.1360 and 0.2033, respectively, and

shows an increase with an increase of the coupling between
the SRR. Depending on the value of B from the boundary
conditions, the solution in Eq. (16) reaches a variety of x →
∞ and/or τ → ∞ limits.

B. Discrete results

The set of nonlinear equations, Eq. (18), is solved numer-
ically for the wave function parameters A and e−r and the
modal frequencies ω as functions of the wave function peak

FIG. 1. Plot of the frequency dispersion of the intrinsic localized

modes as a function of the peak height or amplitude,
√

| 3α

εl
|α0. The

upper (monotonically increasing) curves are for α = −1 and λ =
±0.02, and the lower (monotonically decreasing) curves are for α =
1 and λ = ±0.02.

height or amplitude, α0. In Fig. 1, results are presented for ω

versus
√

| 3α
εl

|α0 for the case in which εl = 6.0, λ = ±0.02 and

for α = ±1. (Here, we choose parameters in our theory which,
following a slight change of notation, give a comparison with
results in Ref. 5.) For the cases α = 1 and λ = ±0.02, ω

is found to be a mildly monotonically decreasing function of√
| 3α

εl
|α0, and for the cases α = −1 and λ = ±0.02, ω is a

mildly increasing function of
√

| 3α
εl

|α0. The gap between the

sets of increasing and decreasing solutions at
√

| 3α
εl

|α0 = 0

contains the region of MI plane wave solutions.
We note that the method in Eqs. (17) and (18) is best

for small nonlinearities (note: Eq. (3) is solved to the third
order in the charge), whereas the essentially exact numerical
solutions in Ref. 5 were evaluated for large charges and
currents. Nevertheless, in the range of our plot in Fig. 1, results

from Ref. 5 give points for
√

| 3α
εl

|α0 = 0.566 at frequencies

ω = 0.824 and 1.151. These two points are in good agreement
with the more general results of our theory presented in Fig. 1.

Results for the continuum limit of the intrinsic localized
modes from Eqs. (19) and (20) are shown in Fig. 2. These
represent broad pulses and transition widths that are not as
highly localized along the chain as are those for the solution
in Fig. 1. In Fig. 2(a), the frequency of the tanh and sech
excitations are presented as functions of their widths for
εl = ±6 and λ = ±0.02. (Note: the width of the sech and
tanh modes are defined as the separations between the −1
and +1 arguments of these functions, respectively.) The two
sets of upper curves and the two sets of lower curves are for
sech and tanh modes with various combinations of λ and εl

α
.

Outside the frequency band of MI modes, the tanh solutions
in Fig. 2(a) are only found to exist for widths that are <1.41
and are, consequently, not practically realized in the system.
The sech solutions exist outside the MI frequency band for
the entire range of Fig. 2(a) widths shown. In Fig. 2(b), the
frequency of the tanh and sech excitations are presented as a
function of their heights for εl = ±6 and λ = ±0.02. Here,
there is a general clustering of the sech and tanh solution by λ

and εl

α
, but now the curves are resolved on the scale of the plot.
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FIG. 2. Plot for continuum limit modes of Eqs. (20a) and (20b).
Results are for (a) frequency versus width for λ = −0.02, εl

α
= −6.0

sech and λ = 0.02, εl

α
= −6.0 tanh modes (upper curves with the

tanh results above the sech results) and λ = 0.02, εl

α
= 6.0 sech and

λ = −0.02, εl

α
= 6.0 tanh modes (lower curves with the sech results

above the tanh results) and (b) frequency versus height curves for
(from top to bottom at height = 1.0) λ = 0.02, εl

α
= −6.0 tanh mode;

λ = −0.02, εl

α
= −6.0 sech mode; λ = 0.02, εl

α
= 6.0 sech mode;

and λ = −0.02, εl

α
= 6.0 tanh mode.

The tanh solutions only exist in the plot for heights >0.39. An
interesting feature of the continuum limit solutions is that one
can set the frequency, which must be taken outside the band of
MI modes, and generally find solutions for both tanh and sech
modes. In addition, it is found that the dispersion relations of
the continuum limit pulse mode sech solutions join naturally
with the intrinsic localized mode dispersion relations.

V. CONCLUSION

A nonlinear Klein-Gordon equation, Eq. (11), was derived
based on the Hamiltonian formulation of a one-dimensional
periodic array of SRRs,5 taking the continuum limit in which
the modes of the system change slowly over adjacent lattice
sites.17–19 The conditions needed for the derivation of the
nonlinear Klein-Gordon equation are that the pulse is broad so
that the continuum limit is taken, and the coupling between the
SRRs is weak. The solutions of the nonlinear Klein-Gordon
equation include: bright and dark envelope solitons, bright
and dark breather modes, bright and dark pulse solitons,
and decaying modes of the form of Eq. (16). In addition
to discussions of the solutions of the ideal system in the
absence of dissipation, the leading order corrections in γ for
the Klein-Gordon breather, envelope, and pulse solitons are
obtained. These give the time interval over which such modes
propagate without a significant change of shape.

For the case of envelope and breather modes, a comparison
of the solutions of the nonlinear Klein-Gordon equation within

the RWA with those of the nonlinear Schrödinger equation
approximation to the Klein-Gordon modes was made.22,23 The
nonlinear Schrödinger equation for these modes is obtained
by applying the RWA and a multiscale perturbation theory in
a small parameter related to the mode amplitude of the Klein-
Gordon equation. The solutions of the nonlinear Schrödinger
equation are small amplitude approximations to the solutions
of the modes of the nonlinear Klein-Gordon equation. Only
envelope and breather modes are obtained from the nonlinear
Schrödinger equations approximation.

We have also focused on the breather solutions, alterna-
tively known as intrinsic localized modes. For the discrete
system, Eq. (17) for the breather modes was studied. This
equation is obtained directly from the general discrete system
equation in Eq. (8) by applying breather boundary conditions.
We calculated the dispersion relation and mode profile as
functions of the amplitude of the localized peak amplitude
using a theory of Sievers et al.24,25 The dispersion relation,
which is obtained as a solution of a simple set of three nonlinear
equations, agrees well with two dispersion relation points,
which are available from the essentially exact results presented
in Ref. 5. A differential equation, Eq. (19), for the continuum
limit of the discrete breather equations, Eq. (17), was also
obtained. This equation is more general than the Klein-Gordon
equation for the breather modes, as aside from the continuum
limit and lack of restrictions on the mode amplitude, it does
not place restrictions on the coupling between the SRRs in the
chain. Consequently, discussions were also given as to how to
generalize the equations to handle many neighbor couplings.
Equation (19) is also found to be a consistent limiting form
of the discrete breather obtained using the Sievers et al.
formulation.25 In the continuum limit of the equations for
the intrinsic localized modes, Eq. (20), an additional tanh-type
modal solution appears which is distinct from the pulse-type
modes associated with intrinsic localized modes of the discrete
limit in Eq. (17).

A future direction of this work will be on the existence
of bisolitons and other types of multiple solitons in the
SRR system studied in this paper.27–39 Before these can be
addressed, however, a thorough understanding of the various
types of single excitations that are available due to the
nonlinearity of the systems is needed.
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APPENDIX

For comparison with the nonlinear Klein-Gordon solution,
we look at the multiple-scale perturbation theory applied
to Eq. (11).22,23 This approach results in the nonlinear
Schrödinger equation formulation of the problem.22,23 In this
development, the RWA is used along with a small parameter
proportional to the mode amplitude and a multiple-scale
treatment of the resulting equations. This results in a nonlinear
Schrödinger equation describing the small amplitude modes
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of the system in a perturbation theory which does not
exhibit spurious singularities. Specifically, in Eq. (11) we

takeq(x,τ ) =
√

εl

α
θ (x,τ ) for εl

α
> 0, write θ = εφ0 + ε2φ1 +

ε3φ2 + · · · as an expansion in a small parameter ε, and express
the space and time derivatives in the multiple scale forms
∂
∂τ

= ∑∞
i=0 εi ∂

∂Ti
where Ti = εiτ and ∂

∂x
= ∑∞

i=0 εi ∂
∂Xi

where

Xi = εix. After applying the RWA and some algebra, the
terms in this expansion of the first through third orders in ε

give :

θ = εA(ξ1,τ2)ei(kx−ωτ ) + cc (A1)

where A satisfies the nonlinear Schrödinger equation

i
∂A

∂τ2
+ P

∂2A

∂ξ 2
1

+ Q|A|2A = 0 (A2)

with τ2 = ε2τ , ξ1 = ε(x − νgτ ), vg = abk
ω

, P = ab−v2
g

2ω
,Q = 3b

2ω
,

and ω2 = b[1 + ak2]. Equation (A2) has a solution of the
general form:

A = a0 sec h(Bξ1 − Cτ2) exp[−i(dξ1 − eτ2)]. (A3)

Upon substitution in Eq. (A2), we find for aε = εa0 and
dε = εd that

q(x,τ ) =
√

εl

α
aεsech

([
3

2

1

a
(
1 − abk2

ω2

)
]1/2

aε

{
x −

[
abk

ω
− ab(1 − abk2/ω2)

ω
dε

]
τ

})

× exp

{
i

[
(k − dε)x −

{
ω − abkdε

ω
− ab(1 − abk2/ω2)

2ω

[
3

2

a2
ε

a(1 − abk2/ω2)
− d2

ε

]}
τ

]}
+ cc (A4)

satisfying the Klein-Gordon equation in the RAW to third order in ε3. A second solution is of the general form:

A = a0 tanh(Bξ1 − Cτ2) exp[−i(dξ1 − eτ2)]. (A5)

Upon substitution in Eq. (A2), and using the notation in Eq. (A4), it gives

q(x,τ ) =
√

εl

α
aε tanh

([
3

2

1

a
(

abk2

ω2 − 1
)
]1/2

aε

{
x −

[
abk

ω
+ ab(abk2/ω2 − 1)

ω
dε

]}
τ

)

× exp

{
i

[
(k − dε)x −

{
ω − abkdε

ω
− ab(abk2/ω2 − 1)

2ω

[
3a2

ε

a(abk2/ω2 − 1)
+ d2

ε

]}
τ

]}
+ cc (A6)

satisfying the Klein-Gordon equation in the RAW to order ε3.
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