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Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride
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The thermal conductivity, κ , of single layers of hexagonal boron nitride (h-BN), as well as that of bulk h-BN
have been calculated utilizing an exact numerical solution of the phonon Boltzmann transport equation. The
stronger phonon-phonon scattering in h-BN is revealed as the cause for its lower κ compared with graphite.
A reduction in such scattering in the single layer arising mainly from a symmetry-based selection rule leads
to a substantial increase in κ , with calculated room temperature values of more than 600 Wm−1K−1. Isotopic
enrichment further increases κ , with the calculated enhancement exhibiting a peak with temperature, whose
magnitude shows a dramatic sensitivity to crystallite size.

DOI: 10.1103/PhysRevB.84.155421 PACS number(s): 63.20.kg, 63.22.Rc, 66.70.−f, 65.80.Ck

I. INTRODUCTION

Single-layer hexagonal boron nitride (SLBN) is structurally
analogous to graphene, but with carbon atoms replaced by
alternating boron and nitrogen atoms. In the shadow of
graphene, SLBN and multilayer hexagonal boron nitride
(MLBN) are now receiving increased attention because of their
promise for a number of applications, such as substrates for
graphene electronics.1,2

Understanding the lattice thermal conductivities, κL, of
these materials will be important when coupling them to
nanoscale electronics and will provide additional insight
into the novel behavior of phonon transport in 2D layered
structures.3–9 The highest recorded room temperature thermal
conductivity of bulk hexagonal boron nitride (h-BN) is around
400 Wm−1K−110 which is five times lower than that of
pyrolytic graphite.11 This is surprising given the similar crystal
structures, lattice constants, unit cell masses, and phonon
dispersions shared by these materials. One notable difference
between the two is that h-BN has a significantly larger isotope
mixture (19.9% 10B, 80.1% 11B) than graphite (98.9% 12C,
1.1% 13C), causing stronger phonon-isotope scattering, as
indicated by the large isotope effect recently observed in boron
nitride nanotubes (BNNTs).12 At the same time, the observed
decrease of κhBN with increasing temperature around 300 K10

is a signature that intrinsic phonon-phonon scattering due to
lattice anharmonicity is the dominant scattering mechanism
limiting κL, as is the case in most semiconductors and
insulators.

These observations suggest that to understand the κL in
SLBN as well as h-BN, a rigorous microscopic thermal
transport theory is needed that simultaneously incorporates
both phonon-phonon scattering and that by isotopes. In this
paper, we present such a theory based on an exact numerical
solution of the Boltzmann transport equation (BTE) for
phonons,5,7,13 which is necessary to treat the inelastic nature
of the phonon-phonon scattering accurately. Our approach
reveals that SLBN possesses unusual transport properties
similar to those recently identified in graphene.5,7 In particular,
the majority of heat is carried by acoustic phonons vibrating
perpendicular to the layer plane (the so-called ZA phonons), a
finding that contradicts early predictions14,15 but is consistent
with recent thermal transport measurements on graphene

structures.5,6,16 We find that around room temperature, phonon-
phonon scattering is stronger in SLBN (h-BN) than in graphene
(graphite), explaining the observed difference in κL for these
systems. However, the κL of SLBN is found to be considerably
larger than κhBN (bulk value), with room temperature values
of more than 600 Wm−1K−1, one of the highest among
non-carbon-based materials. This enhancement is connected
to a symmetry-based selection rule that strongly suppresses
phonon-phonon scattering in 2D crystals.5,7 Finally, we show
that the interplay between phonon-phonon scattering and that
by isotopes leads to a strongly temperature dependent isotope
effect, with peak enhancements in κL depending sensitively on
crystallite sizes.

In Sec. II, the lattice thermal conductivity and its con-
stituents to be calculated are introduced. Sec. III describes the
empirical interatomic potential developed for h-BN systems,
from which the harmonic and anharmonic interatomic force
constants are obtained, and it demonstrates the accuracy of this
potential in describing the acoustic phonon frequencies and
velocities. The scattering rates for phonon-phonon, isotope
impurity, and boundary scattering are presented in Sec. IV,
along with a summary of the approach to solve the phonon
BTE. Section V presents our results and an accompanying dis-
cussion, and Sec. VI provides a summary and our conclusions.

II. THERMAL CONDUCTIVITY

While significant progress has been made in the fabrication
of SLBN and MLBN,17–19 there is currently no measured
κL data for these systems. To connect our theory to ex-
periment, we have calculated κL not only for SLBN but
also for MLBN. As was found previously for multilayer
graphene,13 with increasing layer number, N, the calculated
κL of MLBN saturates to an N-independent value after
only five layers. Thus, the κL for N = 5 is taken as the
calculated κhBN , which is compared directly to that determined
experimentally.10

We consider the h-BN layers to be parallel to the x-y plane
with thermal reservoirs at slightly different temperature taken
to be separated along the x-direction, chosen to be along � →
M of the 2D hexagonal Brillouin zone. The κL for SLBN and
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MLBN is given by:

κL = 1

(2π )2(Nδ)

∑
j

∫ (
∂n0

λ/∂T
)
h̄ωλv

2
λxτλdq (1)

In Eq. (1), δ is the interlayer spacing and ωλ is the frequency
of a phonon in mode λ = (q,j ) with wavevector q = (qx , qy)
and with branch index j, n0

λ is the Bose distribution function,
vλx = dωλ/dqx is the component of the phonon velocity along
the direction of thermal transport, and τλ is the phonon lifetime
in this mode.

Note that we have taken the thermal conductivity to be a
scalar, reflecting that the in-plane transport is isotropic. This is
indeed the case for an infinite 2D hexagonal lattice. For finite
systems, in principle, the thermal conductivity would exhibit
a directional ansiotropy. However, for the relatively large size
systems here, this anisotropy is small (<5%), and we ignore it
in the present work.

III. INTERATOMIC FORCE CONSTANTS

To calculate the phonon frequencies, velocities, and life-
times in (1), a description of the harmonic and anharmonic
interatomic forces is required. Here we use a Tersoff empir-
ical interatomic potential20 to describe the in-plane bonding
between atoms. A new set of Tersoff potential parameters for
h-BN was determined using a least squares fitting procedure
so as to best fit the measured in-plane acoustic phonon
dispersion data of bulk h-BN,21 as well as the in-plane bond
length22 and cohesive energy.23 The approach is identical to
that used previously for graphene.24 Unlike graphene, which
has purely covalent bonding between carbon atoms, the h-BN
bonding is also partly ionic. However, the resulting interatomic
Coulomb interaction affects primarily the optic phonon fre-
quencies near the zone center.25 Because our interest is in
the acoustic phonon branches, which are most important for
thermal transport, we ignore this Coulomb term. For the weak
interlayer bonding, a Lennard–Jones (L-J) potential is used:
VLJ (rij ) = 4ε[(σ/rij )12 − (σ/rij )6], where rij is the distance
between atoms i and j in adjacent layers, and ε and σ were
adjusted to match the measured interplanar distance of δ =
0.333 nm22 and to best fit the z-axis phonon dispersion. We
have used an AA′ stacking of h-BN layers, which is consistent
with that found in recent ab initio calculations.26 The optimized
Tersoff and L-J potential parameters are listed in Table I.

The phonon frequencies and velocities for MLBN with N
layers are calculated by diagonalizing 6N × 6N dynamical
matrices using harmonic interatomic force constants obtained
from the Tersoff and L-J potentials. The Tersoff potential

TABLE I. Optimized Tersoff and Lennard-Jones parameters for
h-BN systems.

A = 1433.0 eV B = 417.30 eV

λ1 = 3.4661 Å
−1

λ2 = 2.2288 Å
−1

λ3 = 0.0000 Å
−1

n = 0.72674
c = 30692.4 β = 1.0239 × 10−7

d = 4.7295 h = −0.98578
R = 1.95 Å D = 0.15 Å
ε = 0.004 eV σ = 0.3212 nm

FIG. 1. (Color online) Phonon dispersion given by the optimized
Tersoff potential for bulk h-BN (black curves) compared with
measured data (green circles) [Ref. 21].

includes up to second nearest neighbor interactions, whereas
we include up to third nearest neighbor interactions between
atoms in adjacent planes. The calculated phonon dispersion
for bulk h-BN is shown in Fig. 1 (black curves) compared
with the measured values from Ref. 21. A very good fit
is obtained for the low-frequency portion of the phonon
spectrum. In particular, the quadratic ZA phonon branch and
the transverse acoustic (TA) and longitudinal acoustic (LA)
branches are accurately represented. Table II shows that the
lattice constants, cohesive energy, and acoustic velocities are
in close agreement with measured values. In particular, the TA
and LA velocities are within 5% of those obtained from the
measured dispersions.21

IV. THERMAL TRANSPORT THEORY

The phonon lifetimes, τλ, are calculated from an exact
numerical solution to the phonon BTE.5,7,13 They are limited
by phonon-phonon, isotopic impurity, and boundary scatter-
ing. The dominant phonon-phonon scattering processes are
those between three phonons. Higher order processes have
been estimated to be much weaker, even up to much higher

TABLE II. Lattice constants, cohesive energy, and acoustic
phonon velocities for in-plane bulk h-BN as given by the Tersoff
potential compared with experiment.

Experiment Tersoff/L-J Model

alat (Å) 2.50a 2.50
clat (Å) 6.66a 6.65
Ecoh (eV) −8.09b −8.04
vTA (m/s) 11496c 10890
vLA (m/s) 19145c 19157

aReference 22.
bFrom ab initio calculation, Ref. 23.
cFrom dispersion, Ref. 21.
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temperatures than considered here.27 Therefore, in this work,
we consider the lowest order three-phonon scattering only. The
three-phonon scattering rates can be expressed as

1/τ anh
λ ≡

∑
(+)

�
(+)
λλ′λ′′ + 1/2

∑
(−)

�
(−)
λλ′λ′′ , (2)

where the sums are over the phase space of all three-
phonon processes satisfying the conservation of energy
and momentum—ωj (q) ± ωj ′

(
q′) = ωj ′′

(
q′′) and q ± q′ =

q′′ + K—where K is a reciprocal lattice vector of the 2D
hexagonal lattice. This phase space is calculated on a fine
grid in q space, including both Normal (K = 0) and Umklapp
(K �= 0) processes. In (2),

�
(±)
λλ′λ′′ = h̄π

4N0ωλωλ′ωλ′′

{
n0

λ′ − n0
λ′′

n0
λ′ + n0

λ′′ + 1

}

× ∣∣
(±)
λ,±λ′,−λ′′

∣∣2
δ(ωλ ± ωλ′ − ωλ′′), (3)

where N0 is the number of unit cells in the crystal, and the
three-phonon scattering matrix elements are5,7,13


λλ′λ′′ =
∑

κ

∑
l′κ ′

∑
l′′κ ′′

∑
αβγ


αβγ (0κ,l′κ ′,l′′κ ′′)

× eλ
ακe

λ′
βκ ′e

λ′′
γ κ ′′√

MκMκ ′Mκ ′′
eiq′ ·Rl′ eiq′′ ·Rl′′ . (4)

Here, lκ designates the κth atom (with mass Mκ ) in the
lth unit cell, 
αβγ (0κ,l′κ ′,l′′κ ′′) are third-order anharmonic
interatomic force constants obtained from the Tersoff and
L-J potentials, Rl are lattice vectors, and eλ

ακ are phonon
eigenvectors.

Because of the large concentration of 10B atoms (19.9%) in
the more abundant 11B atoms (80.1%) in naturally occurring
boron, isotopic impurity scattering is crucially important to
understanding the lattice thermal transport in BN systems.
We treat the isotope impurity scattering using perturbation
theory.28 The scattering rate is

1/τ iso
λ = π

2N0
ω2

λ

∑
λ′

(∑
κ

gκ

∣∣êλ
κ · êλ′∗

κ

∣∣2

)
δ(ωλ − ωλ′), (5)

where gκ = ∑
i fiκ (�Miκ/M̄κ )2 is the mass variance

parameter,28 with i representing the two different isotope types;
fiκ is the fraction of such isotopes; and �Miκ is the mass
difference of the isotopes from the average, M̄κ . The nitrogen
in h-BN is almost pure 14N, so we take gN = 0, with the natural
B isotope concentrations, gB = 0.001366.

The high impurity concentration in naturally occurring
h-BN systems raises the question of the importance of
coherent scattering. For boron nitride nanotubes,29 it has been
shown that multiple scattering effects lead to only modestly
higher thermal conductivity than predicted by the independent
scatterer model used here. Furthermore, recent calculations of
thermal transport in carbon nanotubes30 with isotopic disorder
show good agreement between results obtained using BTE
and Greens function approaches, demonstrating the accuracy
of the former approach even for high isotope concentrations.

In h-BN and graphite, phonons scatter from crystallite
boundaries,10 so crystallite size is an important factor in
determining κL. The scattering rate due to crystallite bound-

aries is taken to be, 1/τbs
λ = 2|vλx |/L, where L is a measure

of the length between boundaries in the transport direction.
This form gives the correct limits of κL for nanotubes31

and nanoribbons32 in the ballistic (L → 0) and diffusive
(L → ∞) limits. For the crystallite sizes considered here (L ∼
1–10 μm), almost the same results are obtained using the more
conventional relation 1/τbs

λ = |vλ|/Leff (|vλ| =
√

v2
λx + v2

λy),
with the choice Leff = L/

√
2. This follows from the isotropy

of transport in an infinite 2D hexagonal lattice, so that
〈v2

λ〉 = 2〈v2
λx〉.

Millions of Normal and Umklapp processes are calculated
to represent the three-phonon scattering rates accurately
(Eqs. (2) and (3)). Using these scattering rates, the phonon BTE
is solved with an iterative approach identical to that presented
previously for graphene systems.5,7,13 The standard relaxation
time approximation (RTA): τ 0

λ = (1/τ anh
λ + 1/τ iso

λ + 1/τbs
λ )−1

gives much lower κL than the exact solution of the phonon
BTE in 2D-layered systems because of the unusually strong
Normal scattering processes involving ZA phonons, which
are incorrectly treated as resistive in the RTA.7,13

V. RESULTS AND DISCUSSION

Figure 2 shows the calculated κhBN (solid red [lower] curve)
as a function of temperature, T, compared with the measured
data10 (black diamonds). The only adjustable parameter in the
model is L, for which a value of L = 2 μm (Leff = 1.4 μm)
gives a reasonably good fit to the measured data.33

The peak and subsequent decrease in κhBN with increasing
T indicates that three-phonon scattering becomes dominant.
Similar behavior is obtained for an isotopically pure system,

FIG. 2. (Color online) The solid red (lowest) curve shows the
calculated κL of h-BN as a function of temperature, T, compared with
measured values (black diamonds). The dashed red (lower) curve
shows the κL for isotopically pure h-BN. The solid green (higher)
curve gives the calculated κL for naturally occurring SLBN, whereas
the dashed green (highest) curve shows calculated κL for isotopically
pure SLBN.
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where all boron atoms are 11B (dashed red [lower] curve),
with a ∼30% enhancement in κhBN at 300 K and almost
a 70% increase around 100 K. Note that the 300 K value
of ∼520 Wm−1K−1 is still much lower than κgraphite, which
contains 1.1% 13C. We find that the difference stems primarily
from the overall lower acoustic phonon frequencies in h-BN.
Specifically, the Brillouin zone center curvature of the ZA
branch is 29% smaller in SLBN than in graphene, whereas the
TA and LA velocities are 27% and 13% smaller, respectively.
The lower phonon frequencies enter Eq. (3) resulting in
stronger phonon-phonon scattering rates Eq. (2) and lower κL.

The solid and dashed green (upper) curves show the
calculated κL for SLBN (κSLBN ) for the naturally occurring
and the isotopically pure systems. The same value of L = 2 μm
has been used as for the bulk. In both cases, κSLBN is much
higher than κhBN . This enhancement occurs primarily because
of a selection rule in 2D crystals, such as SLBN and graphene,
connected to the underlying reflection symmetry perpendicular
to the layer,5,7 which causes the matrix elements Eq. (4) to
vanish for all three-phonon processes having an odd number of
ZA phonons. The resulting strong restriction of the phase space
available for phonon-phonon scattering increases ZA phonon
lifetimes and enhances their already dominant contribution
to κSLBN . This selection rule is broken by the interaction
between the atoms in different layers, and the additional
phonon-phonon scattering results in decreased κhBN .13

In layered materials such as h-BN and graphite, larger
crystallite size increases κL.10 To highlight this point and
to illustrate the relative strengths of three-phonon scattering
and that due to isotopes, Fig. 3 shows the calculated κSLBN

at 300 K as a function of L, including: 1) only boundary
and isotopic impurity scattering: κ iso

L (dashed blue [highest]
curve); 2) boundary and phonon-phonon scattering: κpure

L (solid

FIG. 3. (Color online) κL of SLBN at T = 300 K as a function of
L, including boundary and isotope scattering (dashed blue [highest]
curve), boundary and phonon-phonon scattering (solid red [upper]
curve), and boundary, isotope, and phonon-phonon scattering (solid
black [lower] curve). Also shown is κhBN (dashed gray curve).

red [upper] curve; this is the isotopically pure case); and 3)
boundary, isotopic impurity, and phonon-phonon scattering:
κnat

L (solid black [lower] curve). This corresponds to naturally
occurring boron isotope concentrations. For comparison, the
dashed gray (lowest) curve shows κhBN . It is evident that κ iso

L

is considerably larger than κ
pure
L , demonstrating that phonon-

phonon scattering is much stronger than isotopic scattering
around room temperature, even for the high isotope impurity
concentration. We note the extremely high values of κ

pure
L

(617–1107 Wm−1K−1 for L = 1–10 μm) and the added
enhancement obtained with increasing L: The L = 1 μm
(L = 10 μm) value is 66% (144%) larger than κhBN for the
same L.

Figure 4 shows the percent enhancement in κL, P =
(κpure

L /κnat
L − 1) × 100%, due to isotopic enrichment as a

function of T for different values of L. For fixed L, P
rises as T decreases from 300 K because of the weakening
phonon-phonon scattering. The isotope scattering then plays
a more important role in limiting κL, so its removal causes
greater enhancement. At low temperature, P drops because
only low-frequency phonons are thermally populated, so
the stronger frequency dependence of the isotopic scattering
(see Eq. (5)) compared with the boundary scattering causes
the latter to dominate as T → 0.

Most striking in Fig. 4 are the successively larger peaks that
form with increasing L. In this temperature range, the isotope
scattering is strongest relative to the combined boundary and
phonon-phonon scattering. The additional enhancement with
increasing L reflects the weakening of the boundary scattering
for the larger systems. At 300 K, this effect is modest, with
P ranging from 26% for L = 1 μm to 37% for L = 10 μm.
In contrast, the peak enhancements range from about 40% for
L = 1 μm to 200% for L = 10 μm.

FIG. 4. (Color online) Percent enhancement, P, of κL in iso-
topically pure SLBN compared with naturally occurring SLBN as
a function of T for different values of L. Inset compares P for SLBN
and h-BN for L = 2 μm.
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Recently, the isotope effect has been observed in 10-μm-
long multiwalled BNNTs in the range of about 100 K to
300 K.12 The P extracted from this data exhibits a surprisingly
weak dependence on T. Recent theoretical work34 was able
to match the κL data for both the naturally occurring and
isotopically enriched samples, but only by assuming weak
phonon-phonon scattering. This assumption would preclude a
fit to the high T data for bulk h-BN shown in Fig. 2, yielding
instead much larger than observed κhBN . Furthermore, strongly
T-dependent isotope effects qualitatively similar to that shown
in Fig. 4 have been observed in bulk materials.35–37 It is
notable that in bulk h-BN, which is a closer representation of
multiwalled BNNTs, P shows a weaker T dependence over
most of the measured range of Ref. 12, and its peak lies
below this range (see Fig. 4 inset). Finally, the measured κLs
of multiwalled carbon nanotubes (MWCNTs) in Ref. 12 are
almost the same as those for multiwalled BNNTs, which con-
trasts with the fivefold higher κL of graphite11 compared with
bulk h-BN.10 Additional measurements on naturally occurring
and isotopically enriched h-BN, SLBN, and BNNT systems,
as well as on MWCNTs, are needed to further address this
issue.

Two recent papers have investigated, theoretically, ther-
mal transport in boron nitride nanoribbons (BNNR) using
nonequilibrium Green’s function38 and molecular dynamics39

approaches. Reference 38 finds BNNRs have similar κL to
those of graphene nanoribbons. However, this work does
not include phonon-phonon scattering. Reference 39 includes
phonon-phonon scattering and finds much larger κL for
graphene nanoribbons compared with h-BN nanoribbons,
which is qualitatively consistent with our results. This high-
lights the important role played by phonon-phonon scattering

in determining κL in both h-BN and graphene systems.
Reference 39 has also developed a different Tersoff parameter
set for h-BN layers, which shows similarly good agreement
with the low-frequency portion of the measured in-plane
phonon dispersion of bulk h-BN. We note that the effect on
κL of isotope impurity scattering and its interplay with the
anharmonic phonon-phonon scattering, which is a central part
of the present work, is not considered in Refs. 38 or 39.

VI. SUMMARY AND CONCLUSIONS

Using an exact numerical solution of the phonon BTE,
the κLs of both naturally occurring and isotopically enriched
SLBN and h-BN have been calculated. Good agreement is
obtained with measured h-BN data, and the stronger phonon-
phonon scattering identified in these systems explains why
their κLs are lower than those in graphene and graphite. The
κL for SLBN is significantly larger than its bulk counterpart
because of a reduction in phonon-phonon scattering in the
2D layer, resulting to a large extent from a symmetry-based
selection rule. This feature gives SLBN one of the highest room
temperature κLs, other than those in the carbon allotropes.
Additional enhancement is obtained from isotopic enrichment,
which exhibits a strong peak as a function of temperature, with
magnitude growing rapidly with crystallite size.

ACKNOWLEDGMENTS

D.A.B. acknowledges support from the National Science
Foundation, under Grant No. 1066634. L.L. acknowledges
support from the NRC/NRL Research Associateship Program
and from DARPA. We also thank Natalio Mingo for useful
discussions.

*Email address: broido@bc.edu
1C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei,
K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, and J. Hone,
Nature Nanotech. 5, 722 (2010).

2J. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod,
A. Deshpande, K. Watanabe, T. Taniguchi, P. Jarillo-Herrero, and
B. LeRoy, Nat. Mater. 10, 282 (2011).

3A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan,
F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).

4S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika,
A. A. Balandin, W. Bao, F. Miao, and C. N. Lau, Appl. Phys. Lett.
92, 151911 (2008).

5J. H. Seol, I. Jo, A. L. Moore, L. Lindsay, Z. H. Aitken, M. T. Pettes,
X. Li, Z. Yao, R. Huang, D. A. Broido, N. Mingo, R. S. Ruoff, and
L. Shi, Science 328, 213 (2010).

6W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi, and R. S.
Ruoff, Nano Lett. 10, 1645 (2010).

7L. Lindsay, D. A. Broido, and N. Mingo, Phys. Rev. B 82, 115427
(2010).

8S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos,
C. W. Magnuson, J. Kang, L. Shi, and R. Ruoff, ACS Nano 5, 321
(2011).

9A. A. Balandin, Nat. Mater. 10, 569 (2011).
10E. K. Sichel, R. E. Miller, M. S. Abrahams, and C. J. Buiocchi,

Phys. Rev. B 13, 4607 (1976).

11Y. S. Touloukian, editor, Thermal Conductivity, The TPRC data
series (IFI/Plenum, New York, 1970).

12C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno,
H. Garcia, D. Li, A. Majumdar, and A. Zettl, Phys. Rev. Lett. 97,
085901 (2006).

13L. Lindsay, D. A. Broido, and N. Mingo, Phys. Rev. B 83, 235428
(2011).

14P. G. Klemens, J. Wide Bandgap Mater. 7, 332
(2000).

15P. G. Klemens, Int. J. Thermophys. 22, 265 (2001).
16W. Jang, Z. Chen, W. Bao, C. N. Lau, and C. Dames, Nano Lett.

10, 3909 (2010).
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