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High-energy plasmon spectroscopy of freestanding multilayer graphene
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We present several applications of the layered electron gas model to electron energy loss spectroscopy of
freestanding films consisting of N graphene layers in a scanning transmission electron microscope. Using a
two-fluid model for the single-layer polarizability, we discuss the evolution of high-energy plasmon spectra with
N and find good agreement with the recent experimental data for both multilayer graphene with N < 10 and
thick slabs of graphite. Such applications of these analytical models help shed light on several features observed
in the plasmon spectra of those structures, including the role of plasmon dispersion, dynamic interference in
excitations of various plasmon eigenmodes, as well as the relevance of the bulk plasmon bands, rather than
surface plasmons, in classifying the plasmon peaks.
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I. INTRODUCTION

Studying the relation between the plasmon spectra in
thick graphite samples and those in carbon nanostructures
with one or several layers has recently come to focus in
carbon research. In that context, multilayer graphene (MLG)
offers a particularly suitable system because of the precision
that can be achieved in determining the number of carbon
layers N , as shown in the recent experimental study of
plasmon excitations in freestanding MLG by electron energy
loss spectroscopy (EELS) in scanning transmission electron
microscope (STEM).1,2 Those authors found that the so-called
low-loss EEL spectra are dominated by two broad peaks that
may be related to the π and σ + π plasmons of graphite, with
the peak positions that change as the number N of layers in
the MLG increases.1,2 Similarly, plasmon spectra of graphene
were also discussed in the context of recent experimental
studies of thick layers of highly oriented pyrolytic graphite
(HOPG) by ultrafast electron microscopy (UEM) in TEM3,4

and by inelastic x-ray scattering (IXS),5,6 as well as in the
experiments on multiwalled carbon nanotubes (MWCNTs)
using both EELS and IXS.7 Given that in some of those
studies the observed dependence of plasmon frequencies on
the number of layers has been tentatively described in terms
of the familiar concept of surface and bulk plasmons, it is
desirable to adopt an analytically tractable theoretical model
that can tackle this issue in an explicit and transparent manner.

We demonstrate that a dielectric-response approach based
on the layered electron gas (LEG) model, where each layer
of carbon atoms is viewed as a two-dimensional electron gas
(2DEG) of zero thickness,8,9 provides useful insight in the
effect of the number of layers on the plasmon spectra of
MLG. The applicability of the LEG model to studying the
high-frequency plasmon modes in MLG by means of EELS is
justified for typical experimental conditions in STEM, where
the target excitation is dominated by the in-plane transfer
of momentum q of a fast incident electron that traverses
a sequence of graphene layers,1–4 while electron hopping
between those layers may be neglected for excitation energies
that exceed the interlayer coupling of t⊥ ≈ 0.4 eV.6 The

LEG model has a long history in the study of plasmon
excitations in various structures, including semiconductor
superlattices,10–12 graphite intercalated compounds (GICs),13

high-Tc superconductors,14,15 and MWCNTs.16,17 A similar
model has also been recently discussed in Ref. 6 as a
promising theoretical tool for extracting spectroscopic infor-
mation on single-layer graphene (SLG) from their IXS data
for thick graphite samples. Given the increasing number of
recent developments in high-energy plasmon spectroscopy
of graphene-based structures,1–7 one is led to a conclusion
that revisiting the old LEG model is well warranted. Due
to its physical transparency and analytical flexibility, the
LEG model offers new insight into various experimental
observations that complements the insight based on the results
of computationally intensive ab initio approaches.

The authors of Ref. 2 provided a theoretical discussion of
their data by means of ab initio calculations of the loss function
for MLG in the optical limit, q = 0, based on the work of
Marinopoulos et al.,18 where HOPG was modeled by using a
supercell of carbon layers separated by an equilibrium distance
of d ≈ 3.35 Å. In Ref. 2 an isolated SLG and isolated MLGs
with N = 2 and 3 layers, having an interlayer separation d,
were simulated by using supercells where those structures were
periodically repeated with a separation between them taken
to be a multiple of d (typically fivefold). As a consequence
of using supercells, the treatment of interlayer Coulomb
interaction in ab initio calculations for the thus modeled
SLG and MLGs is necessarily approximate, giving rise to
plasmon peaks in the loss function whose intensities, and
the “precise peak positions depend on the separation” that
was adopted within a supercell, as noted by the authors of
Ref. 2. Nevertheless, the ab initio calculations gave good
qualitative agreement with the experimental EEL spectra for
a SLG and MLGs with N = 2 and 3 layers.2 Moreover, that
agreement was taken as an indication that the optical limit
of a loss function suffices for modeling the EEL spectra,
even though it was noted that those spectra were recorded
so that the wave vector “q has a considerable in-plane
component.”2 Namely, while the 100-keV electrons traverse
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the MLG targets undergoing negligible momentum transfer,
the relatively large collection semiangle of 19 mrad in STEM
ensured that the EEL spectra were recorded as being integrated
over wave numbers up to qc ≈ 3.2 Å−1.2 Furthermore, the
authors of Ref. 2 did not consider any effects of the incident
electron trajectory, even though such effects may give rise to
a significant interference in plasmon excitations at different
carbon layers, which is critically dependent on proper use of
the interlayer separation. Finally, we mention that elements of
phenomenological modeling of the EEL spectra are introduced
in the ab initio calculations by their use of a spectral broadening
of 1.5 eV to smooth out the resulting theoretical spectra, and
hence improve comparison with the experiment.2

A possibly interesting alternative theoretical discussion of
the experimental EEL spectra2 could be based on a continuum
dielectric model, which was used with notable success for
multilayer carbon nanostructures, different from the MLG,
by treating them as slabs of finite thickness described by a
frequency-dependent dielectric tensor in the optical limit.19–22

However, as pointed in Ref. 2, most applications of such an
anisotropic dielectric slab (ADS) model were restricted to the
EELS of curved nanostructures with nonpenetrating, or aloof
electron trajectories in STEM, so that excitations of the bulk
plasmon modes were suppressed with respect to the surface
modes.19–22 It should be mentioned that the ADS model was
used by Crawford23 to study the stopping and deflection of
swift ions passing through the bulk of HOPG, but it is true that
full application of the ADS model to plasmon spectroscopy
of MLG with penetrating electron trajectories is yet to be
undertaken. On the other hand, while the ADS model is
perceived as suitable for carbon nanostructures with a large
number of layers, difficulties arise if one attempts to reach the
limit of a one-atom-thick layer by starting from a dielectric
slab of finite thickness.22 Namely, it was found that the slab
thickness strongly affects the coupling of surface plasmons at
the opposite sides of the slab,24 and hence the authors remarked
that achieving the limit of a single layer is not straightforward
in the ADS model because an “arbitrary choice of the effective
dielectric thickness” has to be made.22

It is expected that the LEG model can provide useful
additional insight into the issues discussed in the above
two paragraphs regarding (a) the interlayer Coulomb inter-
actions, (b) the effects of large in-plane momentum transfer,
(c) the dynamic interference effect due to electron trajectory,
(d) the lack of available applications of the ADS model19–23

for penetrating electron trajectories, and (e) the single-layer
limit. Another benefit coming from the LEG model is revealed
in the limit of an infinite periodic lattice of identical layers,
giving rise to a particularly transparent description of the
bulk plasmon bands that may be of interest for studying the
plasmon spectra of HOPG.10,11,13 Finally, it is particularly
convenient that the LEG model involves separate treatments
of the interlayer Coulomb interactions and the intralayer
dynamics by using a wave-vector-dependent, noninteracting
polarizability function χ0(q,ω) of SLG as an independent
input quantity. Obviously, whether fine details in the EEL
spectra can be successfully modeled depends on the avail-
ability of a good-quality single-layer polarizability χ0(q,ω),
but the effects of the increasing number of layers within

MLG are expected to be robustly reproduced by the LEG
model.

Over the past few years, sophisticated models have been
developed for χ0(q,ω) that are appropriate for describing the
low-energy excitations (up to, say, 1 − 2 eV)25 in the vicinity
of the K points in the Brillouin zone of SLG, where the
conduction and valence π electron bands may be approximated
by Dirac cones with zero gap.26–28 The intraband π plasmon
excitations (sometimes called sheet plasmons) were probed
in this energy range by means of high-resolution reflection
EELS (HREELS) of epitaxial graphene under heavy doping
conditions,25,29–32 giving dispersion relations that were studied
theoretically by means of χ0(q,ω), which included the effects
of plasmon damping33 and plasmon-phonon coupling.28,34

However, plasmon excitations at such low energies are hardly
accessible in the TEM experiments because of the presence
of the zero loss peak that masks the spectral features up to
about 2 eV.35 On the other hand, high-energy plasmon spectra,
which were observed in thick graphite samples by means
of EELS, may be associated with the interband excitations
of both the π and σ electron bands with the gaps of about
4 eV and 14 eV, respectively (see Ref. 18 and the references
therein). As far as the modeling of such high-energy spectra in
SLG is concerned, we note that the few recent improvements
of ab initio calculations of the optical dielectric function of
graphene did not quite agree with regard to the role of the
excitonic effects associated with the σ electron bands.36–38

Therefore there is some value in the transparency offered by a
phenomenological two-fluid model for high-energy excitations
of the π and σ electrons in carbon.39 Accordingly, we adopt
here such a model for SLG, while being aware that subtle
features due to low-energy, intraband π electron excitations
are inaccessible in the EELS anyway.35 A tradeoff to using a
phenomenological χ0(q,ω) as an input to the LEG model is
that the resulting analytical tractability may help reveal how
the main features in the EEL spectra of MLG, i.e., the π and
σ + π plasmon peaks, evolve as the number of layers increases
from N = 1 in SLG to N → ∞ in HOPG. In particular, the
LEG model will enable us to analyze the role played in the
spectra by the formation of the bulk plasmon bands in HOPG,
and to show that the concept of surface plasmons has limited
applicability in the present context.

After presenting theoretical details of the LEG model in
the following section, we discuss the comparison of our cal-
culations with several experiments using a phenomenological
model for the single-layer polarizability, which is followed
by our concluding remarks. Note that we use Gaussian
electrostatic units, and we set h̄ = 1.

II. THE LAYERED ELECTRON GAS MODEL

In a typical STEM experiment operating at the voltage of
100 kV,2 the momentum transfer of the incident electron is
close to zero, so we shall use a straight-line trajectory while
neglecting relativistic effects.35 We use a Cartesian coordinate
system {r,z} with r = {x,y} and assume that graphene layers
occupy planes zn = (n−1)d, where n = 1,2, . . . ,N and d is
the interlayer spacing. The induced potential in the system,
�ind(r,z,t), may be expressed via its Fourier transform with
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respect to the in-plane coordinates (r → q) and time (t → ω)
as

�̃ind(q,z,ω) =
N∑

n=1

2π

q
σ̃n(q,ω)e−q|z−zn|, (1)

where σ̃n(q,ω) is the Fourier transform of the induced charge
density (per unit area) on the nth layer, which may be written
in a self-consistent field approximation as

σ̃n(q,ω) = −e2χ0(q,ω)[�̃ext(q,zn,ω) + �̃ind(q,zn,ω)], (2)

with �ext(r,z,t) being the external potential. From the
charge density of the incident electron, ρext(r,z,t) = Ze δ(r−
v‖t)δ(z−v⊥t), where Z = −1 and v‖ and v⊥ are the velocity
components parallel and perpendicular to the graphene planes,
respectively, we find

�̃ext(q,z,ω) = 4πZev⊥
(qv⊥)2 + (ω−q · v‖)2

ei(ω−q·v‖)z/v⊥ . (3)

Thus by using Eqs. (1) and (3) in Eq. (2), we obtain a matrix
equation for σ̃n(q,ω),

N∑
n′=1

Mnn′ (q,ω)̃σn′ (q,ω)

= −ZeV (q)χ (q,ω)K(q,ω−q · v‖)ψn(ω−q · v‖), (4)

where

Mnn′ (q,ω) = δnn′ + (1 − δnn′)V (q)χ (q,ω)e−qd|n′−n|, (5)

K(q,ω) = 2qv⊥
(qv⊥)2 + ω2

, (6)

ψn(ω) = ei(n−1)ωd/v⊥ , (7)

and χ (q,ω) = χ0(q,ω)/ε(q,ω), where ε(q,ω) =
1 + V (q)χ0(q,ω) is the intralayer dielectric function of
SLG, with V (q) = 2πe2/q being the Fourier transformed
Coulomb interaction in two dimensions (2D).

In the next step we solve Eq. (4) for σ̃n(q,ω) by inverting
the matrix M with elements given in Eq. (5). Substituting this
solution into Eq. (1) enables one to express �ind(r,z,t) via an
inverse Fourier transform, so that the total energy lost by the
incident electron may be evaluated from40

Eloss = −
∫ ∞

−∞
dt

∫
d2r

∫ ∞

−∞
dz ρext(r,z,t)

∂

∂t
�ind(r,z,t). (8)

Using symmetry properties of the function χ0(q,ω) at zero
temperature, one may write Eq. (8) as

Eloss =
∫ ∞

0
dω ωPN (ω), (9)

where PN (ω) is the probability density for loosing the energy
ω, given by

PN (ω) = (Ze)2

2π2

∫
d2q
q

K2(q,ω−q · v‖)

×�[V (q)χ (q,ω)QN (q,ω)], (10)

with

QN (q,ω) =
N∑

n=1

N∑
n′=1

ψ∗
n (ω−q · v‖)(M−1)nn′ψn′ (ω−q · v‖).

(11)

Note that the density PN (ω) will be directly compared with
the experimental EEL spectra of MLG with finite N , which
were taken under the normal electron incidence.2 So, setting
v‖ = 0 in Eqs. (10) and (11) and invoking the near-isotropy
of graphene’s polarizability,18 χ0(q,ω) = χ0(q,ω), renders
the angular integration in Eq. (10) trivial. The remaining
integration over the wave numbers should go up to qc ≈
3.2 Å−1,2 but we found that no difference occurs in the final
results for PN (ω) if the upper limit is extended to ∞ because
the kinematic factor K2(q,ω) in Eq. (10) is strongly peaked at
q = ω/v⊥ 
 qc for frequencies of interest here [cf. Eq. (6)].

Further note that the factor (M−1)nn′ in Eq. (11) is a (q,ω)-
dependent element of a matrix M−1 that is inverse to the
matrixM defined in Eq. (5). Thus the quadratic form QN (q,ω)
in Eq. (11) can be relatively easily obtained using symbolic
computation software for, say, N < 10. For example, whereas
for a single layer Q1(q,ω) = 1, we obtain from Eq. (11) for a
bilayer graphene

Q2(q,ω) = 2
1 − V (q)χ (q,ω)e−qd cos(ωd/v⊥)

1 − V 2(q)χ2(q,ω)e−2qd
. (12)

While the analytical results for QN become increasingly
cumbersome with increasing N , we note that a relatively
simple expression for PN may be obtained in the limit
N → ∞, which we shall denote by P∞, corresponding to
an electron traversing a sufficiently thick slab of HOPG, such
that the end effects may be neglected if Ndq � 1. In that case
the matrix equation in Eq. (4) may be solved by using Fourier
series with a wave number k in the direction perpendicular to
the graphene planes, giving

P∞(ω) = N
(Ze)2

2π2

∫
d2q
q

K2(q,ω − q · v‖)

×�
[

V (q)χ0(q,ω)

1 + S
(
q,

ω−q·v‖
v⊥

)
V (q)χ0(q,ω)

]
, (13)

where

S(q,k) = sinh(qd)

cosh(qd) − cos(kd)
(14)

is the Coulomb structure factor for an infinite periodic lattice of
layers.9 Note that the density P∞(ω) will be directly compared
with the experimental EEL spectra of HOPG, which were taken
under the normal electron incidence,3 so we again set v‖ = 0
in Eq. (13).

Finally, in order to identify the exact nature of plasmons
giving the most prominent contributions to the spectral
densities PN (ω) or P∞(ω), it is worthwhile analyzing the
eigenmodes of the underlying MLG, which are obtained by
setting the damping rates in χ0(q,ω) to zero. Thus for plasmon
modes in the case of finite N , one has to solve the equation
εN (q,ω) det(M) = 0, giving frequencies at which the factor
�[V (q)χ (q,ω)QN (q,ω)] in Eq. (10) becomes singular. On the
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other hand, eigenmodes in an infinite periodic lattice of 2DEG
layers are obtained by solving the equation

1 + S(q,k)V (q)χ0(q,ω) = 0, (15)

with k as a parameter.10,11 By letting 0 � k � π/d and using a
one-fluid model for χ0(q,ω), one obtains a band of dispersion
relations for the so-called bulk plasmon modes that propagate
with the wave numbers q parallel to the layers.9–12 Similarly, by
using a two-fluid model for χ0(q,ω) in Eq. (15), one obtains
two such bands for 0 � k � π/d that correspond to the π

and σ + π plasmons in the bulk of HOPG. In the case of
a semi-infinite lattice of equally spaced identical layers of
2DEG, it was shown that a plasmon mode may arise with the
dispersion relation outside the plasmon band(s), only if there
is a mismatch between the background dielectric constants
in the lattice and the nearby space.10,11 Hence this kind of
surface plasmon, which is localized near the boundary layer of
a semi-infinite lattice, is not expected to exist in the N → ∞
limit of the LEG model for HOPG placed in vacuum or air.

III. RESULTS AND DISCUSSION

A three-dimensional (3D) version of the phenomenological
two-fluid polarizability function was used in the ADS model
to build a dielectric tensor in the optical limit with suitable
Drude-Lorentz parameters19 for modeling of the EEL spectra
of multilayer fullerene molecules20 and MWCNTs.21,22 In
other applications, such a 3D version of the two-fluid model
was used to study the variable degree of the sp2 hybridization
for applications in different carbon materials41 and the in-
plane plasmons in HOPG,42 as well as to deduce the optical
conductivity of graphene in order to calculate Casimir forces
between graphene layers.43 However, we need here a strictly
2D version of the two-fluid model with suitable Drude-Lorentz
parameters, similar to that used to describe plasmon excitations
in single-layer fullerene molecules44,45 and single-wall carbon
nanotubes (SWCNTs).46 One way of deriving such a polar-
ization function for SLG could proceed from a 2D, two-fluid
hydrodynamic model with Thomas-Fermi and Dirac (TFD)
interactions,40,47 which enabled a semiquantitative comparison
with the plasmon dispersion relations that were observed in the
EEL spectra of SWCNTs over a broad range of wavelengths
in the axial direction.48

We note that clear distinction should be made between the
3D and 2D Drude-Lorentz models in the sense that the former
class of models usually employs only frequency-dependent
dielectric functions, whereas the latter class necessarily in-
volves nonlocal effects, i.e., a dependence on the in-plane
wave number that reflects incomplete Coulomb screening by
an electron gas in 2D.24 A formal connection between the two
types of models may be established by considering a thin film,
where both symmetric and antisymmetric coupling of surface
plasmons at the opposite sides of the film arise, in addition
to the bulk plasmon modes. Keeping in mind that in realistic
applications to one-atom-thick layers only the surface density
n of electrons may be defined unambiguously, taking the zero-
thickness limit of a film leaves the lower-energy, symmetric, in-
plane surface plasmon as the only observable excitation mode,
characterized by a typical square-root plasmon dispersion of
the form ω ∼ √

nq in a quasifree 2DEG.24 Whether such a

plasmon mode should be referred to as a surface plasmon or
simply an intrinsic plasmon mode of a 2DEG is a matter of
semantics when it comes to one-atom-thick layers.

Hence we adopt from Ref. 40 a planar version of the 2D,
two-fluid hydrodynamic model that gives χ0 = χ (0)

σ + χ (0)
π for

SLG, where

χ (0)
ν (q,ω) = n0

νq
2/m∗

ν

s2
ν q

2 + ω2
νr − ω(ω + iγν)

, (16)

with n0
ν , m∗

ν , sν , ωνr , and γν being the equilibrium surface
number density of electrons, effective electron mass, acoustic
speed, restoring frequency, and the damping rate in the νth
fluid (where ν = σ,π ), respectively. Note that the restoring
frequencies for the in-plane electron excitations are related to
the π → π∗ and σ → σ ∗ interband transitions,44 which were
found to dominate the in-plane loss function of SLG in the
optical limit at energies close to 4 and 14 eV, respectively.18

On the other hand, the terms involving the acoustic speeds in
Eq. (16) arise from the TFD interactions in the hydrodynamic
model,40 but their contribution to the EEL spectra turns out
to be negligible in the present context because the kinematic
factor K2(q,ω) in Eqs. (10) and (13) is strongly peaked at
q = ω/v⊥ and because sν 
 v⊥.

Taking m∗
ν to be the free electron mass and using the

unperturbed surface electron densities of SLG, n0
π ≈ 38 nm−2

and n0
σ = 3n0

π ≈ 115 nm−2, we treat the remaining parameters
in Eq. (16) as adjustable. The best fit to the experimental
EEL spectra2 is found for ωπr = 4.08 eV, ωσr = 13.06 eV,
γπ = 2.45 eV, and γσ = 2.72 eV. The results for PN (ω) were
thus computed from Eq. (10) with N = 1, 2, 5, and 13, and are
compared in Fig. 1 with the experimental curves from Fig. 1(e)
of Ref. 2, corresponding to 1, 2, 5, and >10 graphene layers.
(We found that our curve N = 13 provides the best fit with their
curve labeled “>10L”.) We note that the experimental curves
were taken under the same acquisition conditions, thereby
enabling a direct quantitative comparison among them.2 On
the other hand, apart from adjusting the arbitrary unit of the
experimental curves to the absolute unit of our PN (ω), no
relative scaling took place among the theoretical curves with
different numbers of layers. One notes that the experimental
curves are well reproduced by the LEG model for energies
ω � 3 eV and N < 10, both in magnitude and in the shape of
spectra. Regarding the discrepancy at ω � 3 eV, we note that
the present version of the two-fluid model in Eq. (16), along
with the neglect of interlayer tunneling, is only expected to
work in MLG for high-energy excitations, but also that the
complete vanishing of the experimental spectra at energies
below 3 − 4 eV may be a consequence of the method used in
their subtraction of the zero-loss peak.2

Furthermore, while the above values of the parameters
ωπr , ωσr , γπ , and γσ are quite close to those listed in the
Table II of Ref. 19 for the in-plane dielectric function of a
3D, two-fluid model of ADS, features seen in the spectra
in Fig. 1 are relatively robustly reproduced by theoretical
curves for other choices of these parameters. In particular,
the damping rates are strongly affected by the presence of
impurities or defects, which serve as scattering centers for
charge carriers in individual carbon layers. While for graphene
on a substrate the concentration of impurities strongly varies
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FIG. 1. (Color online) Probability density PN (ω) (in 1/eV) versus
energy loss ω (in eV), evaluated from Eq. (10) for N = 1, 2, 5, and 13
graphene layers [smooth solid (yellow, green, blue, and pink) curves],
along with the corresponding experimental EEL spectra from Ref. 2
[noisy (gray) curves].

from sample to sample, the freestanding graphene may be
relatively clean in the case of one or few layers, but thicker
samples may contain increased amounts of impurities and
defects. Thus assigning smaller values, or possibly allowing for
frequency-dependent damping rates γπ and γσ as in Ref. 49,
could improve the agreement for energies around 10 eV in
Fig. 1, where the experiment exhibits an almost complete
depletion of the spectra. On the other hand, the width of
the high-energy peak at about 27 eV for N > 10 is not well
reproduced by the present choice of parameters, but agreement
may be improved if one allows for higher damping rates due
to increased density of impurities.2 This point will be taken up
later in the discussion of Fig. 6.

The most important trends seen in Fig. 1 are that the π

plasmon peak position moves from about 5 eV to about 7 eV as
N increases without significant changes in its shape, whereas
the σ + π plasmon peak at about 15 eV for N = 1 evolves
through the development of a plateau between 15 and 27 eV
for N = 5, to be dominated by a peak at about 27 eV for
N = 13, with a growth in magnitude that exceeds the growth
of the π plasmon peak. The lowest peak positions that occur for
N = 1 and the highest peak positions that occur for N > 10
in Fig. 1 were associated in Ref. 2 with the surface and bulk
plasmon frequencies of graphite, respectively, for both the π

and σ + π plasmons. Similarly, we shall see in Fig. 6 that
the σ + π plasmon contributions at about 15 and 27 eV in the
EEL spectra of HOPG were also associated in Ref. 3 with
the surface and bulk plasmons, respectively. In the following,
we shall use the LEG model to discuss how adequate those
associations are.

In Fig. 2 we analyze the details of the experimental EEL
spectra of Eberlein et al. for N = 1 and 2, corresponding to a
SLG and a bilayer graphene (BLG), which are reproduced from
Fig. 1 (noisy curves) along with the theoretical curves from
the LEG model for P1(ω) and P2(ω) from Eq. (10) (thin solid
lines) and with two theoretical curves, taken from Fig. 3(b)
of Ref. 2 (thick sold lines), which are based on their ab initio

FIG. 2. (Color online) Probability density PN (ω) (in 1/eV) versus
energy loss ω (in eV), evaluated from Eq. (10) for N = 1 [lower (red)
curves] and 2 [upper (blue) curves] graphene layers with nonzero
damping (smooth thin solid lines) and vanishing damping (dashed
lines), along with the corresponding experimental data [noisy (gray)
curves] and the ab initio curves (smooth thick solid lines) from
Ref. 2.

calculations. The most prominent feature of the experimental
curves is the asymmetry in the σ + π plasmon peaks, which
is well reproduced by the LEG model but not by the ab initio
calculations by Eberlein et al.2 (We note, however, that such
asymmetry was observed in the ab initio calculations based on
a GW and Bethe-Salpeter equation approach by Trevisanutto
et al.36) We emphasize that the long tails in those peaks,
which extend at energies beyond 15 eV, are a consequence
of the integration over q in Eq. (10) that captures the effect
of dispersion of the σ + π plasmon, which is neglected when
optical limit of the loss function is used. To further elucidate
this point, we have recalculated the curves for P1(ω) and P2(ω)
from Eq. (10) using the same parameters of the two-fluid
model in Eq. (16), except that the damping rates of both σ

and π electrons were made very small. The resulting curves
are displayed in Fig. 2 by the dashed lines, showing a steep
raise at the restoring frequencies ωνr , along with the tails that
extend for ω > ωνr , giving a very good approximation to the
experimental curves at those frequencies.

This observation may be easily rationalized for N = 1 by
referring to the two-fluid model for χ0(q,ω) in Eq. (16) in the
limit γσ = γπ → 0, which was discussed in the Appendix C
to Ref. 40. When used in Eq. (10) for P1(ω), this limit converts
the factor �[V (q)χ (q,ω)] into a superposition of two δ func-
tions, δ[ω2 − ω2

±(q)], where ω±(q) are the eigenfrequencies
describing hybridization between the σ and π electron fluids in
a SLG, which are obtained by solving the equation ε(q,ω) = 0
as

ω2
± = ω2

σ + �2
σ + ω2

π + �2
π

2

±
√(

ω2
σ + �2

σ − ω2
π − �2

π

2

)2

+ �2
σ�2

π , (17)
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FIG. 3. (Color online) Dispersion curves for the π (lower group)
and σ + π (upper group) plasmons in MLG, obtained from the LEG
model with N = 1 [dotted (red) lines] and N = 2 [dashed (blue)
lines], as well as N = 5 [only the upper group is shown by (black)
solid lines]. The upper and the lower edges are shown for both the π

and σ + π plasmon bands in HOPG [thick (orange) solid lines]. The
(dark cyan) diamonds show the experimental plasmon peak positions
in the EEL spectra of HOPG from Ref. 50, whereas the (black) squares
show the peak positions obtained by ab initio calculations for graphite
in Ref. 18.

where we define

ων(q) ≡
√

ω2
νr + s2

ν q
2 (18)

and

�ν(q) ≡
√

2πe2n0
νq/m∗

ν (19)

for the νth fluid.40 The eigenfrequencies ω+(q) and ω−(q) are
labeled as the σ + π and the π plasmon modes of SLG, and the
corresponding dispersion relations are shown in Fig. 3 by the
upper and lower dotted lines, respectively. For the purpose of
the present discussion, it suffices to expand the expressions in
Eq. (17) to the first order in q, so that ω2

+ ≈ ω2
σr + �2

σ (q) and
ω2

− ≈ ω2
πr + �2

π (q), describing the long-wavelength behavior
of plasmon frequencies of the noninteracting σ and π fluids
in SLG. Using these expressions for ω2

±(q) in the δ functions
δ[ω2 − ω2

±(q)] makes the integration over q in Eq. (10) trivial,
giving two contributions to P1(ω) of the form ∼n0

ν/(ω2 − ω2
νr ),

which essentially capture the behavior of the tails seen in Fig. 2
for ω2 − ω2

νr � 2πe2n0
νω/(m∗

νv⊥).
Furthermore, it is interesting to comment on the similarity

between the experimental spectra for BLG and SLG, seen in
Fig. 2. In particular, their high-frequency tails at ω � 20 eV
seem to imply a scaling ratio of about 2:1, as remarked
by Eberlein et al.2 This is best rationalized by resorting to
the eigenmode analysis for BLG by setting γσ = γπ → 0 in
Eq. (10) for P2(ω). Then, it can be shown that the factor
�[V (q)χ (q,ω)Q2(q,ω)] becomes singular at four frequen-
cies, which are given by the expressions in Eq. (17) when
frequencies �ν(q) in Eq. (19) are replaced by �±

ν (q) ≡
�ν(q)

√
1 ± exp(−qd). The corresponding dispersion curves

are shown in Fig. 3 by the dashed lines, two in the upper
(σ + π plasmon) group and two in the lower (π plasmon)
group. However, the weakly (quadratically) dispersing lower
curves in each plasmon group contribute to P2(ω) with
negligible spectral weights because of the smallness of the
factor ωd/v⊥ at the frequencies of interest here. Namely, by
setting cos(ωd/v⊥) ≈ 1 in Eq. (12) one obtains Q2(q,ω) ≈
2/[1 + V (q)χ (q,ω) exp(−qd)], so that the dominant spectral
weight in P2(ω) comes mostly from the upper (linearly
dispersing) curves in the σ + π and π plasmon groups,
seen in Fig. 3 for BLG. This may be further simplified
by noting that the kinematic factor K2(q,ω) is strongly
peaked at q = ω/v⊥, so that exp(−qd) ≈ 1, and hence the
factor �[V (q)χ (q,ω)Q2(q,ω)] in Eq. (10) for P2(ω) becomes
−�{1/[1 + 2V (q)χ0(q,ω)]}, corresponding to a SLG with
doubled σ and π electron densities. Accordingly, the slopes
of the upper dispersion curves for BLG in the σ + π and π

plasmon groups are seen in Fig. 3 to be about twice the slopes
of the corresponding dispersion curves for SLG in the limit
of long wavelengths. As a consequence, the peak positions in
P2(ω) occur at about the same frequencies as those in P1(ω),
whereas the high-frequency tails in P2(ω) are approximated
by ∼2n0

ν/(ω2 − ω2
νr ), confirming their ratio of 2:1 relative to

the tails in P1(ω).
The above analysis of SLG and BLG shows that various

eigenmodes of the underlying structure enter the EEL spectra
with weights that are strongly dependent on the incident
electron speed. This dynamic aspect of the LEG model,
which is not covered in the ab initio calculations,2 is related
to the interference effect in plasmon excitations at different
carbon layers within a MLG, and it may be quantified by
the factor ωTN that appears in the expression for QN (q,ω) [cf.
Eqs. (5), (7), and (11)], where TN ≡ Nd/v⊥ is the time it takes
the incident electron to traverse the full thickness of MLG
(neglecting relativistic effects). Therefore the interference
effect will be negligible for fast incident electrons in STEM
at frequencies of interest in the low-loss EELS of MLGs with
a few layers giving ωTN 
 1. The smallness of the factor
ωTN = Ndω/v⊥ is equivalent to the limit d → 0, giving
a picture where all layers collapse onto a single sheet or,
equivalently, the in-plane plasmon modes in all layers oscillate
in phase, which explains the similarity among the spectra and
the approximate scaling of their high-energy tails as PN ∝ N

for N ∼ 1. In other words, the EEL spectra of MLGs with
N = 2,3, . . . are dominated by the peaks that are derived from
the π and σ + π plasmons of SLG, and hence they should not
be associated with the surface plasmons of graphite.2

When N � 10, the factor ωTN = Ndω/v⊥ may no longer
be small, and hence the interference effect may become
significant in sufficiently thick MLGs. Obviously, the onset of
the interference effect will occur at a smaller N if the incident
electron moves at a lower speed. Moreover, because of the
difference in the relevant frequency ranges, one expects that
the interference effect will be more prominent for the σ + π

than for the π plasmons. This may explain why the σ + π

plasmon peak in Fig. 1 undergoes a more substantial change
with increasing N than the π plasmon peak. To illustrate this
point, we show in Fig. 4 a detailed evolution of the EEL
spectra PN (ω) from Eq. (10) for N going from 1 to 15 in unit
steps, which were calculated with the same parameters of the
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FIG. 4. (Color online) Probability density PN (ω) (in 1/eV) versus
energy loss ω (in eV) evaluated from Eq. (10) for N in the range from
1 to 15 with unit steps, using the same parameters as in Fig. 1 [solid
(black) curves]. Also shown are the results of ab initio calculations
from Ref. 2 for graphene with N = 1,2, and 3 layers [dashed (red,
blue, and green, respectively) curves].

two-fluid model in Eq. (16) as those used in Fig. 1. (For the
sake of further comparison with ab initio calculations, we also
show in our Fig. 4 the results from Fig. 3(b) of Ref. 2 for
the in-plane spectra of graphene with N = 1,2, and 3 layers.)
One confirms in Fig. 4 that in the LEG model the π plasmon
peak moves continuously from about 5 to about 7 eV as N

increases, whereas the spectral structure associated with the
σ + π plasmon appears to evolve as a superposition of two
peaks, one at about 15 eV and the other at about 27 eV, which
do not move much as N increases but rather have their weights
strongly dependent on N . One may further see from Fig. 4 that
the contribution from the peak at about 15 eV dominates the
spectra for N � 5 and is still visible for N � 10, whereas the
spectra with N > 10 are dominated by the peak at about 27 eV.
In particular, it appears in Fig. 4 that the weights of those two
peaks are approximately equal for MLG with N = 6 layers,
giving a value of the relevant interference factor of ωT6 ≈ 0.5.
Such a peculiar composition of the σ + π plasmon peak for
N ∼ 5 − 6 deserves further analysis.

One expects that the plasmon eigenfrequencies in MLG
with finite N will fall into two disjoint groups, each giving
N dispersion curves that correspond to the σ + π and π

plasmons of SLG. All the curves within each group become
degenerate as q → 0, and they approach the corresponding
restoring frequencies of SLG, ωσr and ωπr , but they spread
out at finite q, forming two quasibands.10,11 In Fig. 3 we
show such a quasiband for N = 5 in the σ + π group. (The
corresponding quasiband in the π group is not shown to avoid
cluttering of curves in that group.) Similar quasibands may
be seen in the case of MWCNTs with, e.g., N = 30 walls
in Fig. 4(a) of Ref. 16 based on a single-fluid model for σ

electrons, and N = 10 walls in Fig. 1 of Ref. 17 based on a
two-fluid model for both σ and π electrons. One sees in Fig. 3
that the four lower curves in the σ + π quasiband for N = 5
are quadratically dispersing, whereas the uppermost curve is

linearly dispersing with a slope that is about five times the slope
of the corresponding N = 1 curve for small q. It can be shown
that by setting cos(ωd/v⊥) ≈ 1, as in the case with N = 2,
the uppermost curve in the σ + π quasiband for N = 5 gives
the dominant contribution to the spectrum P5(ω). The large
initial slope of that dispersion curve, along with its tendency
to saturate for higher q values, gives rise to a high-energy tail in
P5(ω) that forms a bump at about 27 eV, which is clearly seen in
the experimental spectrum for N = 5 in Fig. 1. As N further
increases, this saturation of the dispersion curves within a
quasiband becomes more prominent because of a well-defined
upper bound,16 which is best illustrated by resorting to the
eigenmode analysis of an infinite periodic lattice of SLGs.

In the limit N → ∞ we recover the case of HOPG, which
exhibits two bands of dispersion relations corresponding to
the σ + π and π bulk plasmon modes. They are obtained
by letting 0 � k � π/d and solving the equation in Eq. (15)
with χ0(q,ω) from the two-fluid model of Eq. (16) where
γσ = γπ → 0.10–13 The upper and the lower edges of those
bands are defined by k = 0 and k = π/d, respectively, and
the corresponding dispersion relations are given by ω =
ω

up
± (q) and ω = ωlow

± (q), with “+” for the σ + π plasmon
band and “−” for the π plasmon band, where expressions
in Eq. (17) are to be used with the frequencies �ν(q)
in Eq. (19) replaced by �

up
ν (q) = �ν(q)

√
coth(qd/2) and

�low
ν (q) = �ν(q)

√
tanh(qd/2). Those band edges are shown

by the four thick solid (orange) curves in Fig. 3, which all
exhibit parabolic dispersions in the long wavelength limit.

When q → 0 one can show that the lower band edges in
Fig. 3 approach the restoring frequencies of SLG, ωlow

+ (0) =
ωσr and ωlow

− (0) = ωπr , whereas the upper band edges ap-
proach the values ω

up
± (0) that are given by ω± in Eq. (17)

when the frequencies �ν(q) in Eq. (19) are replaced by
�νp = √

4πe2N0
ν /m∗

ν , corresponding to the bulk plasmon
frequency in the νth electron fluid with an effective volume
density of N0

ν ≡ n0
ν/d. Using our parameters from Fig. 1, we

find �σp ≈ 21.7 eV and �πp ≈ 12.5 eV, which are quite close
to the plasmon frequencies listed in Table 2 of Ref. 19 for
the in-plane dielectric function of the ADS model. Hence we
obtain for the long wavelength limits of the upper edges of
the bulk σ + π and π plasmon bands in Fig. 3 the values
ω

up
+ (0) ≈ 27.7 eV and ω

up
− (0) ≈ 7 eV, respectively, which are

remarkably close to the peak positions seen in the PN (ω)
curves in Figs. 1 and 4 for N > 10. This may be rationalized
by referring to the N → ∞ limit of the LEG model, given
in Eq. (13), where we see that the smallness of the factor
kd = ωd/v⊥ in S(q,k) [cf. Eq. (14)] implies that the dominant
spectral weights in P∞(ω) come from the upper edges (defined
by k = 0) of the bulk σ + π and π plasmon bands of HOPG.

Hence, for finite q one expects that the peak positions
of both the π and σ + π plasmons in the EEL spectra of
HOPG should closely follow the dispersion relations of the
upper edges of the corresponding plasmon bands. This is
corroborated in Fig. 3 by a comparison with the peak positions
taken from Figs. 3 and 5 of Ref. 50, which were deduced
from the experimental EEL spectra of HOPG. (We note that
the overdispersion of the σ + π upper band edge relative to
the experimental points at larger q values in Fig. 3 may be
reduced if a finite damping rate is introduced in the two-fluid
model.) In addition, we display in Fig. 3 the peak positions
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obtained in Ref. 18 from ab initio calculations for graphite,
showing good agreement with both the experimental data50

and the upper edges of the plasmon bands. Therefore, the
previously mentioned association of the plasmon peaks in the
EEL spectra of thick samples of MLG or HOPG with the bulk
plasmon modes of graphite2,3 should be made more specific by
stressing that it is the upper edges of the bulk plasmon bands
that give the prevalent contributions to the EEL spectra of such
structures.

On the other hand, for incident electrons at lower speeds,
one expects that increased contributions in the plasmon spectra
of HOPG may also come from the portions of the bulk plasmon
bands with lower energies. In that context, we mention that
Fig. 1 in Ref. 51 shows the results of a HREELS experiment
on HOPG using a 200-eV incident electron beam, where
contributions from the entire σ + π plasmon band are seen to
strongly depend on the electron reflection angle. In particular,
a prominent peak was observed in the spectra at about
13 − 14 eV that did not move much when the reflection angle
was changed.51 While that peak was associated by the author
with a surface plasmon, its presence may be alternatively
explained as resulting from a van Hove type of singularity
in the plasmon density of states at the lower band edge of
the σ + π plasmon band.15 Clearly, further investigation into
the features of high-energy spectra of HOPG in HREELS is
warranted.

It is worthwhile mentioning that the π plasmon band was
probed in a recent experiment by Hambach et al.,5 who used
IXS to measure the frequency-dependent dynamic structure
factor (DSF) of HOPG for momentum transfers beyond its first
Brillouin zone. The experimental data from Fig. 3(a) in Ref. 5
are reproduced in our Fig. 5, along with the results from their
ab initio calculations, showing the frequency dependence of a
region near the π plasmon peak for a range of perpendicular
wave numbers, π � kd � 3π , with a fixed in-plane wave
vector component of about 0.37 Å−1. In particular, the peak
position is seen to oscillate between the values of about 6
and 7 eV, which are commensurate with the extent of the
π plasmon band in our Fig. 3 when one sets q = 0.37 Å−1

and invokes graphene’s nearly isotropic in-plane polarizability.
Furthermore, one can show that the DSF of an infinite periodic
lattice is proportional to the factor

F (q,ω) = �
[

V (q)χ0(q,ω)

1 + S(q,k)V (q)χ0(q,ω)

]
, (20)

which appears in Eq. (13) with S(q,k) defined in Eq. (14).
By using the same parameters as those used in Fig. 1, one
can easily evaluate from Eq. (20) a set of spectral curves for
HOPG with q = 0.37 Å−1 for a range of kd values, which
are seen in Fig. 5 to reproduce all the main features of the
corresponding experimental data and ab initio results for DSF
from Ref. 5, including the π plasmon peak position variation
with kd and its near disappearance for kd = 2π . We take that
this comparison demonstrates both the validity of the concept
of plasmon bands in HOPG and the ability of the LEG model
to describe them in a simple analytical manner.

Regarding the applicability of the N → ∞ limit of the
LEG model in the context of EELS in STEM, we obviously
require ωTN � 1 because, in view of the strong peaking of
the kinematic factor at q = ω/v⊥ in P∞(ω) from Eq. (13), this

FIG. 5. (Color online) Dynamic structure factor [solid (blue)
lines] is evaluated from Eq. (20) and appropriately scaled to compare
it with the corresponding experimental IXS data (points) from Ref. 5
with a fixed in-plane wave number of q = 0.37 Å−1 for the indicated
values of the perpendicular wave number k. Also shown are the results
of ab initio calculations from Ref. 5 [dashed (red) lines].

condition amounts to Ndq � 1, which guarantees that the end
effects are negligible. When ωTN ∼ 1 the interference is strong
and the end effects in such MLG may not be neglected, making
it necessary to use PN (ω) from Eq. (10), even when N � 1.
To illustrate this point, we mention that when attempting to
model in Fig. 1 the experimental EEL spectra for the thickest
MLG from Ref. 2 with “>10” layers, we could not obtain
nearly as good a fit with P∞(ω) as we did with PN (ω) for
N = 13. The fact that the interference factor in this case takes
the value ωT13 ≈ 1 points to a need to look elsewhere for the
experimental EEL spectra of thick enough MLG, where we
may test the applicability of P∞(ω) from Eq. (13) to HOPG.

In that context, we find it instructive to model the recent
experiment by Carbone et al.,3 who used their UEM in the
so-called static mode to obtain the EEL spectra of a slab of
HOPG, having such a thickness that ωTN ≈ 20. In Fig. 6 we
compare the experimental curve from Fig. 2 of Ref. 3 for
HOPG with our result for the (appropriately scaled) probability
density P∞(ω) from Eq. (13), where we used the two-fluid
model for χ0(q,ω) given in Eq. (16). In order to achieve the
best fit with the experiment, we used the same parameters
for the P∞(ω) curve in Fig. 6 as those used for the PN (ω)
curves in Figs. 1 and 4, except for γσ , which was increased
to γσ = 9.52 eV to take into account that the damping rate
for σ electrons may be increased due to more abundant
impurities or defects in a thick slab of HOPG than in a
few-layer MLG. Our curve for P∞(ω) is seen in Fig. 6 to
reproduce the experiment very well for energies �10 eV due
to the increased parameter γσ , whereas the π plasmon peak is
only qualitatively reproduced in shape but its position fits the
experiment well. The discrepancy between our model and the
experiment at energies �10 eV may be partially ascribed to
the presence of both the zero-loss peak and the photogenerated
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FIG. 6. (Color online) The EEL spectra versus energy loss
(in eV), evaluated from P∞(ω) in Eq. (13) [thick (black) solid line],
along with the corresponding experimental spectrum of HOPG from
Ref. 3 [the (violet) chain curve], which is theoretically decomposed
into a laser-generated peak [thin (black) solid line], π plasmon peak
[thin (black) dash-dot line], a “surface” σ + π plasmon peak [thin
(black) dashed line], and a “bulk” σ + π plasmon peak [thin (black)
dotted line].

charge carrier plasma excitations at around 2.4 eV, which
were not subtracted from the experimental curve in Ref. 3.
We also show in Fig. 4 a phenomenological decomposition
of the experimental curve into four theoretical curves, which
was performed in Ref. 3. Those curves describe contributions
from several processes that were associated by the authors
with the laser-generated region peaked at about 2.4 eV, the
π plasmon peaked at about 7 eV, the surface σ + π plasmon
peaked at about 15 eV with a low weight, and the bulk σ + π

plasmon peaked at about 27 eV with a much larger weight
than its surface counterpart.3 While such a decomposition of
the σ + π plasmon contributions is corroborated by the above
analysis, we believe that it would be more adequate to label
the peaks at 15 and 27 eV as contributions related to the lower
edge (which carries a signature of the SLGs σ + π plasmon
mode) and the upper edge of the bulk σ + π plasmon band in
HOPG, respectively.

IV. CONCLUDING REMARKS

We have shown that a simple and straightforward imple-
mentation of the LEG model9–11 to MLG gives analytical
expressions for the spectra of the energy lost by a fast electron
under normal incidence that provide an explicit account of
the effect of increasing number N of graphene layers on the
high-energy plasmon excitations in MLG. Those expressions
are given in terms of a single-layer polarizability χ0(q,ω)
that may be modeled independently from the LEG model.
By adopting a phenomenological, two-dimensional, two-fluid
model for χ0(q,ω), which includes Lorentz parameters suitable
for describing the dominant π → π∗ and σ → σ ∗ interband
transitions in SLG, we found good agreement with the plasmon
spectra from four independent experiments. In particular, the

shape of such spectra was well reproduced for MLG with N �
10, where the most dramatic change occurs in the π and σ + π

plasmon peaks.2 In addition, it was shown that the experimen-
tal EEL spectra for both MLG with N > 10 (Ref. 2) and a thick
slab of HOPG (Ref. 3) may be well reproduced by the same
model by allowing for increased damping rates in χ0(q,ω).

Specifically, the LEG model reproduced the experimentally
determined peak positions,2 which were found to move from
about 5 to about 7 eV for the π plasmon and from about 15 to
about 27 eV for the σ + π plasmon as the number of layers
in MLG grows from N ∼ 1 to N > 10.2 By referring to the
eigenmode analysis of the underlying MLG structures, both
the plasmon peak positions and the experimentally observed
similarity among the EEL spectra for N = 1,2,3, . . . were
found to be derived from the plasmon spectra of SLG, based on
the smallness of the factor ωd/v⊥ under typical experimental
conditions (low-loss EELS and the 100-keV incident electrons
with d ≈ 3.35 Å−1).2 Hence no association with the surface
plasmons of graphite seems to be justified for the peaks at about
5 and about 15 eV for the π and σ + π plasmons, respectively,
in MLG with few layers. In addition, the high-frequency tails
in the experimental EEL spectra were exactly reproduced by
the LEG model for N = 1 and 2, and were identified as arising
from the plasmon dispersion and from integration over a large
range of the in-plane wave numbers, commensurate with the
experimental conditions.2

On the other hand, for sufficiently thick MLG, such that
Ndω/v⊥ � 1, the limit of an infinite periodic lattice of SLGs
showed that the peaks at about 7 and about 27 eV come
predominantly from the upper edges of the π and σ + π

plasmon bands in the bulk of HOPG, respectively, again
because of the smallness of the factor ωd/v⊥. This seems to be
corroborated by a comparison with the experimental dispersion
relations found from the EEL spectra of graphite.50 Moreover,
it was shown that the N → ∞ limit of the LEG model also
gives good account of a dynamic structure factor that was
measured by IXS of HOPG,5 reproducing the movement of
the π plasmon peak between the corresponding π plasmon
band edges.

When Ndω/v⊥ ∼ 1, the σ + π plasmon peak is seen to
evolve through a sequence of broad structures between 15 and
27 eV,2 which results from the development of a quasiband
of plasmon dispersion curves for MLG with N ∼ 10 that is
a precursor to a fully developed bulk σ + π plasmon band
of HOPG. Furthermore, having in mind that the underlying
semi-infinite lattice of SLGs for N → ∞ does not support
surface states in HOPG placed in the air or vacuum,10,11 one
may conclude that any remaining trace of the peak at about
15 eV for the σ + π plasmon in the EEL spectra of HOPG is
likely to be related to the lower edge of its bulk σ + π plasmon
band3 and not to a surface plasmon of graphite.

Given that small variations in the free parameters, used in
the model adopted for χ0(q,ω), do not corrupt the agreement
found with the four independent experiments,2,3,5,50 we suggest
that using the LEG model for high-energy plasmon excitations
in MLG, HOPG, and other multilayer carbon nanostructures
indeed presents a versatile and robust alternative to other the-
oretical approaches. The novel applications of these analytical
models presented in this work shed light on several aspects
of the problem at hand, including (a) the role of plasmon
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dispersion in the spectra integrated over the wave number,
(b) the role of the dynamical interference factor Ndω/v⊥
in determining which eigenmodes of the underlying MLG
structure have prevalent spectral weights, and (c) the relevance
of the bulk plasmon bands, rather than surface plasmons, in
classifying the observed plasmon peak frequencies.
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