
PHYSICAL REVIEW B 84, 155414 (2011)

Tunneling conductance and local density of states in tight-binding junctions
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We study the relationship between the differential conductance and the local density of states in tight-binding
tunnel junctions where the junction geometry can be varied between the point-contact and the planar-contact
limits. The conductances are found to differ significantly in these two limiting cases. We also examine how the
matrix element influences the tunneling characteristics and produces contrast in a simple model of scanning
tunneling microscope (STM). Some implications regarding the interpretation of STM spectroscopic data in the
cuprates are discussed. The calculations are carried out within the real-space Keldysh formalism.
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I. INTRODUCTION

The spectrum of one-particle excitations is a rich source
of information in the study of condensed-matter systems.1

Among the various tools available to measure the low-energy
excitations, tunneling has become a prominent technique
for electronic materials due to its high energy resolution
and the possibility to setup local probes.2 In a tunneling
experiment, electrons are extracted from or injected into
a sample through a classically forbidden barrier, thereby
probing the spectrum of excitations below and above the
Fermi energy. The practical realization requires to keep the
sample and the probing electrode sufficiently isolated that
they do not significantly interact, and sufficiently close that
a measurable number of electrons can tunnel from one to the
other. This has been achieved in a variety of ways, including the
planar junction with a thin insulating layer3 and the vacuum
junctions obtained, e.g., by breaking the sample4,5 or using
a scanning tunneling microscope (STM) tip.6–8 The precise
relationship between the current-voltage characteristics mea-
sured at the tunnel junction and the spectrum of excitations
has been a matter of continuous research since half a
century.9–36

The problem may be divided into three distinct questions:
(i) is the tunneling-Hamiltonian formalism12 appropriate, and
if yes, how should the tunneling Hamiltonian be defined?
More elaborate approaches have suggested that the tunneling
Hamiltonian can be a good approximation,13,29,31 but the
proper definition of the tunneling matrix element remains
a difficult problem lacking a general solution that would
remain valid for interacting systems and out-of-equilibrium
conditions. (ii) Provided that the tunneling Hamiltonian gives
a good description of the system and that the tunneling
matrix elements are known, how does the current relate to
the excitation spectrum in the electrodes? In particular, is
it possible to measure the density of states (DOS) or the
local DOS (LDOS) when using local probes? This question
is crucial for the interpretation of experimental data, but has
not been thoroughly investigated. (iii) Although surfaces are
of great interest by themselves, tunneling spectroscopy is
often conducted with the aim of addressing bulk properties.
Therefore, when it comes to the interpretation of tunneling
spectra, the question invariably arises, whether the measure-
ments performed by connecting two surfaces are representative
of the bulk materials. We will not address (i) and (iii), but

turn our attention to (ii), which is a well-posed theoretical
problem. In order to cope with (i), we start right away from
a tight-binding Hamiltonian containing two electrodes and
a tunneling term. In order to avoid (iii), we shall study
systems in which the distinction between the bulk and the
surface is irrelevant, at least for the electrode representing the
sample.

The goal of the present study is to explore, using minimal
models, how the junction geometry and the specifics of the
tunneling term influence the current-voltage characteristics
I (V ). We are particularly interested in comparing the dif-
ferential conductance σ (V ) = dI/dV and the DOS, since
these two quantities are commonly believed to be roughly
proportional to each other. The DOS and, more generally, the
one-electron excitations, are very conveniently described by
means of the Green’s function, which is an energy-dependent
nonlocal quantity G(x,x′,ω) in the real-space representation.1

The LDOS, in particular, is directly related to the diagonal
elements of G. The real-space formulation is best suited
for our purposes, as we shall investigate geometrical effects
and consider systems that break translation invariance. The
exact current I (V ) can be expressed in terms of the real-
space Green’s functions using the Keldysh nonequilibrium
formalism.37 In Sec. II, we recall this formalism, which leads to
a compact formula for the current [Eqs. (2) and (3)] involving
only the Green’s functions of the electrodes and the tunneling
amplitudes.14,27 In Secs. III and IV, we use this formula to
compute the I (V ) characteristics of two simple tight-binding
models designed in order to highlight the role of geometry
and dimensionality on the relationship between σ (V ) and
the DOS. These models show, in particular, that Harrison’s
cancellation argument,9 which explains the ohmic behavior
of planar junctions between simple metals, has a relatively
narrow range of validity. In Sec. V, we introduce a toy model
of STM and discuss the role of the matrix element in the
imaging process and the local spectroscopy. Finally, our main
results and their implications are summarized and discussed
in Sec. VI.

II. MODEL AND FORMALISM

The hallmark of vacuum tunnel junctions, when compared
to other electrical contacts, is that the two electrodes remain
electrically well isolated when the junction is formed. This
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is due to the presence of a high barrier strongly reducing
the wave-function overlap. In this situation, a good starting
point is to represent the junction by a tunnel Hamiltonian
that describes single-electron transfers across the barrier.12

The electrodes, on the other hand, are assumed to be in
thermal equilibrium, and the Hamiltonian describing them
to remain unchanged in the presence of the junction, apart
from the electrical bias applied to one of the contacts. This
assumption can only be valid if the potential drop of the biased
junction takes place entirely in the region of the barrier. The
extent to which these various assumptions apply to realistic
experimental setups is obviously a difficult one, and we do
not aim to address it here. We consider instead a class of
ideal tight-binding junctions where these assumptions are build
in from the start. The junction’s differential conductance can
then be evaluated exactly without further approximation, and
the relation between the conductance and the LDOS can be
inspected. In this section, we first review the general formula
for the conductance in terms of the Green’s functions of the
two electrodes and the tunneling amplitudes, and then consider
a few remarkable special situations where the expression of the
conductance can be simplified further. Although we restrict our
applications to the case of noninteracting single-band metals,
many of the quoted expressions apply equally to multiband
interacting systems, as long as the correlations induced by the
tunneling term are negligible in comparison to the correlations
intrinsic to the electrodes.

A. General formula for the differential conductance

Consider two electrodes, left (L) and right (R), de-
scribed by the lattice tight-binding Hamiltonians HL and
HR , respectively. The electrodes being initially decoupled
means that these Hamiltonians commute: [HL,HR] = 0. We
denote the lattice sites in L and R by l and r and the
corresponding electron field operators by ψ†(l) and ψ†(r).
The spin coordinate of the electrons is omitted throughout.
The two electrodes are coupled by a tunneling term

HT =
∑

l r

T (l,r)ψ†(l)ψ(r) + H.c., (1)

so that the system’s Hamiltonian is H = HL + HR + HT .
The tunneling amplitudes T (l,r) are symmetric, and we also
assume that they are real. When a bias is applied to L, a
steady-state current I is established. The calculation of the
current is outlined in Appendix A and gives

I = e

h

∫
dω Re Tr T GK (ω). (2)

T is the matrix with elements T (l,r), and GK is the Keldysh
matrix Green’s function defined in the time domain by
GK (r,l,t) = −i〈[ψ(r,t),ψ†(l,0)]〉 with 〈· · · 〉 the thermody-
namic average with respect to H , the fully formed junction.
The trace is over the sites l of L. Hence the current sums all
closed paths from a point l to itself with excursion in R through
the barrier. For convenience, it is desirable to express GK (ω)
in terms of the Green’s functions of the isolated electrodes.
At this step, we must implement the assumptions that the
bias-induced potential drop takes place in the barrier region,

and that the two electrodes are in thermal equilibrium at the
chemical potentials μL and μR . This gives (see Appendix A)

T GK = (1 − T G+
RT G+

L )−1[(1 − 2fL)T G+
RT (G+

L − G−
L )

+ (1 − 2fR)T (G+
R − G−

R )T G−
L ](1 − T G−

RT G−
L )−1.

(3)

G±
L,R(ω) are the retarded (+) and advanced (−) matrix

Green’s functions in L and R. In the time domain, they read
G±

L (l1,l2,t) = ∓iθ (±t)〈[ψ(l1,t),ψ†(l2,0)]+〉 with [ · ,· ]+
being the anticommutator, and, similarly, for G±

R . In the
frequency domain, we have G−

L,R(ω) = [G+
L,R(ω)]†. fL,R(ω) is

the Fermi distribution measured from μL,R . Equations (2) and
(3) allow to evaluate the current-voltage characteristics I (V ) as
well as the tunneling conductance dI/dV once the electrodes
and the tunneling amplitudes are specified. The size of the
matrices to be considered is given by the number of sites
connected by nonvanishing tunneling matrix elements. The
propagators G±

L,R(ω) must be calculated for the semiinfinite
electrodes, but they are only needed among this same subset of
sites for calculating the current. It should be noted that while
Eq. (2) is general, Eq. (3) is not exact if there are interactions in
the electrodes. For noninteracting electrodes, Eqs. (2) and (3)
reduce to Eq. (37) of Ref. 33 (see Appendix B). The derivation
of Ref. 33 explicitly relies on the assumption of independent
electrons, and seems difficult to generalize. An advantage
of the Keldysh formulation is that interactions can be easily
included, at least formally. In the case of interacting electrodes,
it can be, for example, shown that the current obtained by
inserting the interacting Green’s functions in Eq. (3) correctly
accounts for the correlations intrinsic to the electrodes, but
disregards the correlations induced by the tunneling term.
Within their domain of validity, Eqs. (2) and (3) are exact
at all orders in T (l,r) and V and for arbitrary temperatures.

In vacuum tunneling experiments, one generally uses a
probe to measure a sample. From now on, we shall consider
L as the probe and R as the sample. It is convenient to
measure energies from the chemical potential of the sample:
we thus take μR ≡ 0 and μL = eV . As a result, fR(ω) =
[exp(βω) + 1]−1 ≡ f (ω) with β the inverse temperature, and
fL(ω) = f (ω − eV ). With this convention, G±

R (ω) to be used
in Eq. (3) is the same as that for the isolated sample R, while
G±

L (ω) should be the Green’s function in L with the origin
of energies shifted by eV , i.e., G±

L (ω) = G±
L,0(ω − eV ) with

G±
L,0 the Green’s function in the absence of bias. Therefore

two kinds of terms appear when taking the bias derivative
dI/dV : those from the bias dependence of fL and those from
the bias dependence of G±

L . For L to be a useful probe, its
properties must vary slowly with energy, so that the latter
terms are expected to be small compared to the former. We
consequently split the differential conductance and define

σ (V ) = dI

dV
= σ̃ (V ) + δσ (V ). (4)

Retaining only the bias dependence of fL in Eq. (3), the
dominant contribution to the conductance is

σ̃ (V ) = e2

h

∫
dω [−f ′(ω − eV )]2Re Tr T G+

RT (G−
L − G+

L )

× (1 − T G−
RT G−

L )−1(1 − T G+
RT G+

L )−1. (5)
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The ω dependence of G±
L,R is implicit, f ′ is the derivative

of f , and we have used the cyclic property of the trace.
Equation (5) is a convenient starting point for performing
analytical calculations: at zero temperature, −f ′(ω − eV )
becomes δ(ω − eV ), and the energy integral drops. σ̃ (V ) then
only depends on G±

L (eV ) = G±
L,0(0) and G±

R (eV ). It is also
seen that the main effect of a finite temperature on σ̃ (V ),
apart from small contributions related to the bias dependence
of G±

L , is to thermally broaden the zero-temperature curve.
We have checked on simple models that σ̃ (V ) gives the
same conductance as the Landauer-Büttiker formula38 at zero
temperature, provided that the bias eV in L is taken into
account when calculating the scattering matrix. Hence δσ (V )
corresponds to the difference between the differential and the
ballistic conductances.

B. Particular cases

In this section, we present more explicit expressions for the
conductance, in a few limiting situations depicted in Fig. 1.
While for a generic junction the matrix structure in Eq. (5)
cannot be simplified further, in these cases the conductance
can be reduced to a scalar form. The first case is the “point
contact,” by which we mean a junction such that the tunneling
is only possible from a single site l0 in L to a single site
r0 in R. The tunneling amplitude is T (l,r) = tδl l0δr r0 . In
reciprocal space, the matrix element is therefore independent
of momentum, |Tkk′ |2 ≡ t2. The latter assumption is quite
common—although often implicit—in theoretical studies of
tunnel junctions. The fact that it is a drastic simplification
appears somewhat more clearly when it is formulated in
real space. The locality of the tunneling amplitude implies
that all matrices in Eq. (5) become scalars. Using the defi-
nition of the LDOS, e.g., NL(l0,ω) = − 1

π
Im G+

L (l0,l0,ω) =
1

2πi
[G−

L (l0,l0,ω) − G+
L (l0,l0,ω)], one readily obtains27

σ̃ (V )

= e2

h

∫
dω [−f ′(ω − eV )]NL(l0,ω)

× (2πt)2NR(r0,ω)

|1 − t2G+
L (l0,l0,ω)G+

R (r0,r0,ω)|2 (point contact).

(6)

At zero temperature and in the weak-tunneling regime
t → 0, we thus have an exact proportionality between
σ̃ (V ) and the sample LDOS at the point r0: σ̃ (V ) ∝

NL,0(l0,0)NR(r0,eV ) + O(t4). NL,0(l0,0) ≡ NL(l0,eV ) is the
LDOS at the Fermi energy and at the point l0 in L. This
proportionality is lost as t increases and becomes comparable
to the typical energy scales in L and R, so that the product
t2G+

LG+
R in the denominator becomes of order unity. In

the class of junctions that we are considering, the weak
point-contact limit is the only case where there can be a strict
proportionality between the tunneling conductance and the
LDOS.39–41

A second case of interest is when the tunneling is possible
from a single point l0 in L to several points r in R. This
can be considered as a crude model for an STM with some
dispersion of the electrons tunneling from the tip. The matrix
element reads T (l,r) = δl l0 t(r). It is still possible to invert the
matrices analytically in this case, and one obtains

σ̃ (V ) = e2

h

∫
dω [−f ′(ω − eV )]NL(l0,ω)

×
(2π )2

∑
r1 r2

t(r1)
(− 1

π

)
Im[G+

R (r1,r2,ω)]t(r2)∣∣1 − G+
L (l0,l0,ω)

∑
r1 r2

t(r1)G+
R (r1,r2,ω)t(r2)

∣∣2

(“STM” junction). (7)

When compared to Eq. (6)—that is recovered by taking
t(r) = tδr r0 —Eq. (7) includes all excursions within R among
sites that are connected back to l0. This leads to interference
between the various paths and to the loss of a simple
proportionality between σ̃ (V ) and the LDOS in R.

The planar analog of the point contact is a junction such
that tunneling is only possible between sites facing each
other on the two surfaces. The matrix element is T (l,r) =
tδl⊥l0δr⊥r0δl‖r‖ , where l⊥ and r⊥ denote the spatial coordinates
in the direction perpendicular to the junction’s plane, l0 and
r0 are the coordinates of the surfaces of L and R, and l‖ and
r‖ denote the coordinates in the plane of the junction. In the
momentum representation k‖, all matrices in Eq. (5) again
become scalars, leading to

σ̃ (V ) = e2

h

∫
dω [−f ′(ω − eV )]

∑
k‖

AL(k‖,l0,l0,ω)

× (2πt)2AR(k‖,r0,r0,ω)

|1 − t2G+
L (k‖,l0,l0,ω)G+

R (k‖,r0,r0,ω)|2
(local planar junction). (8)

Generic junction Point contact “STM” junction Local planar junction Planar junction

T (l, r) T (l, r) = t δll0δrr0 T (l, r) = δll0t(r) t δl⊥l0δr⊥r0δl r δl⊥l0δr⊥r0t(l − r )

l r
r

l0l0
r0

t
t

t(r)

(l
,l

0
)

( l
,l

0
)

(r
,r0 )

(r
, r0 )

FIG. 1. Generic tight-binding tunnel junction (left), and particular examples with the corresponding tunneling matrix element. The black
dots represent discrete points of an arbitrary tight-binding lattice.
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We have introduced the local spectral functions
AL(k‖,l1,l2,ω) = 1

2πi
[G−

L (k‖,l1,l2,ω) − G+
L (k‖,l1,l2,ω)], etc.,

whose diagonal part AL(k‖,l0,l0,ω) has the physical meaning
of a k‖-resolved LDOS on the surface of L. The crucial
difference between Eqs. (6) and (8) is the conservation of
in-plane momentum in the latter, which imposes to match
states with the same k‖ across the barrier. This restriction
implies that the conductance per channel must be smaller in
the planar than in the point-contact case, as we shall see below.
Finally, we may consider a straightforward generalization of
the local planar junction by including additional tunneling
paths as depicted in the rightmost panel of Fig. 1. The
matrix element becomes T (l,r) = δl⊥l0δr⊥r0 t(l‖ − r‖),
but since the translation invariance is preserved the
structure of the matrices remains the same as in the previous
situation:

σ̃ (V ) = e2

h

∫
dω [−f ′(ω − eV )]

∑
k‖

AL(k‖,l0,l0,ω)

× [2πt(k‖)]2AR(k‖,r0,r0,ω)

|1 − t2(k‖)G+
L (k‖,l0,l0,ω)G+

R (k‖,r0,r0,ω)|2
(planar junction), (9)

with t(k‖) the Fourier transform of t(l‖ − r‖).
In the subsequent sections, we shall use Eqs. (2)–(4) to

compute numerically the exact conductance, including the
small correction δσ due to the electronic structure in L. For the
discussion and interpretation of the results, however, extensive
use will be made of the simpler expressions (5)–(9).

III. TWO-DIMENSIONAL T-SHAPED JUNCTION

We have seen that in the point-contact limit and in the
weak-tunneling regime the conductance is proportional to the
sample LDOS. This proportionality is lost when the coupling
increases. It is also expected to be lost in the planar geometry
due to the conservation of in-plane momentum. In order to
investigate these various limits and the transition between
them, we consider the system represented in Fig. 2. The probe
L is made of nL interconnected semiinfinite chains forming a
flat rod. The Hamiltonian HL involves only nearest-neighbor
hopping with energy tL. The sample R is an infinite linear
chain with nearest-neighbor hopping tR . We consider L and R

to be half-filled for simplicity. Finally, the tunneling term HT

connects neighboring sites at the interface with the hopping
t . For nL = 1, we have a point contact, while for nL = ∞,
we have a local planar junction according to the terminology
of Fig. 1. This is perhaps the simplest model to address the
relation between the conductance and the LDOS. The sample
has a position-independent LDOS given by

NR(ω) = 1

2π |tR|Re

{
1√

1 − [ω/(2tR)]2

}
. (10)

This LDOS has square-root band edges divergences at ±2|tR|
that are easily identified if they appear in the differential
conductance. We need the retarded and advanced Green’s

x

y

n
L

ch
ai

n
s

t

tR

tL

FIG. 2. Tunnel junction between a semi-infinite rod and an
infinite one-dimensional chain. For nL = 1, the junction is a T-shaped
point contact while for nL = ∞, it is a local planar junction according
to the terminology of Fig. 1.

functions in both electrodes. In R, they can be given in closed
form:

G±
R (r1,r2,ω) =

∫ π

−π

dk

2π

eik(r1−r2)

ω − 2tR cos k ± i0+

= 1

2tR
Rr1−r2

(
ω ± i0+

2tR

)
,

(11)

Rn(z) = 1√
z2 − 1

[θ (Re z)(z −
√

z2 − 1)|n|

− θ (−Re z)(z +
√

z2 − 1)|n|].

On the surface of L (x = 0), we may express the Green’s
function in terms of the single-electron wave functions
ϕkq(x,y) as

G±
L (l1,l2,ω) =

∑
q

∫ π

−π

dk

2π

ϕkq(0,l1)ϕ∗
kq(0,l2)

ω − eV − εkq ± i0+ . (12)

Indices l1,l2 = 1, . . . ,nL run on the chains in the y direction,
εkq are the single-electron energies with k (q) the momentum
along x (y), and we have introduced the bias eV as dis-
cussed in the previous section. For open boundary conditions,
ϕkq(x,0) = ϕkq(x,nL + 1) = ϕkq(1,l) = 0, the wave functions
that solve HL are

ϕkq(x,l) = [eik(x−1) − eik(1−x)]

√
1

nL + 1
sin(ql). (13)

The energies are εkq = 2tL(cos k + cos q) and the discrete q

momenta are q = λπ
nL+1 , λ = 1, . . . ,nL. With this, the k integral

can be evaluated and the Green’s function becomes

G±
L (l1,l2,ω) = 2/tL

nL + 1

∑
q

sin(ql1) sin(ql2)

×L

(
ω − eV ± i0+

2tL
− cos q

)
, (14)

L(z) = z − √
z + 1

√
z − 1.

The matrices G±
L,R of Eqs. (11) and (14), together with the

matrix T , which is just t × 1 in this case, must be substituted
into Eqs. (2)–(4) for evaluating the differential conductance.
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FIG. 3. Local density of states on the surface of the left system
in Fig. 2. As nL increases, the LDOS in the central portion of the
surface approaches the limiting value for nL = ∞, while the LDOS
close to l = 1 has a different shape.

The LDOS at the surface of L can be obtained from G+
L

as NL(l,ω) = (−1/π )Im G+
L (l,l,ω); it is neither energy nor

position independent due to the open boundaries. Since we
use L as a probe, some understanding of NL(l,ω) is necessary
before discussing the conductance. In Fig. 3, we display
NL(l,ω) for various values of nL. At nL = 1, there is only
one point in contact with the sample R. The LDOS at that
point is smooth and takes the form of a half-circle,

N
(nL=1)
L (ω) = 1

π |tL|Re
√

1 − [ω/(2tL)]2, (15)

with a half-bandwidth of 2|tL|. This contrasts with the LDOS
far in the chain (x � 0), which develops band-edge square-
root divergences and approaches the form given by Eq. (10)
with tL substituted for tR . The absence of divergences in
NL(l,ω) qualifies L as a convenient probe. This remains
true for nL > 1, although additional structures develop in the
LDOS. For nL = 2, the two sites on the surface have the same
LDOS by inversion symmetry, with cusps at ω = ±|tL|, and
the half-bandwidth increases to 3|tL|. For nL = 3, the LDOS
on the central site (l = 2) and on the borders (l = 1, l = 3)
have the same bandwidth but different energy dependencies,
and the same applies to all nL � 3. The general trend is that
the LDOS becomes smoother and smoother as nL increases,
and approaches the limiting value for nL = ∞ with a half-
bandwidth of 4|tL|, except at the borders l = 1 and l = nL

where a different limiting behavior is found. With increasing
nL, the characteristic energy of the structures in the LDOS
decreases, but at the same time their amplitude is reduced. For
L to be a good probe at any nL, the structures in NL(l,ω) should
not prevent the identification in the conductance of structures
due to the sample R. This can be achieved by taking tL � tR .

We have calculated numerically the conductance of the
T-shaped junction of Fig. 2 as a function of nL, t , and V for
tL = 10tR and zero temperature. The zero-bias conductance is
presented in Fig. 4. In the tunneling regime where t � tL,tR ,
σ (0) increases as t2 and is roughly proportional to the contact
size nL as shown in the inset. Specifically, we have

σ (0) = e2

h
a(nL)nL

2t2

|tLtR| + O(t4) (16)

σ
(0

)
(e

2
/
h
)

σ
(0

)
e

2 h
n

L
2
t2

|t L
t R
|

t/tL

t/tL

0
0

0
0

0.5

0.5

1

1
1

1

1.5

1.5

2

nL = 1

nL = 1

2

2

4

4

88
16

16

32

32

FIG. 4. Zero-bias differential conductance of the T-shaped junc-
tion depicted in Fig. 2 for tL = 10tR and zero temperature. The inset
shows the same data rescaled as indicated.

with a(nL) a slow function of nL: a(1) = 1, a(2) = √
3/2, and

a(nL � 1) → 1. a(2) is equal to the ratio of the zero-energy
LDOS in L for nL = 2 and nL = 1. Hence the reduced
conductance for nL = 2 reflects the reduced zero-energy
LDOS seen in Fig. 3. In Fig. 4, one sees that for nL = 1,
the zero-bias conductance is bounded by one conductance
quantum. This limitation is imposed by the probe, which offers
only one conducting channel. For nL > 1, the limit comes from
the two outgoing channels of the sample, and the conductance
has an upper limit of 2e2/h irrespective of nL. Finally, at large
t , σ (0) drops as 8(e2/h)|tLtR|/t2 irrespective of the contact
size nL.

In Fig. 5(a), we compare the bias-dependence of the differ-
ential conductance σ (V ) with the sample LDOS NR(eV ) in the
tunneling regime t � tL,tR . For nL = 1 and nL = 2, the two
quantities are almost undistinguishable, but for nL > 2, they
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FIG. 5. (a) Differential conductance of the T-shaped junction
depicted in Fig. 2 for tL = 10tR = 100t and zero temperature (black
lines), compared with the sample LDOS [thick gray line, Eq. (10)].
The dashed gray curve for nL = ∞ represents Eq. (20) and does
not contain the small correction δσ (V ). (b) Function |Mqk|2 defined
in Eq. (19) for the lowest discrete momentum q = π/(nL + 1). The
function is unity for nL = 1 and approaches 2πδ(k − q) as nL → ∞,
imposing the conservation of momentum at the planar junction.
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start to deviate. Most noticeably, the signature of the band-edge
singularity in NR(eV ) is suppressed from the conductance, and
the contact becomes ohmic as we approach the planar junction
limit nL = ∞. With our choice of parameters, the correction
δσ to the conductance remains small compared to σ̃ in the
range of biases considered. Therefore, we shall neglect δσ for
the analysis of the results in Fig. 5. At nL = 1, Eq. (6) applies
and we can deduce at zero temperature:

σ̃ (nL=1)(V ) = e2

h

4πt2

|tL|
NR(eV )

[1 + πt2/|tL| NR(eV )]2
. (17)

This very simple expression results because the real part
of the in-chain local propagator G+

R (0,0,ω) vanishes within
the band, so that only the imaginary part, namely the DOS,
remains in the denominator. Equation (17) confirms that in the
point-contact limit, the differential conductance is proportional
to the sample LDOS for t → 0. According to Eq. (17), the
conductance should vanish for V > 2|tR|, while the actual
conductance turns slightly negative above 2|tR| (not shown in
the figures). The negative δσ (V ) has a simple interpretation:
when the bias reaches the band edge at 2|tR|, the current starts
to decrease due to the downward curvature of the probe LDOS
(see Fig. 3), resulting in negative differential conductance.
This effect cannot be captured by σ̃ (V ), which neglects the
bias dependence of the Green’s functions in the probe.

For arbitrary nL, the conductance can be evaluated explic-
itly (see Appendix C) as

σ̃ (V ) = e2

h

4πt2

|tL| NR(eV )
∑

q

| sin q| |Mqk|2 + O(t4), (18)

where

|Mqk|2 = sin2 q{1 − cos[q(nL + 1)] cos[k(nL + 1)]}
(nL + 1)(cos q − cos k)2

(19)

and cos k = eV/(2tR). The function |Mqk|2 deals with the
matching of momenta at the junction. It is displayed in
Fig. 5(b) as a function of k for the lowest q value. At
nL = 1, there is only one q value, q = π/2, and |Mqk|2 = 1
so that we recover Eq. (17). For nL = ∞, we have |Mqk|2 =
2πδ(k − q) expressing the conservation of momentum at the
planar junction. In this limit, the q sum in Eq. (18) can be
converted to an integral and yields nL| sin k|. Since k is fixed by
V , we furthermore have nL| sin k| = nL/[2π |tR|NR(eV )] for
|eV/(2R)| < 1 and nL| sin k| = 0 otherwise. Hence the LDOS
NR(eV ) in Eq. (18) is exactly canceled in the planar junction
and we get ohmic behavior:

σ̃ (nL=∞)(V ) = e2

h
nL

2t2

|tLtR|θ (2|tR| − |eV |) + O(t4). (20)

This result can also be derived directly from Eq. (8). It shows
that the cancellation of the LDOS singularity in the planar
junction requires the exact conservation of momentum at the
interface. Although the ohmic conductance of Eq. (20) seems
to be an instance of Harrison’s cancellation argument,9 it is
not. In Harrison’s treatment of planar junctions between simple
metals, there is a cancellation between the group-velocity and
the DOS in the direction of the current. The DOS factors in
the direction perpendicular to the current are also canceled, but
for a different reason, namely, the exponential suppression of
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FIG. 6. Differential conductance of the T-shaped junction de-
picted in Fig. 2 with nL = 1 (left panel) and nL = 8 (right panel)
for tL = 10tR and various t . The thick gray lines show the sample
LDOS (10).

large perpendicular momenta in the tunneling matrix element.
In our case, the matrix element is momentum independent, and
furthermore, the sample has no extension along the x direction,
so that both ingredients of Harrison’s argument are irrelevant.

To finish this section, we point out that, in addition to
the kinematic constraint due to conservation of in-plane
momentum, the increase of the tunneling amplitude also leads
to a suppression of the LDOS singularity in the conductance,
as illustrated in Fig. 6. Even in the point-contact limit, the
band-edge singularity is suppressed as t increases. This is
obvious from Eq. (17) since σ̃ (nL=1)(V ) ∼ 1/NR(eV ) at large t .
We stress, however, that the validity of our treatment becomes
questionable as t increases, since the assumption that the
potential drop is confined to the barrier region will loose
validity at some point. For example, if t = tL, there is actually
no tunnel barrier, and it is not clear where the potential drop
should take place.

IV. 3D JUNCTION TO A 2D LAYER

In the previous section, we saw that the conservation of
in-plane momentum and/or the lowering of the tunnel barrier
lead to a suppression of the sample band edge singularity in
the tunneling conductance. Here, we investigate the case of a
singularity that is not at the band edge, but at zero energy. In the
system of Fig. 2, one could induce a square-root divergence
at zero energy by adding next-nearest-neighbor hopping to
HR . The system of Fig. 2 has academic rather than practical
interest, however. We consider instead the junction represented
in Fig. 7, which shares some geometrical similarities with
realistic systems, in particular the tunnel junctions involving
quasi-two-dimensional (2D) layered materials like the high-Tc

superconductors. The probe L is a bar of lateral size nL × nL

extending from z = 0 to z = −∞, and the sample R is an
infinite plane. Nearest-neighbor sites in L (R) are connected
by a hopping energy tL (tR), while neighboring sites at the
junction are connected by a tunneling amplitude t . As before,
we take L and R half-filled for simplicity.
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FIG. 7. Tunnel junction to a two-dimensional layer. The probe
(left) is semiinfinite in the z direction and has a finite cross section
of size nL × nL. The sample (right) is an infinite two-dimensional
plane. For nL = 1, we have a point contact while for nL = ∞, we
have a local planar junction following the terminology of Fig. 1.

In the sample, the Green’s function reads

G±
R (r1,r2,ω) =

∫ π

−π

d2k

(2π )2

eik·(r1−r2)

ω − εR
k ± i0+ (21)

with εR
k = 2tR(cos kx + cos ky) and r1,2 the sites of the 2D

lattice. The corresponding LDOS (−1/π )Im G+
R (r,r,ω) is

translation invariant and presents a logarithmic van Hove
singularity at zero energy:

NR(ω) = 1

2π2|tR|K{1 − [ω/(4tR)]2}θ (4|tR| − |ω|). (22)

K is the complete elliptic integral of the first kind. On the z = 0
surface of the probe, the Green’s function for open boundary
conditions is a straightforward generalization of Eq. (14):

G±
L (l1,l2,ω) = 4/tL

(nL + 1)2

∑
qx,qy

sin(qxl1x) sin(qxl2x) sin(qyl1y)

× sin(qyl2y)L

(
ω − eV − εL

q ± i0+

2tL

)
(23)

with εL
q = 2tL(cos qx + cos qy) and l1,2 the positions of the n2

L

surface sites. The LDOS on the surface presents no divergence,
but cusps whose energy scale and amplitude decrease as nL

increases, like those in Fig. 3. Taking tL = 10tR is enough to
maintain the probe-related conductance correction δσ small
with respect to σ̃ .

In order to evaluate accurately the Green’s function in
Eq. (21), we perform analytically the momentum integration
along one direction, and numerically along the other, using
fast Fourier transforms with N = 216 discrete momenta. The
infinitesimal 0+ is replaced by 1/N , which ensures a high
energy resolution.

The resulting conductance is displayed in Fig. 8 for
tL = 10tR = 100t and various probe sizes nL. At nL = 1,
the conductance follows accurately the LDOS consistently
with Eq. (6), since the junction is a point contact. Something
surprising happens at nL = 2: the conductance is completely
suppressed at the band edges, while the signature of the van
Hove singularity remains at the band center. This is due to an

σ
(V

)
e

2 h
n

2 L
4
π

t2

|t L
t R

|

eV /|tR |

NR(eV ) × |tR |
tL = 10tR

= 100t

0
0

0.1

0.2

0.3

−4 −2 2 4

nL = 1

24

8∞

FIG. 8. Differential conductance of the junction depicted in Fig. 7
for tL = 10tR = 100t and zero temperature (black lines), compared
with the sample LDOS [thick gray line, Eq. (22)]. The dashed gray
curve for nL = ∞ represents Eq. (25) and does not contain the small
correction δσ (V ).

interference between two tunneling paths, which is destructive
at the band edges. According to the general formula (2), there
are three types of paths contributing to the current at lowest
order in t for nL = 2. In the first type, the electron starts
from one site on the surface of L, tunnels to the sample R

and immediately tunnels back to the starting point. This path
involves only local propagators in L and R. In the second type,
the electron tunnels into R, propagates to a neighboring site,
tunnels back to L, and closes the loop by returning to the initial
site. It turns out that this path does not contribute because
the advanced and retarded propagators in L are identical at
zero energy and cancel [see Eq. (5)] for nearest-neighbor
sites. Finally, in the third path, the electron propagates to a
next-nearest-neighbor site in R after tunneling, tunnels back,
and closes the loop. This latter path contributes to the current
with the same amplitude as the first one, but with the opposite
sign because the local and next-nearest neighbor propagators
in L are opposite at zero energy. Collecting all terms we find

σ̃ (nL=2)(V )

= −e2

h

8t2

tL
Im[G+

R (0,0,eV ) − G+
R (1,1,eV )] + O(t4)

(24)

with G+
R (0,0,eV ) and G+

R (1,1,eV ) being the local and next-
nearest-neighbor propagators in R, respectively. At the band
edges, corresponding to (0,0) and (π,π ) states, these two
quantities have the same imaginary part, explaining the sup-
pression of the conductance. The behavior of the conductance
is qualitatively similar for all sizes nL � 2: remarkably, the
signature of the van Hove singularity remains sharp in the
conductance, even in the planar junction limit. This contrasts
with the suppression of the square-root singularity in Fig. 5.
For nL = ∞, the conductance can be evaluated analytically
starting from Eq. (8); we find

σ̃ (nL=∞)(V ) = e2

h
n2

L

4πt2

|tL| NR(eV )Re

√
1 −

(
eV

2tR

)2

+O(t4).

(25)
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FIG. 9. Zero-temperature differential conductance of the junction
depicted in Fig. 7 in the point-contact limit (nL = 1) for tL = 10tR
and various values of t .

Equation (25) is plotted as the dashed gray line in Fig. 8: in
the planar junction the band edges are cut, but the van Hove
singularity remains. This behavior is reversed if instead of
increasing nL we keep nL = 1 and increase t (see Fig. 9).
In this situation, the conductance remains large close to the
band edges, while the van Hove singularity gets suppressed.
As discussed at the end of the previous section, however, the
validity of the model becomes questionable as t increases.

We can conclude that Harrison’s result9 does not apply in
the case of Fig. 7 either: extrapolating the results of Ref. 9,
one would predict an ohmic behavior for the planar junction,
while the actual characteristics is strongly nonlinear, and the
effective bandwidth deduced from the conductance curve is
two times smaller than the true sample bandwidth. Further
discussion of these issues is provided in Sec. VI.

V. MOMENTUM-DEPENDENCE OF THE MATRIX
ELEMENT

In this section, we discuss the most prominent effects asso-
ciated with a momentum dependence of the tunneling matrix
element. For this purpose, we consider the system represented
in Fig. 10. The sample is an infinite two-dimensional layer
like in the preceding section. It’s Green’s function and local
DOS are given by Eqs. (21) and (22), respectively. The probe
is a semiinfinite chain corresponding to the nL = 1 limit in
Secs. III and IV. The tunneling is not constrained to be local,
but can take place from the extremity of L to various sites r
in R with an amplitude t(r). Figure 10 is a particular case of
the “STM-like” junction sketched in Fig. 1. We will focus on
describing how the matrix element t(r) can change the simple
proportionality, which is realized in the local limit, between
the conductance and the LDOS.

The main contribution to the conductance at zero tem-
perature can be deduced from Eq. (7). Making use of the
translational invariance in the sample we find

σ̃ (V ) = e2

h

4π

|tL|
1
N

∑
k |t(k)|2AR(k,eV )∣∣1 + i

|tL|
1
N

∑
k |t(k)|2G+

R (k,eV )
∣∣2 , (26)

t(r)

tR

tL

FIG. 10. “STM-like” junction to a two-dimensional layer. The
probe is a semiinfinite nearest-neighbor chain with hopping tL, and
the sample is an infinite two-dimensional plane with hopping tR .
Tunneling can take place from the extremity of the probe to various
sites in the sample.

where G+
R (k,eV ) = (eV − εR

k + i0+)−1 with εR
k =

2tR(cos kx + cos ky), AR(k,eV ) = δ(eV − εR
k ) is the spectral

function, t(k) is the Fourier transform of t(r), and N is the
number of k points. We shall restrict to the tunneling regime
t(r) � tL,tR , in which case we have the simple result

σ̃ (V ) = e2

h

4π

|tL|
1

N

∑
k

|t(k)|2AR(k,eV ) + O(t4). (27)

Hence the conductance is an average over sample states in
reciprocal space, each state being weighted by |t(k)|2. A
formula analogous to Eq. (27) has been occasionally used
to analyze tunneling spectra of the cuprates.8 We stress here,
though, that the validity of Eq. (27) does not extend beyond
the simple model of Fig. 10. In particular, this expression
cannot capture interference effects taking place within the
probe, such as those responsible for the suppression of the
band-edge conductance in Fig. 8.

The simplest situation is the local limit t(r) = t0δr r0 , or
t(k) = t0. In this case, the conductance reflects accurately the
DOS as we have seen in the previous section; this is also clear
from Eq. (27) since (1/N )

∑
k AR(k,eV ) = NR(eV ). The sec-

ond case of interest is when the “tip” is located in-between two
sites of the sample, above a nearest-neighbor bond. To begin
with, it is most natural to assume that the tunneling amplitude
is the same for the two nearest-neighbor sites below the tip,
and zero otherwise. The resulting differential conductance
is shown in Fig. 11(a), and deviates significantly from the
DOS: it is suppressed at the lower band edge and enhanced
at the upper edge. This is easily understood considering that
the matrix element t(k) ∼ cos(kx/2) or cos(ky/2) depending
on the bond orientation. In either case, the matrix element
vanishes at (π,π ) (lower band edge) and is largest at � = (0,0)
(upper band edge). The asymmetric conductance can also be
interpreted as the interference between two types of tunneling
paths in real space. The first path involves the local propagators
in L and R, while the second involves the local propagator in
L and the nearest-neighbor propagator in R; we thus find
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FIG. 11. (a) Zero-temperature differential conductance of the
junction depicted in Fig. 10 with a tunneling amplitude given by
t0/

√
2 for one pair of neighboring sites and zero otherwise (see

the inset). The momentum dependence of the matrix element is
indicated above the graph; the sample LDOS is displayed in gray
for comparison. (b) Same as (a) with a tunneling amplitude given by
t0/2 for four sites around a plaquette and zero otherwise. (c) Map
of the tip-sample distance obtained in constant-current mode using
the matrix element (28) with κ = 5. The distance is largest (white)
above the lattice sites. (d) Corresponding conductance map evaluated
at eV = 2tR . The conductance is largest (white) between the lattice
sites. The model parameters are tL = 10tR = 100t0.

σ̃ (V ) ∝ −Im[G+
R (0,0,eV ) + G+

R (1,0,eV )] at lowest order in
t0. For a (π,π ) state G+

R (0,0,eV ) and G+
R (1,0,eV ) cancel,

while for a � state they add up.
Let’s now assume that the tip is located above the center

of a plaquette. The tunneling amplitudes are equal for the
four sample sites forming the plaquette, and they vanish
elsewhere. The resulting conductance displayed in Fig. 11(b)
is strongly asymmetric, this time the signature of the van
Hove singularity is completely suppressed, owing to the matrix
element being zero both at (π,π ) and (π,0). Considering
the various tunneling paths, we get in this case σ̃ (V ) ∝
−Im[G+

R (0,0,eV ) + 2G+
R (1,0,eV ) + G+

R (1,1,eV )].
The two extreme cases of Figs. 11(a) and 11(b) suggest that

by scanning a tip over a discrete lattice, one can observe large
variations of the local tunneling conductance if the “tunneling
cone” is sufficiently narrow, i.e., if only the sites closest to the
tip contribute significantly to the current. As a generalization
of these two extreme cases, we now consider a tunneling
amplitude that is a continuous function of the tip position
l , decaying exponentially with the distance to the tip:

t(r) = t0e
−κ(|r−l|−d0). (28)

d0 is a reference distance set equal to the sample lattice
parameter. κ controls the opening of the tunneling cone.

We may relate κ to an effective work function φ of the
junction through the relation φ/EF = (κ/kF)2 ∼ (κ/π )2. φ

thus varies between 0.4 and 2.5 times EF for κ ranging
between two and five in units of the sample lattice. The
vertical tip-sample separation d (out-of-plane coordinate of
l) is adjusted in order to keep the total current fixed, in the
fashion of a constant-current STM experiment. The reference
current is set to the value calculated at eV = 2tR when the tip
sits on top of a lattice site. For κ = 2, the tunneling cone
is wide and the current averages over several paths. As a
result, the conductance is almost uniform when scanning the
tip over the lattice. Furthermore, it is strongly asymmetric,
almost completely suppressed at negative bias and peaked
at positive bias. Indeed, as κ → 0, we approach the limit
t(k) = t0δk,0 where tunneling is prohibited except for the �

state at the upper band edge. The situation is more interesting
for κ = 5, where the tunneling cone is narrower and the
matrix element interpolates smoothly between the situations
shown in Figs. 11(a) and 11(b). In order to maintain the
current when moving away from a lattice site, the tip has
to approach the sample. The resulting height field displayed in
Fig. 11(c) has a corrugation �d/d ≈ 14%. Figure 11(d) shows
a conductance map calculated simultaneously at eV = 2tR .
Remarkably, the regions near the plaquette centers appear with
the largest conductance, because the total current is fixed, and
at these locations the conductance increases with increasing
bias [Fig. 11(b)]. This can be understood as follows: assume
that the conductance varies as σ (V ) ∝ V α with a position-
dependent exponent α, then the constant-current condition
I (V0) = I0 implies that σ (V0) ∝ 1 + α. Therefore it appears
that in constant-current mode, a conductance map gives an
image of the bias dependence of the local conductance rather
than a horizontal cut of the LDOS. A map of the conductance
at fixed tip height, in contrast, provides an image similar to
Fig. 11(c).

VI. DISCUSSION

The two models studied in Secs. III and IV show that
there can be significant qualitative differences between the
conductances measured at planar and point-contact junctions
to the same given sample. The conservation of in-plane
momentum at the planar junction leads in one case to a
suppression of the band-edge singularity (Sec. III), in the
other case to the complete suppression of the conductance
at the band edge without affecting the singularity at the
band-center (Sec. IV). One can conclude that the differential
conductance is not in general proportional to the sample
DOS at planar junctions, although features of the DOS
may be present in the conductance, like e.g., the van Hove
singularity in Fig. 8. There seems to be no simple rule to
determine a priori whether a singularity of the DOS will or
will not show up in the conductance of a planar junction.
In contrast, at the point contact, a simple proportionality is
found between the conductance and the sample LDOS if the
tunneling amplitude is small. When interpreting tunneling data
measured at real tunnel junctions, one has to wonder which
one of these two limits is the best theoretical standpoint. Both
planar and point-contact limits are appealing theoretically,
as they generally do not require a microscopic modeling
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of the junction. They are not equivalent, though. The use
of planar-junction models2,9,42,43 for interpreting STM data
may therefore appear questionable, since the STM junction is
clearly closer to the point contact than to the planar-junction
limit.6,24–26 Planar-junction models may not even be appropri-
ate for break junctions, in which the uncontrolled roughness of
the interface can prevent conservation of in-plane momentum.
The similitude of the tip-sample junction with a point-contact
is supported by first-principle investigations, indicating that
the STM is most likely a microscopic atom-to-atom contact.44

Once formulated in terms of localized orbitals (e.g., Wannier
functions), the tunneling problem may reduce in this case
to a point contact involving only two localized orbitals, and
thereby lead to a tunneling conductance given by Eq. (6),
i.e., proportional to the sample LDOS in the appropriate
limits.

The applications considered in the present study are sim-
ple noninteracting single-band tight-binding models, but the
formalism we have used has a broader validity. For instance,
Eqs. (2)–(9) remain unchanged if the electrodes are multiband
systems with interactions—the additional complexity being
embodied in the real-space Green’s functions—provided that
there is no interaction between the electrodes. It is also possible
to extend the formalism to continuum models; here, the main
difficulty lies in the definition of the tunneling amplitude
in Eq. (1) for continuous spatial coordinates. The case of
superconducting electrodes requires further work. Due to the
nonconservation of the particle number in the electrodes,
additional terms involving anomalous propagators appear
in the expression of the current, corresponding to Andreev
and Josephson contributions. This problem has been investi-
gated for simple geometries using the tunneling-Hamiltonian
method and the Keldysh nonequilibrium formalism,45–51 but
the role of the junction geometry for tunneling contacts
involving superconductors remains largely unexplored.

Nevertheless, thanks to its sub-meV resolution, tunneling is
particularly useful for investigating the excitation spectrum of
superconductors, whose pairing gap can be small—typically
1 meV for a Tc of 7 K. This was beautifully illustrated by
Giaever and his demonstration of the superconducting gap,52

and later by the detailed observation of vortex cores53–70

and impurity resonances71–78 by STM. The early theory79

has lead to the idea that the differential conductance is
proportional to an effective DOS carrying information about
the superconducting gap function, but no information about the
band structure. Looking closer, it turns out that the information
on the underlying band structure was discarded from the start,
rather than proven to be absent from the tunneling spectrum.
This theory also neglects any momentum dependence of the
matrix element. On the contrary, the theory of Tersoff and
Hamann21–23 for the STM is based on an explicit calculation of
the matrix element, and leads to the idea that the conductance
measures the sample LDOS at the position of the tip. In
this scenario, the experimental STM tunneling conductance
should be compared with the full LDOS containing all band-
structure and many-body effects, as was done in recent years
for optimally-doped cuprate superconductors of the bismuth
family.80–82 It was pointed out in Ref. 83 that the analysis of
STM data for quasi-2D cuprates by means of the effective
DOS concept can lead to erroneous conclusions.

In the Bi-based cuprates, the STM spectra develop with
underdoping a more and more asymmetric shape, with excess
weight at negative bias (occupied states).8 This has been
attributed to the onset of correlations when approaching the
Mott insulating phase.84–86 Another interpretation, based on
atomistic modeling of the tip-sample system, was recently
proposed in terms of copper dz2 states and material-specific
selection rules.87 The asymmetric conductances in Fig. 11
suggest yet another interpretation, based on the momentum
dependence (rather than the energy dependence) of the
tunneling matrix element, to explain at least part of the
asymmetry in the cuprate STM spectra. A matrix element
of the form (28) invariably favors the zone-center states, and
leads for the model of Fig. 10 to an asymmetric conductance
with excess weight at positive bias (zone-center states have
positive energy in Sec. V because tR > 0). In the cuprates,
the zone-center states lie at negative energy, so that this same
mechanism would produce an asymmetry with excess weight
at negative bias, as observed experimentally. In addition to
overweighing the zone-center states, the matrix element of
Eq. (28) introduces local variations of this weighting, yielding
more asymmetric conductance spectra in between lattice sites.
If the matrix element indeed contributes to the conductance
asymmetry in STM junctions to the cuprates, one expects to
see variations of this asymmetry when moving the tip over
subunit cell distances. Interestingly, recent investigations of
the conductance asymmetry have unveiled such subnanometer
variations, with enhanced asymmetry at the center of the
plaquette formed by copper sites.88,89

VII. CONCLUSION

We have explored the relationship between the differential
tunneling conductance and the local density of states (LDOS)
in tunnel junctions, in particular the role of the junction
geometry. Our approach has been to solve exactly within the
Keldysh formalism simple tight-binding models in which the
geometry can be tuned from the limit of a point contact to
the limit of a planar contact. While the conductance is simply
proportional to the sample LDOS at tunneling point contacts,
there can be significant differences between the conductance
and the sample LDOS at planar junctions, including the
complete absence in the conductance of divergences present
in the LDOS, which can be suppressed by kinematic effects
(in-plane momentum conservation) or by interference between
several tunneling paths. We have also studied a simple model
of STM junction, and shown how the dispersion of electrons
from the STM tip can induce strong variations of the local I (V )
characteristics, and generate a contrast in the constant-current
topographic image that is not related to variations of the
LDOS.
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APPENDIX A: CALCULATION OF THE CURRENT

The tunnel current can be evaluated in the usual way,1 as
the rate of change of the particle number in R:

I = e〈ṄR〉 (A1)

with NR = ∑
r ψ†(r)ψ(r). Our convention is e = |e|, so that

the current is positive when electrons flow from L to R, a
positive bias V being applied to R. This corresponds to the
usual convention adopted in tunneling spectroscopy. Since
only HT can change NR , we have

ih̄ṄR = [NR,H ] = [NR,HT ]

= −
∑

l r

T (l,r)[ψ†(l)ψ(r) − ψ†(r)ψ(l)], (A2)

and the current becomes

I = ie

h̄

∑
l r

T (l,r)[〈ψ†(l)ψ(r)〉 − 〈ψ†(r)ψ(l)〉]

= −2e

h̄

∑
l r

T (l,r)Im 〈ψ†(l)ψ(r)〉. (A3)

The quantity 〈ψ†(l)ψ(r)〉 corresponds to the lesser
Green’s function at time t = 0+.37 It can be ex-
pressed in terms of the usual retarded Green’s func-
tion G+(r,l,t) = −iθ (t)〈[ψ(r,t),ψ†(l,0)]+〉 and the Keldysh
function GK (r,l,t) = −i〈[ψ(r,t),ψ†(l,0)]〉:

〈ψ†(l)ψ(r)〉 = i

2
[G+(r,l,0+) − GK (r,l,0+)]. (A4)

Introducing this into Eq. (A3), we see that, considering the
quantities T (l,r) and G(r,l,0+) as matrices in the {l,r} space,
the r sum is equivalent to a matrix product and the l sum to a
trace. Noting further that G(0+) = ∫

dω
2π

G(ω), we obtain

I = e

h

∫
dω Re Tr T [GK (ω) − G+(ω)]. (A5)

On general grounds, we have that
∫

dω Re G+(ω) = 0. This
can be deduced from the representation of the retarded function
in terms of the spectral function ρ(ε):

Re G+(ω) =
∫
P dε

ρ(ε)

ω − ε
. (A6)

Hence we find Eq. (2) for the current.
In order to evaluate GK (ω) in Eq. (2), we solve the Dyson’s

equation in Keldysh space using the same representation as in
Ref. 37:

G =
(

G+ GK

0 G−

)
, (A7)

with G− the usual advanced function. The Dyson equation for
G ≡ G(r,l,ω) expresses all ways of propagating an electron
from r in R to l in L and reads

G = GRTGL + GRTGLTGRTGL + · · · (A8)

We have introduced the propagators of the isolated electrodes,
GL andGR as well as a matrix representing the tunneling term,
which is diagonal in the Keldysh indices,

T =
(

T 0

0 T

)
. (A9)

Equation (A8) implies matrix products in both the Keldysh and
site indices. The term of first order in T , for instance, should
be understood as∑

r1 l1

GR(r,r1,ω)T (r1,l1)GL(l1,l,ω),

since the propagators GR and GL are restricted to the
subsystems R and L, respectively. Summing the infinite series
of terms in Eq. (A8) leads to

G = GRTGL(1 − TGRTGL)−1 = [(GRTGL)−1 − T ]−1.

(A10)

The matrix inversions in the Keldysh indices can be done
explicitly, yielding the following expression for the Keldysh
component GK :

GK = (1 − G+
RT G+

LT )−1(G+
RT GK

L + GK
R T G−

L

)
× (1 − T G−

RT G−
L )−1. (A11)

At this point, we use the assumption that each electrode is in
thermal equilibrium and is characterized by its own chemical
potential, say μL = μR + eV and μR . The potential drop
eV takes place in the barrier and does not affect L and
R. Hence G

±,K
L,R should be evaluated for the isolated L and

R systems at thermal equilibrium. In conditions of thermal
equilibrium, all Green’s functions can be expressed in terms
of only two spectral functions: GK is therefore not independent
of G+ and G−. Specifically, we have the property GK

L,R(ω) =
[1 − 2fL,R(ω)][G+

L,R(ω) − G−
L,R(ω)] with fL,R the Fermi

distribution measured with respect to μL,R , and we thus obtain
Eq. (3).

APPENDIX B: EQUIVALENCE WITH TODOROV et al.

Here, we show that Eqs. (2) and (3) give the same current
as the formula obtained by Todorov et al. in Ref. 33. These
authors expressed the current in terms of the t matrix, which
in our notation reads

t = T + T G+
LT G+

RT + T G+
LT G+

RT G+
LT G+

RT + · · ·
= T (1 − G+

LT G+
RT )−1. (B1)

We first note the identity

Tr Re (1−T G+
RT G+

L )−1T G+
RT (G+

L−G−
L ) (1−T G−

RT G−
L )−1

= −Tr Re (1 − T G+
RT G+

L )−1T (G+
R − G−

R )

× T G−
L (1 − T G−

RT G−
L )−1. (B2)

This can be proven by taking the conjugate to develop the real
part, and then by checking order by order in T . The relation
(B2), together with the cyclic property of the trace, allow to
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rewrite the current Eqs. (2) and (3) as

I = e

h

∫
dω Tr Re (G−

L − G+
L )(1 − T G−

RT G−
L )−1

× (1 − T G+
RT G+

L )−1T G+
RT (2fL − 2fR). (B3)

Conjugating to evaluate the real part, and using the rela-
tions (1 − T G+

RT G+
L )−1T G+

RT = T G+
RT (1 − G+

LT G+
RT )−1

and T G−
RT (1 − G−

LT G−
RT )−1= (1−T G−

RT G−
LT )−1T G−

RT ,
this can be rearranged as

I = e

h

∫
dω Tr (G−

L − G+
L )(1 − T G−

RT G−
L )−1T

× (G+
R − G−

R )T (1 − G+
LT G+

RT )−1(fL − fR). (B4)

One recognizes the t matrix of (B1) as well as the spectral
functions G−

L,R − G+
L,R = 2πiρL,R , following the notation of

Ref. 33, which gives Eq. (37) of Ref. 33:

I = 2πe

h̄

∫
dω Tr ρLt†ρRt (fL − fR). (B5)

APPENDIX C: T-SHAPED JUNCTION FOR WEAK
TUNNELING

For the junction shown in Fig. 2, at lowest order in t and
zero temperature, the conductance σ̃ (V ) of Eq. (5) reduces to

σ̃ (V ) = e2

h
2t2

nL∑
l1=1

nL∑
l2=1

Re G+
R (l1 − l2,eV )

×[G−
L (l2,l1,eV ) − G+

L (l2,l1,eV )]. (C1)

Using the property L(x ± i0+) = x ∓ iRe
√

1 − x2 valid for
|x| < 1, we find from Eq. (14) that

G−
L (l2,l1,eV ) − G+

L (l2,l1,eV )

= 4i/|tL|
nL + 1

∑
q

sin(ql2) sin(ql1)| sin q|. (C2)

Furthermore, we have from Eq. (11) that

Re iG+
R (l1 − l2,eV ) = −Im G+

R (l1 − l2,eV )

= π

∫ π

−π

dk

2π
eik(l1−l2)δ(eV − 2tR cos k).

(C3)

Collecting the terms, we find

σ̃ (V ) = e2

h

4πt2

|tL|
∑

q

| sin q|
∫ π

−π

dk

2π
|Mqk|2

× δ(eV − 2tR cos k) (C4)

where we have defined

|Mqk|2 = 2

nL + 1

∣∣∣∣∣
nL∑
l=1

sin(ql)eikl

∣∣∣∣∣
2

. (C5)

The expression of |Mqk|2 can be worked out analytically for
arbitrary nL; the result is displayed in Eq. (19). Finally, the
formula (18) results by noting that

δ(eV − 2tR cos k) = 2πNR(eV )δ(k − k0) (C6)

with cos k0 = eV/(2tR).

1G. D. Mahan, Many Particle Physics, 3rd ed. (Plenum, New York,
2000).

2E. L. Wolf, Principles of Electron Tunneling Spectroscopy (Oxford
University Press, New York, 1985).

3S. M. Sze, Physics of Semiconductor Devices (Wiley, New York,
1981).

4J. Moreland and J. W. Ekin, J. Appl. Phys. 58, 3888 (1985).
5N. Agraı̈t, A. Levy Yeyati, and J. M. van Ruitenbeek, Phys. Rep.
377, 81 (2003).

6Scanning Tunneling Microscopy, Vol. III, edited by
R. Wiesendanger and H.-J. Güntherodt (Springer-Verlag, Berlin,
1993).

7G. A. D. Briggs and A. J. Fisher, Surf. Sci. Rep. 33, 1
(1999).

8Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod, and C. Renner,
Rev. Mod. Phys. 79, 353 (2007).

9W. A. Harrison, Phys. Rev. 123, 85 (1961).
10J. Bardeen, Phys. Rev. Lett. 6, 57 (1961).
11J. Bardeen, Phys. Rev. Lett. 9, 147 (1962).
12M. H. Cohen, L. M. Falicov, and J. C. Phillips, Phys. Rev. Lett. 8,

316 (1962).
13R. E. Prange, Phys. Rev. 131, 1083 (1963).
14C. Caroli, R. Combescot, P. Nozières, and D. Saint-James, J. Phys.

C 4, 916 (1971).

15C. Caroli, R. Combescot, D. Lederer, P. Nozières, and D. Saint-
James, J. Phys. C 4, 2598 (1971).

16C. Caroli, R. Combescot, P. Nozières, and D. Saint-James, J. Phys.
C 5, 21 (1972).

17T. E. Feuchtwang, Phys. Rev. B 10, 4121 (1974).
18T. E. Feuchtwang, Phys. Rev. B 10, 4135 (1974).
19T. E. Feuchtwang, Phys. Rev. B 12, 3979 (1975).
20T. E. Feuchtwang, Phys. Rev. B 13, 517 (1976).
21J. Tersoff and D. R. Hamann, Phys. Rev. Lett. 50, 1998

(1983).
22J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).
23J. Tersoff, Phys. Rev. B 40, 11990 (1989).
24C. J. Chen, J. Vac. Sci. Technol. A 6, 319 (1988).
25C. J. Chen, Phys. Rev. Lett. 65, 448 (1990).
26C. J. Chen, Phys. Rev. B 42, 8841 (1990).
27J. Ferrer, A. Martı́n-Rodero, and F. Flores, Phys. Rev. B 38, 10113

(1988).
28A. A. Lucas, H. Morawitz, G. R. Henry, J.-P. Vigneron, P. Lambin,

P. H. Cutler, and T. E. Feuchtwang, Phys. Rev. B 37, 10708
(1988).

29C. Noguera, Phys. Rev. B 42, 1629 (1990).
30W. Sacks and C. Noguera, Phys. Rev. B 43, 11612 (1991).
31J. B. Pendry, A. B. Prêtre, and B. C. H. Krutzen, J. Phys. Condens.

Matter 3, 4313 (1991).

155414-12

http://dx.doi.org/10.1063/1.335608
http://dx.doi.org/10.1016/S0370-1573(02)00633-6
http://dx.doi.org/10.1016/S0370-1573(02)00633-6
http://dx.doi.org/10.1016/S0167-5729(98)00004-1
http://dx.doi.org/10.1016/S0167-5729(98)00004-1
http://dx.doi.org/10.1103/RevModPhys.79.353
http://dx.doi.org/10.1103/PhysRev.123.85
http://dx.doi.org/10.1103/PhysRevLett.6.57
http://dx.doi.org/10.1103/PhysRevLett.9.147
http://dx.doi.org/10.1103/PhysRevLett.8.316
http://dx.doi.org/10.1103/PhysRevLett.8.316
http://dx.doi.org/10.1103/PhysRev.131.1083
http://dx.doi.org/10.1088/0022-3719/4/8/018
http://dx.doi.org/10.1088/0022-3719/4/8/018
http://dx.doi.org/10.1088/0022-3719/4/16/025
http://dx.doi.org/10.1088/0022-3719/5/1/006
http://dx.doi.org/10.1088/0022-3719/5/1/006
http://dx.doi.org/10.1103/PhysRevB.10.4121
http://dx.doi.org/10.1103/PhysRevB.10.4135
http://dx.doi.org/10.1103/PhysRevB.12.3979
http://dx.doi.org/10.1103/PhysRevB.13.517
http://dx.doi.org/10.1103/PhysRevLett.50.1998
http://dx.doi.org/10.1103/PhysRevLett.50.1998
http://dx.doi.org/10.1103/PhysRevB.31.805
http://dx.doi.org/10.1103/PhysRevB.40.11990
http://dx.doi.org/10.1116/1.575444
http://dx.doi.org/10.1103/PhysRevLett.65.448
http://dx.doi.org/10.1103/PhysRevB.42.8841
http://dx.doi.org/10.1103/PhysRevB.38.10113
http://dx.doi.org/10.1103/PhysRevB.38.10113
http://dx.doi.org/10.1103/PhysRevB.37.10708
http://dx.doi.org/10.1103/PhysRevB.37.10708
http://dx.doi.org/10.1103/PhysRevB.42.1629
http://dx.doi.org/10.1103/PhysRevB.43.11612
http://dx.doi.org/10.1088/0953-8984/3/24/001
http://dx.doi.org/10.1088/0953-8984/3/24/001


TUNNELING CONDUCTANCE AND LOCAL DENSITY OF . . . PHYSICAL REVIEW B 84, 155414 (2011)

32Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).
33T. N. Todorov, G. A. D. Briggs, and A. P. Sutton, J. Phys. Condens.

Matter 5, 2389 (1993).
34T. Frederiksen, M. Paulsson, M. Brandbyge, and A.-P. Jauho, Phys.

Rev. B 75, 205413 (2007).
35M. Passoni and C. E. Bottani, Phys. Rev. B 76, 115404 (2007).
36D. A. Ryndyk, R. Gutiérrez, B. Song, and G. Cuniberti, in Energy

Transfer Dynamics in Biomaterial Systems, Springer Series in
Chemical Physics, Vol. 93, edited by I. Burghardt, V. May, D.
A. Mischa, E. R. Bittner, F. P. Schäfer, J. P. Toennies, and W. Zinth
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