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Electron spin dephasing in two-dimensional systems with anisotropic scattering
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We develop a microscopic theory of spin relaxation of a two-dimensional electron gas in quantum wells
with anisotropic electron scattering. Both oscillatory and collision-dominated regimes of spin dynamics are
studied. It is shown that in quantum wells with noncentrosymmetric scatterers, the in-plane and out-of-plane
spin components are coupled: spin dephasing of carriers initially polarized along the quantum well normal
leads to the emergence of an in-plane spin component, even in the case of isotropic spin-orbit splitting. In the
collision-dominated regime, the spin-relaxation-rate tensor is expressed in terms of the electric conductivity
tensor. We also study the effect of an in-plane and out-of-plane external magnetic field on spin dephasing and
show that the field dependence of electron spin can be very intricate.
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I. INTRODUCTION

The spin dynamics of charge carriers in semiconductor
structures has been attracting a great deal of attention.1 Much
effort is focused on experimental and theoretical study of
the electron spin dephasing in quantum wells (QWs) and
obtaining the controllable spin lifetime (for a recent review see
Refs. 2–5). It is established that in a wide range of temperature,
carrier density, and mobility the spin lifetime of a two-
dimensional electron gas is limited by the D’yakonov-Perel’
(DP) spin dephasing mechanism.6,7 The mechanism is based
on precession of individual electron spins in the Rashba and/or
Dresselhaus effective magnetic field and is highly sensitive
to the QW crystallographic orientation,7–10 as well as to
details of electron scattering by structural defects and phonons.
Depending on the ratio between the period of spin precession
in the effective field and the momentum relaxation time of
carriers, the spin polarization monotonically decays or exhibits
damping oscillations.11–14 So far the DP mechanism has
been theoretically analyzed for central electron scattering, ne-
glecting possible anisotropy of scattering potential. However,
such a model does not always describe electron scattering in
QWs adequately. Transport measurements reveal that electron
mobility and scattering rate can be anisotropic in the QW
plane even for (001)-grown structures.15–17 Strong in-plane
anisotropy of electric properties has been also demonstrated
recently for QW structures with embedded semidisk-shaped
or elongated dots.18,19

In the present paper we study the electron spin dephasing
in QW structures with anisotropic scattering potential and
derive equations for the spin-relaxation-rate tensor. We show
that anisotropic scattering qualitatively modifies the spin
dephasing, both in the collision-dominated and oscillatory
regimes. The paper is organized as follows. In Sec. II we
present a general formalism for describing the electron spin
dynamics in quantum wells in the presence of anisotropic
elastic scattering. The collision-dominated regime of the DP
spin dephasing is considered in Sec. III. We show that the
spin-relaxation-rate tensor can be expressed in terms of the
constants of spin-orbit splitting and the electric conductivity
tensor. In (001)-grown QWs with anisotropic scatterers, the
longest lifetime of electron spin along the growth direction is
achieved in QWs with structure inversion asymmetry where

the Rashba effective field is nonzero. The oscillatory regime
of spin dephasing, which is realized in high-mobility QWs, is
considered in Sec. IV. It is shown that anisotropic scattering
leads to a coupling between the in-plane and out-of-plane spin
components, even in the case of isotropic Rashba or Dressel-
haus spin-orbit splitting. In particular, the spin dephasing of
carriers initially polarized along the QW normal leads to the
emergence of a net in-plane spin component which then also
vanishes. We also analyze the effect of an external magnetic
field on spin dephasing both in the collision-dominated and
oscillatory regimes and show that the field dependence of
electron spin can be very intricate. The main results of the
paper are summarized in Sec. V.

II. GENERAL EQUATIONS

The time evolution of the spin distribution function sk in the
wave vector k space is described by the kinetic equation6,11,20

∂sk

∂t
+ sk × �k = g + St sk, (1)

where �k is the Larmor frequency corresponding to the
effective magnetic field, g is the spin generation rate, e.g., due
to optical excitation with circularly polarized light, and St sk is
the collision integral. We consider n-doped QW structure with
a degenerate two-dimensional electron gas and assume that
optical excitation creates spin-polarized electrons directly at
the Fermi level, i.e., g ∝ δ(εk − εF ), where εk = h̄2k2/(2m∗)
is the electron kinetic energy, m∗ is the effective mass, and
εF is the Fermi energy. Such resonant excitation is commonly
used in experiments to minimize electron gas heating.12–14,21,22

Under these conditions the spin dephasing is determined by
the effective magnetic field and details of electron scattering at
the Fermi level, and energy relaxation processes are negligible.
For elastic spin-conserving scattering, the collision integral has
the form23

St sk =
∑

k′
(Wkk′ sk′ − Wk′ksk), (2)

where Wkk′ is the rate of electron scattering from the
state k′ into the state k and it is assumed that the
spin-orbit splitting h̄�k is much smaller than the Fermi
energy.24 Below, we take the scattering rate in the form
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Wkk′ = 2πh̄2/(m∗L2) wkk′ δ(εk − εk′) with L2 being the nor-
malization area.

To solve Eq. (1) we decompose the distribution function
sk, the frequency �k, and the scattering rate wkk′ into angular
harmonics:20,25

sk =
∑

n

sneinϕ,

�k =
∑
n=±1

�neinϕ, (3)

wkk′ =
∑
n,m

wn,m einϕ+imϕ′
,

where ϕ = arctan(ky/kx) and ϕ′ = arctan(k′
y/k′

x) are the polar
angles of k and k′, respectively. The dominant contribution to
the effective magnetic field in quantum wells is linear in the
wave vector.7,26 Therefore we assume that the frequency �k

contains only terms with n = ±1; the coefficients �±1 are re-
lated by �1 = �∗

−1. The coefficients wn,m satisfy the relations
wn,m = w∗

−n,−m, wn,m = (−1)n+mwm,n, and wn,0 = w0,n = 0
(n �= 0), which follow from reality of the scattering rate, time
inversion symmetry, and the optical theorem, respectively. By
substituting the series Eqs. (3) for sk, �k, and wkk′ in Eq. (1)
we obtain the system of linear differential equations for the
angular harmonics sn:

dsn

dt
+

∑
m=±1

sn−m × �m = g δn,0 − w0,0sn +
∑
m

wn,−msm.

(4)

Here it is assumed that g is independent of the direction of k
and therefore contains only zero angular harmonic. By solving
Eqs. (4) numerically or analytically one can find the time
dependence of s0 and thereby the evolution of the total spin
density S = (1/L2)

∑
k sk = m∗/(2πh̄2)

∫ ∞
0 s0dε.

III. COLLISION-DOMINATED REGIME

In this section we consider the case of frequent electron
collisions, when the spin rotation angle between scattering
events is small. In this regime, the anisotropic part of the spin
distribution function sk is much smaller than s0 and Eqs. (4) can
be solved iteratively.6,7 Such a procedure gives the following
equation for the spin density:

dS
dt

= G − �S, (5)

where G = (1/L2)
∑

k g is the total spin generation rate per
unit area and � is the spin-relaxation-rate tensor. The latter is
defined by

�S = (1/L2)
∑

k

(s−1 × �1 + s1 × �−1), (6)

where, to first order in the effective magnetic field, the
harmonics s±1 are to be found from the equation

s0 × �k = St sk. (7)

The calculation of Eqs. (6) and (7) is similar to the
calculation of an electric current density j induced by a static
electric field E. Indeed, within the framework of Boltzmann’s

approach, the current density is expressed via the electron
distribution function fk by j = (2e/L2)

∑
k(v1f−1 + v−1f1),

which looks similar to Eq. (6). Here e is the electron
charge, and v±1 and f±1 are the angular harmonics of the
electron velocity vk = h̄k/m∗ and the distribution function,
respectively. Within the linear E regime, the harmonics f±1

are found from the equation e(df0/dεk) vk · E = Stfk, which
is similar to Eq. (7). The calculation of electric current yields
j = (2e2/L2)

∑
k vk St−1[(df0/dεk) vk · E] = σ E, where σ

is the tensor 2 × 2 of in-plane electric conductivity. Such an
analogy allows us to express the spin-relaxation-rate tensor in
terms of the conductivity tensor as follows:

� = πm∗

e2
[I3 Tr(�σ�T ) − �σ�T ], (8)

where I3 is the unit matrix 3 × 3, � is the matrix 3 × 2
relating components of the frequency �k and the wave vector
k, �k = �k, and we used that σ = σ T . Equations (5) and (8)
describe the spin dynamics of a degenerate two-dimensional
electron gas for arbitrary elastic scattering and generalize
previous results. If the scattering potential is central, then the
conductivity tensor is diagonal and can be expressed via the
momentum relaxation time τ1 at the Fermi energy by σ = σ I2,
where σ = τ1e

2k2
F /(2πm∗), kF is the Fermi wave vector, and

I2 is the unit matrix 2 × 2. In this particular case, Eq. (8) has
the form � = (τ1k

2
F /2)[I3 Tr(��T ) − ��T ], in agreement

with the result of D’yakonov and Kachorovskii.7

To analyze Eq. (8) in more detail, we consider QW grown
along z ‖ [001] crystallographic direction. In such structures
the matrix � has nonzero components


xy = α + β, 
yx = β − α, (9)

where α and β are the constants of the Rashba and Dresselhaus
spin-orbit splitting, respectively, and x ‖ [11̄0] and y ‖ [110]
are the in-plane axes.8,27 Then components of the tensor � take
the form

xx = πm∗

e2
(α − β)2σxx, yy = πm∗

e2
(α + β)2σyy,

(10)

xy = yx = πm∗

e2
(α2 − β2)σxy, zz = xx + yy.

Dependences of the tensor components xx , yy , and xy

on the ratio α/β for QWs with strong conductivity anisotropy
are plotted in Fig. 1 by dashed curves. The in-plane eigenvalues
γ1 and γ2 of the tensor � and the out-of-plane value γz, which
coincides with zz, are found from the equation det(γ I3 −
�) = 0 and presented in Fig. 1 by solid curves. One can see
that the minimum of γz, which corresponds to the longest
lifetime of the spin component Sz, is achieved in asymmetric
QWs where the Rashba constant α �= 0. This is in contrast
to QW structures with central electron scattering, where the
Rashba splitting is known to decrease the spin lifetime. The
analysis of Eqs. (10) shows that at fixed β the rate γz reaches
the minimum at α/β = (σxx − σyy)/ Tr σ . We also note that
γ1 �= γ2 no matter how small the ratio α/β is if the eigenaxes
of the conductivity tensor do not coincide with x and y, i.e.,
σxy �= 0.

Now we consider the effect of an external magnetic field
B on spin dephasing. The magnetic field causes the Larmor
precession of electron spins and cyclotron motion of electrons
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FIG. 1. (Color online) Dependences of the spin-relaxation-rate
tensor components xx , yy , and xy (dashed curves) and the
tensor eigenvalues γ1, γ2, and γz = zz (solid curves) on the ratio
α/β calculated for σxx/ Tr σ = σxy/ Tr σ = 1/4. The curves are
normalized by 0 = (πm∗/e2) β2 Tr σ .

in the QW plane with the frequencies �L = gμB B/h̄ and ωc =
eBz/(m∗c), respectively.28,29 Here g is the effective electron g

factor, μB is the Bohr magneton, e is the electron charge, and
c is the speed of light. Both effects are theoretically described
within the framework of kinetic approach, with an kinetic
equation having the form10,28,30

∂sk

∂t
+sk × (�k + �L)−ωc

[
k × ∂

∂k

]
z

sk = g + St sk. (11)

The solution of Eq. (11) shows that in the collision-
dominated regime, the time evolution of the spin density S is
described by Eqs. (5) and (8), where (i) the additional term S ×
�L is added to the left-hand side of Eq. (5) and (ii) σ in Eq. (8)
is replaced by the transposed tensor of electric conductivity in
the magnetic field σ T (ωc). We note that in zero magnetic field
the conductivity tensor is symmetric, i.e., σ T (0) = σ (0). In
the presence of magnetic field, the tensor σ (ωc) contains both
symmetric σ (s)(ωc) = [σ (ωc) + σ T (ωc)]/2 and antisymmetric
σ (a) = [σ (ωc) − σ T (ωc)]/2 parts. Accordingly, the right-hand
side of Eq. (8) can be also reduced to the sum of symmetric
�(s)(ωc) and antisymmetric �(a)(ωc) tensors. The symmetric
tensor �(s)(ωc) describes spin relaxation. The antisymmetric
third-rank tensor �(a)(ωc) is equivalent to a pseudovector
δ�L and represents, in fact, a correction to the Larmor
frequency.10,28,31 Therefore the equation describing the time
evolution of spin density in the magnetic field has the final
form

dS
dt

+ S × (�L + δ�L) = g − �(ωc)S, (12)

where

�(ωc) = πm∗

e2
{I3 Tr[�σ (s)(ωc)�T ] − �σ (s)(ωc)�T } (13)

is the spin-relaxation-rate tensor,

(δ�L)α = πm∗

2e2

∑
βγ

εαβγ [�σ (a)(ωc)�T ]βγ (14)

is the Larmor frequency correction caused by cyclotron
motion, and εαβγ is the antisymmetric third-rank tensor (Levi-
Civita symbol).

As follows from Eq. (12), the precession of total electron
spin is determined by the frequency �L + δ�L. The frequency
correction δ�L depends on the magnetic field nonmonotoni-
cally: It is proportional to the magnetic field at small fields,
reaches a maximum at ωcτ1 ∼ 1, and decreases with the further
field increase. It may happen that �L and δ�L have opposite
signs and compensate each other at a certain magnetic field.
Such a compensation results in a peculiarity in the magnetic
field dependence of the electron spin. As an example, we
consider the simple case of continuous spin generation, central
electron scattering, and the magnetic field B pointed along
the QW normal [001]. Then the conductivity-tensor com-
ponents have the form σxx(ωc) = σyy(ωc) = σ/[1 + (ωcτ1)2],
σxy(ωc) = −σyx(ωc) = σωcτ1/[1 + (ωcτ1)2], and the spin-
relaxation-rate tensor (13) is diagonal in the chosen coordinate
frame (x,y,z). Straightforward calculation shows that the
components of the steady-state spin density S have the form

Sx = yy(ωc) Gx − (�L + δ�L)Gy

xx(ωc) yy(ωc) + (�L + δ�L)2
,

Sy = xx(ωc) Gy + (�L + δ�L)Gx

xx(ωc) yy(ωc) + (�L + δ�L)2
, (15)

Sz = Gz

zz(ωc)
,

where �(ωc) = �(0)/[1 + (ωcτ1)2], xx = τ1k
2
F (α − β)2/2,

yy = τ1k
2
F (α + β)2/2, zz = xx + yy ,8 and

δ�L = τ1k
2
F (α2 − β2)

2

ωcτ1

1 + (ωcτ1)2
. (16)

Shown in Fig. 2 are the magnetic field dependences of
the in-plane components Sx and Sy calculated for the spin
generation G ‖ x, the Rashba spin-orbit splitting (α �= 0,
β = 0), and �L/ωc = ±0.01. Such ratios of the Larmor to
cyclotron frequency can be realized, e.g., in GaAs/AlGaAs
QW structures.32 The dependences plotted for �L/ωc = 0.01

FIG. 2. (Color online) Magnetic field dependences of the spin
components Sx and Sy calculated for G ‖ x, B ‖ z, the Rashba spin-
orbit splitting, αkF τ1 = 0.3, and �L/ωc = −0.01 (solid curves) or
�L/ωc = +0.01 (dashed curves).

155326-3



A. V. POSHAKINSKIY AND S. A. TARASENKO PHYSICAL REVIEW B 84, 155326 (2011)

(dashed curves) are rather simple: Sx is maximal at B = 0
and monotonically decays with the field increase; Sy ∝ B at
small fields, reaches maximum, and then decays. In contrast,
the magnetic field dependences of Sx and Sy calculated for
�L/ωc = −0.01 (solid curves) are completely different. The
component Sx reaches a maximum at a finite magnetic field
corresponding to ωcτ1 ≈ 2. Sy has two extrema for a fixed
direction of B and changes the sign approximately at the
magnetic field where Sx is maximal. Such a behavior is caused
by interference of �L and δ�L, which compensate each other
at ωcτ1 ≈ 2 for the parameters chosen. The vanishing of the
total Larmor frequency leads to the Hanle-like curves in the
vicinity of this magnetic field (see Fig. 2). The fact that Sx in
the point of compensation is much larger than Sx(0) is caused
by a slowdown of the DP spin dephasing by cyclotron motion28

[see Eq. (15)].

IV. OSCILLATORY REGIME

Now we consider the oscillatory regime of spin dephasing
which occurs if the relaxation time τ1 is longer than 1/�k.11–14

For arbitrary �k and scattering rate w(ϕ,ϕ′), Eqs. (4) can be
solved only numerically. Therefore we focus on scattering
anisotropy and assume the isotropic spin-orbit splitting of the
Rashba type. The scattering rate can be conveniently presented
as the sum of two terms23

w(ϕ,ϕ′) = w(c)(|ϕ − ϕ′|) + δw(ϕ,ϕ′), (17)

where w(c)(φ) = ∫ 2π

0 w(ϕ′ + φ,ϕ′) dϕ′/(2π ), δw(ϕ,ϕ′) =
w(ϕ,ϕ′) − w(c)(|ϕ − ϕ′|), and we assume that δw 
 w(c). The
term w(c)(φ) describes central scattering. The corresponding
collision integral is expressed in terms of the relaxation
times τn of angular harmonics of the distribution function,
1/τn = ∫ 2π

0 w(c)(φ)(1 − cos nφ) dφ/(2π ). Then Eqs. (4) take
the form

dsz,n

dt
− �R

s−,n−1 + s+,n+1

2

= gzδn,0 − sz,n

τn

+
∑
m

δwn,−m sz,m, (18)

ds±,n

dt
+ �R sz,n∓1

= g±δn,0 − s±,n

τn

+
∑
m

δwn,−m s±,m, (19)

where s±,n = sx,n ± isy,n, g± = gx ± igy , and �R = αkF is
the precession frequency corresponding to the Rashba field at
the Fermi level.

In the regime of continuous spin generation, when g
is independent of time, Eqs. (18) and (19) can be solved
iteratively. To first order in δw, spin components depend
on the harmonics δw11 = δw∗

−1,−1 and δw2,−1 = δw∗
−2,1 =

−δw−1,2 = −δw∗
1,−2. Such angular harmonics in the scattering

rate reduce space symmetry of the system and, in fact,
correspond to a symmetric tensor and an in-plane vector,
respectively. Accordingly, we define 2 × 2 tensor Q by Qxx =
−Qyy = Reδw1,1 and Qxy = Qyx = −Imδw1,1 and the vector
ν by νx = Reδw2,−1 and νy = −Imδw2,−1. In these notations

the in-plane S‖ = (Sx,Sy) and out-of-plane Sz components of
the steady-state spin density are given by

S‖ =
(

τ2 + 2

�2
Rτ1

)
G‖ − 2

�2
R

QG‖ + τ2 ν

�R

Gz, (20)

Sz = Gz

�2
Rτ1

+ τ2 ν · G‖
�R

, (21)

where G‖ = (Gx,Gy) is the projection of generation rate
onto the QW plane. Equations (20) and (21) show that the
in-plane and out-of plane spin components are coupled in
structures with anisotropic scattering; the coupling strength
is proportional to ν. In particular, the generation of electron
spin along the QW normal, i.e., G ‖ z, leads not only to
Sz but also to S‖ ∝ νGz. Moreover, even in the case of
small scattering anisotropy, the in-plane and out-of-plane spin
components can be comparable to each other provided �Rτ1

is large enough. The second term on the right-hand side of
Eq. (20) describes the in-plane anisotropy of spin dephasing
due to anisotropic conductivity which, to first order in δw,
has the form σ = τ1e

2k2
F /(2πm∗)(I2 + τ1 Q). The effect of

conductivity anisotropy on spin relaxation was considered in
Sec. III. Below we focus on the coupling between S‖ and Sz

and assume, for simplicity, that Q = 0.
The coupling between the in-plane and out-of-plane com-

ponents of the spin density can be also studied in experiments
with high time resolution. Shown in Fig. 3 are the time
dependences Sz(t) and Sx(t) after a short circularly polarized
optical pulse which orients electron spins along z at t = 0. The
curves are obtained by solving Eqs. (18) and (19) numerically
for noncentrosymmetric scattering potential with ν ‖ x. One
can see that Sz(t) demonstrates damping oscillations, as is

FIG. 3. (Color online) Time dependences Sz(t) and Sx(t) after a
short optical pulse orienting electron spins along z. The curves are
calculated for ν ‖ x, ντ1 = 0.1, τn = τ1, and two different �Rτ1.
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FIG. 4. (Color online) Microscopic mechanism of the generation
of in-plane spin polarization when electron spins are initially oriented
along the QW normal. Precession of electron spins in the effective
magnetic field followed by anisotropic electron scattering and
subsequent spin precession in the effective field results in a spin
polarization along x.

expected for the oscillatory regime of spin dephasing.11 The
oscillations are caused by precession of individual electron
spins in the effective magnetic field. The in-plane spin
component Sx is zero right after the pulse, emerges at the
time scale of momentum relaxation, and then also decays. For
the parameters given in the caption of Fig. 3, Sx(t) reaches a
few percent of Sz(0).

The microscopic mechanism of the generation of the
in-plane component Sx is a three-stage process illustrated in
Fig. 4. At the first stage [Fig. 4(a)] electron spins initially
oriented along z precess in the Rashba field with the frequency
�k. The precession forms a spin distribution function sk
containing the first angular harmonic. The electron scattering
by noncentrosymmetric defects modifies sk and, due to
the terms ∝ δw2,−1 and ∝ δw−2,1 in the collision integral,
partially transforms the first angular harmonic into the second
harmonic. The spin distribution function described by the
second angular harmonic is shown in Fig. 4(b). Finally
[Fig. 4(c)], the subsequent rotation of electron spins in the
Rashba field results in a net spin polarization of carriers along
the x axis.

The coupling between S‖ and Sz can be also under-
stood by analyzing electron trajectories in QW structures
where the angular dependence of scattering rate contains the
harmonics δw2,−1 and δw−2,1. An example of a scatterer
providing such harmonics is a disk, one edge of which reflects
electrons specularly while the other one scatters electrons
diffusively [see Fig. 5(a)]. Obviously, such scatterers with
a preferred orientation in the QW plane break the in-plane
space inversion.33 The scattering anisotropy modify electron
trajectories, which affects the spin dynamics. Indeed, in QWs
with centrosymmetric scatterers, each electron trajectory has
on average its counterpart connected by space inversion [see
solid and dashed lines in Fig. 5(b)]. Electrons with the spin

FIG. 5. (Color online) (a) Example of a noncentrosymmetric
scatterer. Disk with different edges which diffusively and specularly
scatter electrons. (b) Electron trajectories in QW plane. Trajec-
tories shown by solid and dashed lines are connected by space
inversion.

s0 initially oriented along z move in the QW plane and
gain in-plane spin components s‖ due to rotation in the
Rashba field. However, the particles propagating along the
paths interconnected by space inversion gain the opposite
projections s‖, leading to a vanishing average in-plane spin
polarization. In QWs with noncentrosymmetric scatterers, the
space-inversion symmetry of electron trajectories is broken,
which results in a nonzero in-plane spin polarization. To
first order in scattering anisotropy, S‖ is determined by the
angular harmonics δw2,−1 and δw−2,1. Other harmonics δwn,m

describing noncentrosymmetric scattering can also couple the
in-plane and out-of-plane spin components in higher orders in
δw.

Equations (18)–(21) are obtained for the Rashba spin-orbit
splitting from general Eq. (4). Similar calculations can be
carried out for the case of Dresselhaus splitting. One can see
that Eq. (4) is invariant to the replacement of the Rashba field
with the Dresselhaus one, which differs in sign of �y and the
simultaneous inversion of sx and gx signs. Thus Eqs. (20) and
(21), where �R , Sx , and Gx are replaced by �D = βkF , −Sx ,
and −Gx , respectively, describe the steady-state spin density
in (001)-grown QWs with the Dresselhaus splitting. In the
general case, if both the Rashba and Dresselhaus contributions
to the effective field are present, a prerequisite for the coupling
between S‖ and Sz remains the lack of inversion symmetry in
scattering potential. We also note that the coupling is absent
irrespective of the form of w(ϕ,ϕ′) if |α| = |β|, because in
this particular case, the frequency �k depends only upon one
component of the wave vector.

Finally we discuss the effect of an external magnetic field
on spin dynamics in the oscillatory regime. Equations (18) and
(19) with the Larmor precession and cyclotron motion being
taken into account have the form

dsz,n

dt
− �R

s+,n+1 + s−,n−1

2
+ i

�L,−s+,n − �L,+s−,n

2

= gzδn,0 −
(

1

τn

− inωc

)
sz,n +

∑
m

δwn,−m sz,m, (22)

ds±,n

dt
+ �R sz,n∓1 ± i�L,± sz,n

= g±δn,0−
(

1

τn

− inωc ∓ i�L,z

)
s±,n+

∑
m

δwn,−m s±,m,

(23)

where �L,± = �L,x ± i�L,y . Equations (22) and (23) are
valid for arbitrary strength of spin-orbit splitting �Rτn and
angular dependence of the scattering rate.

Dependences of the steady-state components Sz and Sx

on the in-plane magnetic field B ‖ y for continuous spin
generation along the z axis are shown in Fig. 6. The curves are
obtained by solving Eqs. (22) and (23) numerically for ν ‖ x

and different �Rτ1. One can see that the curves drastically
depend on the parameter �Rτ1. At �Rτ1 = 1, the dependences
Sz(B) and Sx(B) are similar to conventional Hanle curves. The
only difference is that Sx(0) �= 0 due to scattering anisotropy
[see Eq. (20)]. The dependences Sz(B) and Sx(B), calculated
for large �Rτ1, �Rτ1 = 3 in Fig. 6, look completely different.
Instead of a monotonic decrease with the magnetic field,
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FIG. 6. (Color online) Dependences Sz and Sx on the in-plane
magnetic field B ‖ y measured in units of �L/�R . The curves are
calculated for G ‖ z, ν ‖ x, τn = τ1, ντ1 = 0.1, and two different
�Rτ1.

Sz(B) increases first with the field, reaches a maximum at
�L ≈ �R , and then decreases. Sx(B) is nearly independent
of B at small magnetic fields and exhibits a sharp rise at
�L ≈ �R . Such a behavior is caused by a partial suppression
of the DP spin dephasing mechanism by the external in-plane
magnetic field equal to the effective field in high-mobility
structures.34 We also note that the dependence Sz(B) is always
even, despite the fact that the vector S(0) is not aligned along
the z axis. The evenness of Sz(B) follows from Eqs. (22)
and (23).

For the magnetic field pointed along the QW normal
(�L ‖ z) and continuous spin generation, the steady-state
solution of Eqs. (22) and (23) can be found analytically. To
first order in the scattering asymmetry δw and for G ‖ z, the
solution has the form

Sx = Re

[
(νx − iνy) �R τ̃1τ̃2

1 + i�Lτ̃2 + 2i�L(1/τ1 − iωc)/�2
R

]
Sz,

Sy = Re

[
(νy + iνx) �R τ̃1τ̃2

1 + i�Lτ̃2 + 2i�L(1/τ1 − iωc)/�2
R

]
Sz, (24)

Sz = 1 + (ωc + �L)2τ 2
1

�2
Rτ1

Gz,

where 1/τ̃n = 1/τn − inωc − i�L. The z component of the
spin density quadratically increases with the magnetic field
growth, which is caused by a slowdown of the D’yakonov-
Perel’ spin dephasing mechanism in the perpendicular mag-
netic field.29,30 The dependences of Sx and Sy on the magnetic
field B ‖ z are more complicated and drastically depend on
parameters. Examples of such dependences are shown in
Fig. 7. First we note that Sx �= 0 in zero magnetic field
due to scattering anisotropy. With the field B increase, Sx

decreases and changes the sign. The component Sy depends
linearly on B at small magnetic fields, reaches an extremum,
and then decreases. The curves calculated for �L/ωc =
−0.05 (solid curves) have additional Hanle-like peculiarities
at ωcτ1 ≈ 3.2. The analysis of Eqs. (24) shows that the
peculiarities occur at ωc ≈ �R

√−ωc/(2�L) and are of similar
origin as those in Fig. 2 caused by nulling the total frequency
�L + δ�L.

FIG. 7. (Color online) Dependences Sx and Sy on the magnetic
field B ‖ z measured in units of ωcτ1. The curves are calcu-
lated after Eqs. (24) for ν ‖ x, τn = τ1, ντ1 = 0.1, �Rτ1 = 1,
and �L/ωc = −0.05 (solid curves) or �L/ωc = +0.05 (dashed
curves).

V. SUMMARY

We have developed the microscopic theory of electron
spin dephasing in QW structures with anisotropic scatterers.
Both the collision-dominated regime of spin dephasing and
the oscillatory regime, which is realized in high-mobility
QWs, are studied. It is shown that in the collision-dominated
regime, spin lifetimes are determined by constants of spin-orbit
splitting and the in-plane electric conductivity irrespective
of the scattering anisotropy specific form. We derive the
analytical expression for the spin-relaxation-rate tensor that
can be used to extract constants of spin-orbit splitting from
the measured spin relaxation times and conductivity tensor
components. It is shown that in (001)-grown structures with
anisotropic conductivity, the longest spin lifetime of electrons
polarized along the QW normal is achieved in asymmetric
QWs with a finite Rashba splitting. We also study the effect
of an external magnetic field on spin dynamics due to both
the Larmor precession of electron spins and cyclotron motion
of electrons in the QW plane. The cyclotron motion leads
to a suppression of spin dephasing and a correction to the
Larmor frequency. The Larmor frequency correction depends
on the magnetic field nonmonotonically and may compensate
the intrinsic Larmor frequency at a certain magnetic field. Such
a compensation results in a peculiarity in the magnetic field
dependence of the electron spin.

In the oscillatory regime of spin dephasing, noncentrosym-
metric scattering potentials lead to a coupling of the in-plane
and out-of-plane spin components, even in QWs with isotropic
spin-orbit splitting. In this case the optical orientation of
electron spins along the QW normal results not only in a spin
polarization along the QW normal but also in an in-plane spin
component. Moreover, even in the case of small scattering
anisotropy, the in-plane and out-of-plane spin components
can be comparable to each other provided the spin-orbit
splitting is large enough. At pulse optical excitation, the
in-plane spin is zero right after the pulse, emerges at the
time scale of momentum relaxation of carriers, and then
decays. The coupling between the in-plane and out-of-plane
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spin components is caused by breaking the space-inversion
symmetry of electron trajectories in the QW plane and is
more pronounced in structures with strong spin-orbit splitting.
Our results imply that the engineering of electron trajectories
provides an additional approach to manipulate electron spins
in low-dimensional semiconductors.
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16353 (1998).
33Together with inversion asymmetry along the z axis causing the

Rashba splitting, the scatterers reduce the overall point group of the
structure to Cs .

34A. V. Poshakinskiy and S. A. Tarasenko, Phys. Rev. B 84, 073301
(2011).

155326-7

http://dx.doi.org/10.1016/j.physrep.2010.04.002
http://dx.doi.org/10.1016/j.physrep.2010.05.001
http://dx.doi.org/10.1016/j.physe.2010.04.021
http://dx.doi.org/10.1016/j.physe.2010.08.010
http://dx.doi.org/10.1016/j.physe.2010.08.010
http://dx.doi.org/10.1103/PhysRevB.60.15582
http://dx.doi.org/10.1103/PhysRevB.71.045313
http://dx.doi.org/10.1103/PhysRevB.71.045313
http://dx.doi.org/10.1103/PhysRevB.80.165317
http://dx.doi.org/10.1134/1.1427126
http://dx.doi.org/10.1134/1.1427126
http://dx.doi.org/10.1103/PhysRevLett.89.236601
http://dx.doi.org/10.1103/PhysRevB.76.195305
http://dx.doi.org/10.1103/PhysRevB.80.241314
http://dx.doi.org/10.1103/PhysRevB.80.241314
http://dx.doi.org/10.1103/PhysRevB.65.245312
http://dx.doi.org/10.1103/PhysRevB.77.235307
http://dx.doi.org/10.1103/PhysRevB.77.235307
http://dx.doi.org/10.1016/j.physe.2009.11.039
http://dx.doi.org/10.1103/PhysRevB.78.045431
http://dx.doi.org/10.1063/1.3541882
http://dx.doi.org/10.1063/1.3541882
http://dx.doi.org/10.1103/PhysRevLett.100.176806
http://dx.doi.org/10.1103/PhysRevB.83.241306
http://dx.doi.org/10.1103/PhysRevB.83.241306
http://dx.doi.org/10.1103/PhysRevB.47.15776
http://dx.doi.org/10.1103/PhysRevB.47.15776
http://dx.doi.org/10.1103/PhysRevB.73.205341
http://dx.doi.org/10.1103/PhysRevB.73.205341
http://dx.doi.org/10.1088/0268-1242/23/11/114002
http://dx.doi.org/10.1088/0268-1242/23/11/114002
http://dx.doi.org/10.1103/PhysRevB.69.035328
http://dx.doi.org/10.1103/PhysRevB.69.035328
http://dx.doi.org/10.1103/PhysRevB.70.195314
http://dx.doi.org/10.1103/PhysRevB.74.193310
http://dx.doi.org/10.1103/PhysRevB.58.16353
http://dx.doi.org/10.1103/PhysRevB.58.16353
http://dx.doi.org/10.1103/PhysRevB.84.073301
http://dx.doi.org/10.1103/PhysRevB.84.073301

