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Intervalley coupling for interface-bound electrons in silicon: An effective mass study
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Orbital degeneracy of the electronic conduction band edge in silicon is a potential roadblock to the storage and
manipulation of quantum information involving the electronic spin degree of freedom in this host material. This
difficulty may be mitigated near an interface between Si and a barrier material, where intervalley scattering may
couple states in the conduction ground state, leading to nondegenerate orbital ground and first excited states. The
level splitting is experimentally found to have a strong sample dependence, varying by orders of magnitude for
different interfaces and samples. The basic physical mechanisms leading to such coupling in different systems are
addressed. We expand our recent study based on an effective mass approach, incorporating the full plane-wave
expansions of the Bloch functions at the conduction band minima. Physical insights emerge naturally from a
simple Si/barrier model. In particular, we present a clear comparison between ours and different approximations
and formalisms adopted in the literature and establish the applicability of these approximations in different
physical scenarios.
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I. INTRODUCTION

Electronic spins in Si are promising candidates for qubits
due to their naturally long coherence times.1 An important
challenge for using electronic spins as qubits in silicon devices
is to assure that the low-energy physics is ruled solely by
the two-level spin degree of freedom.2–11 In bulk Si crystal,
the conduction band lower edge is sixfold degenerate. Any
superposition of the six Bloch states associated with the
minima in k along the ±x, ±y, and ±z crystallographic
directions is also an eigenstate of the crystalline Hamiltonian,
so the orbital state of a free conduction electron at the band
edge is normally not defined.

Several quantum computer architectures under investiga-
tion involve manipulation of the electronic spin at an interface
between Si and some barrier material, most commonly SiGe
alloys12,13 and SiO2

14,15 barriers. The confining electric field
(generated by external electrostatic gates and/or depletion lay-
ers) generates a quasitriangular potential well at the interface.
Assuming the interface to be perpendicular to the z direction
[that is, a (001) interface], the ground-state energy of such
a triangular potential well depends on the effective mass in
the z direction. The effective masses at the conduction band
minima of Si are anisotropic, with the longitudinal effective
mass more than 4 times larger than the transversal. This shifts
the minima along the x and y directions well above the minima
in the z direction, breaking the sixfold degeneracy into a
twofold degenerate ground state and a fourfold degenerate
excited state.16,17 The splitting is further enhanced if tensile
strain is applied to the Si crystal (e.g., in Si quantum wells
grown over relaxed SiGe substrates).18 The degeneracy in
the two-dimensional {kz,k−z = −kz} subspace is lifted in the
presence of a sufficiently singular perturbation potential, such
as a Si/barrier interface.19 Experimental values of the valley
splitting in interfaces have been reported in the 0.1- to 1-meV
range.16,20 A peculiar result was reported by Takashina et al.,21

who measured a “giant” splitting of 23 meV on a Si/SiO2

interface in a separation by implantation of oxygen (SIMOX)
structure.

In the presence of orbital degeneracy, electron manipu-
lations relying on the Pauli’s exclusion principle, such as
Heisenberg exchange coupling22 and spin blockade,23 may
become unreliable since the qubits Hilbert space is now
spanned by the valley as well as the spin degrees of freedom.
For an electron spin qubit confined in a Si quantum dot,
reliable knowledge of the interface induced valley splitting
is crucial.12 For example, for a single electron spin qubit,22 if
the valley splitting is smaller than the reservoir thermal energy,
or valley splittings differ across two quantum dots, exchange
gates cannot be performed as was originally designed since
two-valley two-electron singlet and triplet states (where the
two electrons are in different valleys) are not exchange-split.6

When two-electron singlet and triplet states are used to encode
a logical qubit, reliable initialization becomes impossible if
valley splitting in a quantum dot is unknown or known to
be small (compared to reservoir temperature energy scale).24

In short, clear knowledge of a large valley splitting in a
Si quantum dot is imperative to assure the feasibility of an
electron spin qubit.

Early theoretical studies on Si valley splitting in the frame-
work of the effective mass approach (EMA) were performed
in the late 1970s.25,26 The relevance of the periodic part of
the Si bulk Bloch states (leading to the so-called Umklapp
processes) to this scattering soon became clear.27 However,
its inclusion combined with the EMA formalism leads to a
puzzling dependence of calculated physical properties on the
particular position of the barrier within the range of separation
between atomic layers, an artifact already found in previous
works26 which is discussed in detail and clarified in Ref. 19.
These early theoretical studies do not discuss the strong sample
dependence observed experimentally.

Valley mixing has been extensively studied in the
literature28–31 regarding GaAs/AlAs or GaAs/GaAlAs
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interfaces and superlattices. The most relevant valley mixing in
this context involves the X valleys of the electron conduction
band in the AlAs layer, which is the global band minimum
in AlAs and a local minimum in GaAs, and the � valley
in the GaAs layer. This mixing involves separated spatial
layers. Higher � and X states in AlAs and GaAs also
intervene in the mixing.29 In Si, mixing occurs between
the crystalline momenta kz and −kz in the same spatial
layer, that is, in the Si slab, and is due to the barrier
potential alone. The theory and experimental consequences of
GaAs/AlAs valley mixing, thus, differ and are not transferrable
to Si.

Performing a fully ab initio treatment is not realistic in
the study of valley coupling in Si due to limitations both on
the length and on the energy scales. Intervalley splittings of the
order of tenths of meV would not be accurately resolved within
the density functional theory (DFT) approach based on current
computational resources. Moreover, the electronic states under
study spread over several lattice parameters, and simulation
of large supercells with appropriate description of the band
gap (through Hedin’s GW scheme,32 for example), again
involve numerical computations beyond currently available
capabilities.

More recent investigations often employ approaches with
atomistic ingredients, whether completely based on the tight-
binding (TB) method or on the hybrid of TB and EMA.33–41

These atomistic methods allow treatment of disorder effects
directly. For example, TB and EMA + TB calculations
conclude that for tilted Si/SiGe quantum wells, alloy disorder
and interfacial step disorder must be included to obtain
finite valley splittings.36,39 Such sample-dependent results are
consistent with the observed variation of this coupling as
measured in different interfaces. On the other hand, the detailed
description of disorder comes at the expense of generality
and prevents analytical insights since these methods require
numerical treatment (with exceptions, some of which are
discussed in Sec. IV B).

We have recently performed19 a study of the valley splitting
problem that leads to the identification of relevant physical
mechanisms underlying the intervalley coupling. Our EMA
model incorporates the atomistic Bloch functions obtained
from ab initio calculations in connection with an envelope
function obtained from the single valley EMA equation. That
study focused on the relevance of the barrier height and the
interface width.

In the present work, we discuss the ab initio results that
are required in implementing our approach. In particular,
we provide a detailed roadmap to the connection between
effective mass and and the ab initio wave function, deriving
the formalism and discussing the physics and applicability of
our methodology. Further results are presented and discussed,
including a more complete analysis of the role of the confining
electric field perpendicular to the interface plane. The plane-
wave (PW) expansion of the periodic part of each Bloch
function is explicitly given, and contributions from reciprocal
lattice vectors in the PW expansion are analyzed, identifying
the most relevant Umklapp processes. We also discuss the
present model in the context of existing studies and compare
our results with previous ones whenever warranted. The
interface is modeled here within EMA by a finite height step

potential. Other interface profiles were already considered in
our previous study.19

In Sec. II we briefly review the model, emphasizing the
assumptions involved in the derivation of the formalism.
We proceed to numerically calculate the coupling under
various electric fields and conduction band offsets in Sec. III.
These results allow comparison of the valley coupling in
different experimental conditions and discussion of possible
mechanisms contributing to the giant splitting reported in
Ref. 21. Comparison of our theoretical approach with others
in the literature is given in Sec. IV, where we also evaluate
some of the approximations adopted in previous works and
shed light on some theoretical questions, such as the range
of applicability of various EMA treatments. Finally, our
conclusions are presented in Sec. V.

II. THEORETICAL BACKGROUND

We consider a single electron at the bottom of the Si
conduction band, near a (001) Si/barrier interface. Assuming
translational symmetry in the xy plane, we model the barrier
material as an effective potential mimicking the conduction
band offset along the z direction. This model addresses only
the position in energy of the bottom of the conduction band,
disregarding the detailed electronic structure in the transition
region between Si and the barrier material, as we discuss below.

The Hamiltonian for the conduction band electron is
assumed to be of the form

H = H0 + U (z) − e
F

ε(z)
z, (1)

where H0 is the unperturbed bulk Si Hamiltonian and U (z)
is the barrier potential. An electric field F/ε(z) along the
z direction keeps the electron close to the interface. The
dielectric function ε(z) changes from the bulk Si value to the
bulk barrier material value and, in a more accurate analysis,
could include many-body effects.

A sequence of approximations are involved in obtaining
the EMA equation for Si heterostructures. The first assumption
involves the expansion of the electronic wave function in terms
of the periodic part of Bloch states around the conduction
band minima, assumed to be the same for both the well semi-
conductor and the barrier material.42 The envelope function
approach is better justified at an interface if the wave vectors
at the minima of the two materials are close to each other as
compared to the Brillouin zone dimensions.

We further assume their effective masses to be the same,
although it is possible within EMA to account for different
effective masses in heterostructures.42 We avoid specifying
the barrier material and systematically investigate the effects
of the barrier height alone.

Finally, the crystalline structure is assumed to be preserved
across the interface. In a metal-oxide-semiconductor field-
effect transistor (MOSFET) geometry, SiO2 grown over Si
is typically amorphous, as different metastable crystalline
phases coexist, with crystallographic directions that do not
necessarily match the directions of the Si slab.43 Moreover,
the most energetically favorable crystalline phases of SiO2

have a single conduction band minimum at the � point.44

On the other hand, Si(1−x)Gex alloys at Ge concentrations
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x < 0.85 present conduction band minima at the same position
in the Brillouin zone as pure Si crystal,45 and the effective
mass remains almost unchanged for the Ge concentration
in the alloy up to x ∼ 0.3. For samples under experimental
investigation,12 Si is epitaxially grown over a relaxed SiGe
substrate, so the crystallographic directions match. Although
the conduction band states are not exactly the same for these
two materials, they are expected to be very similar. Thus,
for Si/SiGe heterostructures the EMA assumptions are better
justified than for MOSFETs.

However, given the large conduction band offset between
Si and SiO2 a very small penetration of the envelope function
into the barrier material is expected. Detailed simulation of
the electronic structure of Si/SiO2 interfaces is possible but
does not lead to general results, since different nanofabrication
methods and small variations of the growth parameters give
very different interface morphologies.21,46 We adopt the EMA
approach in the case of Si/SiO2 interface, bearing in mind that
this approximation could lead to quantitative inaccuracies that
should be estimated using some other approach.

Within the above assumptions, one obtains the envelope
function �(z) from the single-valley effective mass equation42

{−h̄2

2mz

∂2

∂z2
+ U (z) − e

F

ε(z)
z

}
�(z) = E�(z), (2)

where mz is the longitudinal effective mass for Si. The
electronic eigenstates of the Hamiltonian in Eq. (1) bound
to the interface are obtained from the single-valley EMA47 as
φμ(r) = �(z)eikμzuμ(r), where kμ = ±k0ẑ are the Bloch wave
vectors of the conduction band minima (k0 ≈ 0.84 × 2π/a0).
It is convenient to perform a PW expansion of the periodic
functions u±(r)48 leading to the complete wave functions

φ±(r) = �(z)e±ik0z
∑

G

c±(G)eiG·r, (3)

where {G} are reciprocal lattice vectors. The PW expansion
in Eq. (3), originally explored in connection to Ref. 48, is
useful in several other contexts. It was obtained from ab initio
DFT calculations,48 performed with the ABINIT code.49 From a
DFT perspective, the electronic correlations for the bulk Bloch
states are described in the local-density approximation.50,51

The exchange-correlation potential parameterized by Perdew
and Zunger52 from Ceperley-Alder quantum Monte Carlo
results for the homogeneous electron gas53 was adopted.
The interactions between valence electrons and ions are
described by the ab initio, norm-conserving pseudopotentials
of Troullier-Martins,54 generated with the FHI98PP code.55

These approximations significantly speed up the computation
of the conduction band structure, with a PW expansion of
the wave functions, including terms up to 16 Ry, that is,
corresponding to 290 plane waves for each kμ, with virtually
no computational effort. The calculated equilibrium lattice
constant of Si at a0 = 5.41 Å and the conduction-band minima
at k0 = 0.844(2π/a0) are in close agreement with experimental
results.56 These values are used in the calculations presented
below.

We find that over 90% of the spectral weight of the PW
expansion in Eq. (3) comes from the five points in the BCC

TABLE I. Plane-wave expansion coefficients cμ(G) for μ = +z.
The integers in the first column give G1,G2,G3, respectively, the
(x,y,z) G Cartesian coordinates in units of (2π/a). The real and
imaginary parts of c+z(G) are displayed in columns 2 and 3,
respectively. Column 4 shows |c+z(G)|2, and only coefficients |c+z| >

10−2 are shown. The coefficients for all other minima may be obtained
using the symmetry relations cμ(G) = c∗

−μ(−G), cx(G1,G2,G3) =
cz(G3,G2,G1), and cy(G1,G2,G3) = cz(G1,G3,G2).

G Re[c+z(G)] Im[c+z(G)] |c+z(G)|2

(1 − 1 − 1) − 0.3131 − 0.3131 0.1961
( − 1 1 − 1) − 0.3131 − 0.3131 0.1961
(1 1 − 1) − 0.3131 0.3131 0.1960
( − 1 − 1 − 1) − 0.3131 0.3131 0.1960
(0 0 0) 0.3428 − 0.0000 0.1175
(2 0 − 2) − 0.0986 0.0000 0.0097
(0 2 − 2) − 0.0986 0.0000 0.0097
( − 2 0 − 2) − 0.0986 0.0000 0.0097
( 0 − 2 − 2) − 0.0986 0.0000 0.0097
(1 − 1 1) 0.0695 − 0.0695 0.0097
( − 1 1 1) 0.0695 − 0.0695 0.0097
( 1 1 1) 0.0695 0.0695 0.0097
( − 1 − 1 1) 0.0695 0.0695 0.0097
( − 2 2 − 2) − 0.0000 − 0.0451 0.0020
(2 − 2 − 2) − 0.0000 − 0.0451 0.0020
( − 2 − 2 − 2) 0.0000 0.0451 0.0020
(2 2 − 2) 0.0000 0.0451 0.0020
(0 2 2) 0.0387 − 0.0000 0.0015
(2 0 2) 0.0387 − 0.0000 0.0015
(0 − 2 2) 0.0387 − 0.0000 0.0015
( − 2 0 2) 0.0387 − 0.0000 0.0015
(0 0 − 4) 0.0186 − 0.0000 0.0003
( − 1 1 3) 0.0114 0.0114 0.0003
( 1 − 1 3) 0.0114 0.0114 0.0003
( − 1 − 1 3) 0.0114 − 0.0114 0.0003
(1 1 3) 0.0114 − 0.0114 0.0003
(0 0 4) 0.0121 − 0.0000 0.0001
(3 − 3 − 1) − 0.0075 − 0.0075 0.0001
( − 3 3 − 1) − 0.0075 − 0.0075 0.0001
(3 3 − 1) − 0.0075 0.0075 0.0001
( − 3 − 3 − 1) − 0.0075 0.0075 0.0001

reciprocal lattice that are nearest to each conduction band
minimum kμ. The valley coupling

VV O = 〈φ+|H |φ−〉 (4)

is the key quantity leading to the valley splitting � = 2|VV O |.19

Therefore, a preliminary estimate of the ±z intervalley cou-
pling could involve nine PWs (the � point is a common nearest
neighbor for both kμ at the minima). The coefficients such that
|cμ(G)|2 > 10−4, accounting for 99.5% of the spectral weight,
are explicitly given for μ = z in Table I; coefficients for all
band minima may be obtained from those by symmetry (see
table caption).

From the above expansion, Eq. (4) reads

VV O =
∑
G,G′

c∗
+(G)c−(G′)δ(Gx − G′

x)δ(Gy − G′
y)I (Gz,G

′
z),

(5)
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where the last term stands for the integral

I (Gz,G
′
z) =

∫ +∞

−∞
|�(z)|2eiQz

[
U (z) − F

ε(z)
z

]
dz (6)

with Q = Gz − G′
z − 2k0.

We take for U (z) the step potential, which is the most
favorable model for the conduction band profile between Si
and the barrier in terms of maximizing the valley coupling.19

It is written as42

U (z) = Ustep(z) = U0
(z − zI ), (7)

where zI is the position of the interface and U0 is the
conduction band offset. The step potential aims at modeling
a perfectly sharp interface, a concept that involves changing
the species of the atomic constituents abruptly, i.e., across one
monolayer (ML). However, the envelope function equation
allows a continuous choice of the interface position zI , even
within a width of 1 ML, as discussed in Ref. 19. Although zI

is ill defined within a ML length scale, it is convenient to keep
this simple interface model for it allows decomposition of the
integral in Eq. (6) into terms that are easily identifiable, some
of which are familiar from previous theoretical treatments.
Other models of the interface have been studied in Ref. 19.

In Eq. (6) we integrate by parts the term proportional to
U (z) = Ustep(z) given in Eq. (7),

I (Gz,G
′
z) = iU0

Q

∫ ∞

−∞
δ(z − zI )|�(z)|2eiQzdz

+ iU0

Q

∫ ∞

−∞

(z − zI )

d|�(z)|2
dz

eiQzdz

−
∫ ∞

−∞
|�(z)|2eiQz F

ε(z)
zdz

= i

Q
U0|�(zI )|2eiQzI (8)

+
∫ ∞

zI

i

Q
U0

d|�(z)|2
dz

eiQzdz (9)

−
∫ ∞

−∞
|�(z)|2eiQz F

ε(z)
zdz, (10)

where we are interested in an interface bound state, so
the electronic density |�(z)|2 vanishes at z → ±∞. Three
terms are left, labeled (8), (9), and (10) above. Term (8)
provides evidence for the role of the electronic density at
the interface |�(zI )|2 through a δ function at the z = zI ;
term (9) gives the contribution of the evanescent tail of the
electronic envelope function into the barrier material z > zI ;
and term (10) represents an intervalley scattering induced
directly by the electric field, which we find to be vanishingly
small. Summation of these contributions over the reciprocal
lattice vectors [see Eq. (5)] leads to three contributions to the
intervalley coupling

VV O = Vδ + VE + VF , (11)

that is, the δ-function contribution Vδ , the evanescent term
contribution VE , and the electric field contribution VF .

In addition to the mismatch between the conduction band
minima of the two materials, we also consider the change in
dielectric screening constant from the semiconductor to the

insulator. The dielectric function is taken as ε(z < zI ) = εSi

and ε(z > zI ) = εbarrier. Note that ε(z) also introduces a kink
in the electrostatic potential in the scale of the monolayer sep-
aration, which could, in principle, contribute to the intervalley
coupling.

III. NUMERICAL SOLUTION AND RESULTS

A. Envelope function variational approaches: Finite differences
and trial function

The envelope function �(z) is obtained from Eq. (2),
which has no analytic solution. The approach adopted to solve
this equation must be carefully chosen, since the intervalley
coupling depends explicitly on the envelope function details,
as shown in terms (8), (9), and (10). The first term (8), which
gives rise to Vδ in Eq. (11), is proportional to the electronic
probability density at the interface|�(zI )|2, while the second
term (9) depends on the envelope tail inside the barrier, defining
the contribution VE of the evanescent tail. The term (10) is
always found to be negligibly small compared to the others
and is not included in the results presented here.

In order to get an analytic approximation for the envelope
function, we present initially results obtained using the
variational approach; we tried several functional forms for
the variational envelope function, all satisfying the following
boundary conditions: in the far semiconductor region (z →
−∞), under a constant electric field, the envelope function is
approximated by a Gaussian decay; toward the barrier material
the short-range decay (z ∼> zI ) is nearly exponential. The trial
function that typically gave the lowest energy expectation
value was

�(z) =
{

�A = ANA(z0 − z)e−α(z0−z)2
, z < zI

�B = BNBe−βz, z > zI

, (12)

with Ni = (
∫

dz�2
i )−1/2 (i = A,B).

If we take the barrier to be infinite, the optimized variational
parameters become z0 = zI and B = 0. But, in general, the
barriers are finite, and some penetration is expected so z0 > zI

and B > 0. From the continuity conditions �A(zI ) = �B(zI )
and � ′

A(zI ) = � ′
B(zI ), and the normalization A2 + B2 = 1,

we obtain expressions for A, B, and z0 in terms of the
variational parameters α and β; e.g., for zI = 0, we have

z0 = −β +
√

8α + β2

4α
(13)

A =
[√

1

β

√
β + 8z2

0 α3/2

4z0
√

α + e2z2
0α

√
2π erfc(

√
2αz0)

]−1

(14)

B =
√

8z2
0 α3/2

4z0
√

α(2z0α + β) + e2z2
0α

√
2π β erfc(

√
2αz0)

(15)

where erfc is the complementary error function,

erfc(x) = 1 − erf(x) = 1 − 2√
π

∫ x

0
e−t2

dt. (16)

Analytic solutions for the case of zI �= 0 may also be obtained.
However, for the step function potential and at relatively large
length scales, the interface position is irrelevant: It separates
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two semi-infinite regions, one filled with Si and the other
with the barrier material. At atomic distance length scales,
the coupling dependence on zI shows oscillatory behavior
with a period of 1 ML, a peculiarity of the EMA combined
with the underlying Bloch states, as discussed in detail in
Ref. 19. Data presented there (Fig. 5 of Ref. 19) indicate that,
for the step potential, these oscillations cause an uncertainty
of about 20% in |VV O |. In what follows, for simplicity and
definiteness, we arbitrarily fix the value of zI = 0, bearing in
mind that our results for the coupling are not accurate within up
to ∼20%.

In order to provide a more robust estimate of the wave
function, independent of our choice of its functional form, we
also solve Eq. (2) through a finite differences method. This
approach allows us to obtain the wave function variationally
without inputing a guess for the functional form of the enve-
lope. The envelope function is discretized and the derivatives
are approximated by the slope of the interpolated straight line
between two discrete points. Each discrete point is taken as
a separate variational parameter, under the constraint that the
wave function is normalized. The minimum energy in this
configuration space is obtained through the steepest descent
method. This strategy should, in principle, permit us to discuss
a wide range of electric fields.

The trial function and the finite differences expectation
value of the energy are given in Fig. 1(a), according to which
the lowest value down to F ∼ 0.01 V/nm is obtained within
finite differences/steepest descent method. The exact result
for infinite barrier, given in Ref. 57, is also included, and a
good agreement with our numerical results is obtained. As
the field increases and pushes the wave function toward the
interface, an evanescent tail into the barrier region is formed
for U0 = 3 eV, lowering the electronic energy with respect
to the impenetrable barrier U0 → ∞ case, as expected [upper
right data in Fig. 2(a)]. The good agreement for the expectation
value of the energy among the three methods, for example, at
F = 0.1 V/nm in Fig. 1(a), does not imply that the wave
functions are in agreement—as illustrated in Fig. 1(c) and
as is obvious for the infinite barrier case, where the wave
function for z � 0 is exactly zero. It is known that the energy
alone is not a valid criterion to guarantee the wave function
validity, in particular here for z � 0, from which the coupling
is calculated. Imposing a predetermined form to the envelope
most certainly will give spurious results for Vδ and VE . This
points the numerical finite differences as the most adequate
approach, with the additional capability of describing different
interface profiles.19

The finite differences approach is expected to be more accu-
rate than trial-function-based methods. However, in practice,
numerical constraints limit its implementation and reliability.
Below F ≈ 0.01 V/nm (not shown), we find that the lowest
energy actually corresponds to Eq. (12), a consequence of
our numerical accuracy limitations. Comparison between the
envelope functions squared (probability densities) for a range
of electric fields and for a conduction band offset U0 = 3 eV
is given in Figs. 1(b)–1(d). It is clear from the figures that the
envelope defined in Eq. (12) is in very good agreement with the
one obtained from finite differences for relatively high electric
fields [this is illustrated in Fig. 1(b)], but the difference at lower
electric fields is noticeable [see Figs. 1(c) and 1(d)]. Results

FIG. 1. (Color online) Energies and envelope functions for a
conduction band offset U0 = 3 eV. (a) Comparison between the
expectation value for the ground-state energies obtained variationally
by solving the finite differences equation through the steepest descent
method (squares) and using the trial wave function in Eq. (12)
(diamonds). Exact results for U0 → ∞ from Ref. 57 are also
shown (solid line). [(b)–(d)] Envelope functions squared (probability
densities) for the indicated electric fields. The solid line is obtained
solving the finite differences equation variationally (through the
steepest descent method). The dashed line is obtained from the trial
function in Eq. (12). In (b), F = 1.00 V/nm and the two approaches
are in good agreement, while at lower electric fields [(c) and (d)], the
functional form in Eq. (12) leads to somewhat more localized states
near the interface.

presented below correspond to the finite differences solution
to Eq. (2) in the F � 0.01 V/nm regime.

B. Contribution from VF , Vδ , and VE

We now proceed to calculate the three terms in Eq. (11). As
mentioned above, we find the electric field contribution VF to
be orders of magnitude smaller than the other two terms for
any value of εbarrier. This is an indication that the kink in the
electrostatic potential introduced by the change in dielectric
constants is not singular enough to produce sizable coupling
between the ±z valleys.

The other two terms are also left unchanged if the same
conduction band offset U0 is imposed and different values of
εbarrier are adopted, meaning that the electronic wave function
in all cases does not penetrate the barrier material deep enough
to be affected by the electric field inside it. Therefore, we
disregard the electric field in the barrier. This is beneficial to
our model, since we can characterize the barrier material by the
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FIG. 2. (Color online) Intervalley coupling as a function of the
conduction band offset U0. All data correspond to an external field of
10−2 V/nm. The absolute value of the δ function contribution |Vδ| and
the evanescent tail contribution |VE | are depicted separately, as well as
the real and imaginary parts of the total coupling VV O = Vδ + VE . The
offset for Si/SiGe interfaces is 0.1–0.2 eV and for Si/SiO2 interfaces
is 3 eV.

conduction band offset alone and not involve other properties
specific to the barrier material.

A richer behavior is obtained from Vδ , the contribution from
the δ function given in Eq. (8). Since this term is proportional
to the product U0|�(zI )|2, there is a trade-off between the
barrier height and the envelope function penetration into the
barrier material. In Fig. 2 we note that |Vδ| increases with U0,
meaning that, for F = 102 V/nm, the increase in U0 prevails
over the reduction in |�(zI )|2.

Finally, the term VE arising from the evanescent tail
contribution �(z > zI ) also presents a nontrivial trade-off.
While some penetration of the envelope function into the
barrier material is needed for this term to be nonvanishing,
the integrand in Eq. (9) is highly oscillatory so if the envelope
function penetrates more than a few monolayers, VE integrates
to zero. Since SiGe barriers present fairly large electronic
penetration, the calculated VE for these materials is much
smaller than in the case of SiO2 barriers. Moreover, in the
SiGe barrier the VE contribution gives only a change in the
complex phase of VV O , thus leading to |VV O | ≈ |Vδ|. Still,
since this small VE contribution to the intervalley coupling in
Si/SiGe heterostructures changes its complex phase, it leads
to a different ground-state combination of the ±z valleys.

C. Umklapp processes

Since we take the plane-wave expansion of both ±z

conduction band minima, Umklapp processes are fully in-
cluded here. An estimate of their relevance is given by
the total summation over them, which gives |Vδ|Umklapp =
0.02907 U0|�(zI )|2a0, while the contribution from G = G′ =
0 is |Vδ|� = 0.01108 U0|�(zI )|2a0.

We also look at each plane-wave contribution separately.
The most prominent terms in the PW expansion of the Bloch
functions at the conduction band minima are not the G = 0
term but rather the first nearest neighbors in the BCC reciprocal
lattice, as can be seen in Table I.

TABLE II. Most relevant contributions to the imaginary part of
Vδ . The sum of these terms is 0.02175 U0|�(zI )|2a0, underestimating
this term by only 25%. The real part of this contribution vanishes due
to our choice of coordinate system.

G(2π/a) G′(2π/a) Contribution [U0|�(zI )|2a0]

(0,0,0) (0,0,0) − 0.01108
(1,1,1) (1,1,1) 0.00410
(−1,1,1) (−1,1,1) 0.00410
(1, − 1,1) (1, − 1,1) 0.00410
(1,1, − 1) (1,1, − 1) 0.00410
(−1, − 1,1) (−1, − 1,1) 0.00410
(−1,1, − 1) (−1,1, − 1) 0.00410
(1, − 1, − 1) (1, − 1, − 1) 0.00410
(−1, − 1, − 1) (−1, − 1, − 1) 0.00410

Table II shows the numerical prefactors, multiplying
U0|�(zI )|2a0, of the contributions to the imaginary part,
confirming that the most relevant contributions come from
the � point and its first eight neighbors in the BCC reciprocal
lattice of Si since we get over 70% of the total value coming
from these points. Note that the Umklapp terms are the most
relevant.

It is also interesting to note that for the imaginary part the
most relevant contributions are obtained for G = G′. This is
equivalent to taking the zeroth-order plane-wave expansion of
the product u∗

+(r)u−(r), a commonly adopted approximation in
the EMA theory of shallow donors.58 But a complete analysis
of the Umklapp processes reveals that this is particular to the
δ contribution and that there is no general justification for this
approximation for the interface induced valley coupling.

D. Complete valley coupling

The absolute values, |Vδ| and |VE|, of the two terms
contributing to VV O and |VV O | = |Vδ + VE | are shown as a
function of the barrier height in Fig. 2. It is clear here that,
in general, the two terms have different behaviors and that
they both give important contributions to the total coupling.
However, for estimating the valley splitting, |VV O | = |Vδ| is
a reasonable approximation for small barriers, such as those
in Si/SiGe heterostructures. Noting that |VV O | < |Vδ| + |VE|,
we infer that VV O is in general a complex number, not a
purely imaginary quantity.19 Since Vδ is purely imaginary,
this triangle inequality is true only if VE has a nonvanishing
real part. For instance, at U0 = 3 eV, we have an intervalley
coupling of VV O = (−0.100 + i0.158) meV. Also, Vδ and VE

increase monotonically with U0, while VV O decreases at large
offsets. This indicates that the relative phase between Vδ and
VE changes with U0.

In principle, SiGe and SiO2 barriers could lead to similar
intervalley couplings. Of course, these two materials present
very different interface morphologies and are grown with
different techniques, which should lead to differences between
the intervalley couplings measured in each design. There has
been reports of significantly different valley splitting even for
the two interfaces of the same quantum well.59

The valley coupling calculated for a range of external
electric fields, covering several orders of magnitude are
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FIG. 3. (Color online) Data points give the calculated intervalley
coupling as a function of applied electric field, both in a log scale,
for barrier height U0 = 3 eV. A linear fit for the data points with VV O

given in meV and F in V/nm is included (dotted line through the
points), leading to an estimated λ ∼ 0.27Å. The vertical dashed lines
correspond to the experimental values of the breakdown field for SiGe
and SiO2. The dotted horizontal line represents the measured valley
coupling (or half the splitting) reported in Ref. 21. The inset shows
the same results presented in Ref. 19, covering a much narrower
range of field values, for U0 = 3 eV (solid line) and 125 meV (dotted
line). The solid straight line is a possible prediction from the model in
Ref. 26, calculated from Eq. (17), taking α = 0.43 Å and 〈 ∂u

∂z
〉 = F .

summarized in Fig. 3. This range expands by two orders
of magnitude the previously reported range in Ref. 19 (see
inset). We take the upper limit of F just below the SiO2

breakdown field F ≈ 3 V/nm. This bound is indicated in the
figure, as well as the SiGe breakdown field ≈10−2 V/nm. The
lower value of F is constrained by our numerical accuracy, as
discussed in Sec. III A. For large enough values of F , the valley
splitting can be of the order of 10 meV, which is compatible
(within error) with the giant splitting observed by Takashina
et al..21 This means that the results obtained in a SIMOX
interface could be related to nearly perfectly sharp interfaces
combined with relatively high gate fields, which might be
consistent with the experimental conditions in terms of these
two parameters. Other effects may be present that can further
enhance this coupling and account for or contribute to very
large splittings, as the recently proposed mechanism involving
interface states.60

Previous studies26,61 also report a linear dependence
|VV O | = λF , where λ is a model-dependent length. This
behavior in different models is qualitatively and quantitatively
addressed in Sec. IV.

IV. DISCUSSIONS AND CONNECTIONS WITH PREVIOUS
MODEL CALCULATIONS

The problem of interface-induced intervalley coupling has
been treated extensively in the literature, particularly within
EMA. Since the complete problem is not exactly solvable,
several approximations regarding the barrier potential and the
nature of the electronic states have been adopted in different

contexts. We discuss in this section connections between our
study and some previous contributions.

A. Electric field dependence of the valley splitting

The applied field F is one of the key parameters affecting
VV O and probably the most controllable. Early work by Sham
and Nakayama26 established a linear dependence of the valley
splittting on F . They address the Si valley splitting problem
from the perspective of the electrons in a space-charge layer in
a MOSFET. The effect of the Si-SiO2 interface on electron
dynamics is studied by considering incoming (toward the
interface) and outgoing (away from the interface) Bloch waves
in the Si region and evanescent waves decaying from the barrier
inside the semiconductor. The potential barrier is modeled to be
infinite, which disregards the evanescent tail of the electronic
wave function into the barrier. Moreover, their study is devoted
to the case of a planar density of electrons at the interface
(of the order of 1012 cm−2 electrons), including many-body
corrections. In contrast, we develop here a theory for a single
electron in a bound state, relevant in the context of quantum
computing. Therefore, any comparison with Ref. 26 should be
taken with caution.

The valley splitting obtained by Sham and Nakayama,26

�E = 2|VV O | =
∣∣∣∣α

〈
∂u

∂z

〉∣∣∣∣ , (17)

is proportional to the mean value of the derivative of the
self-consistent potential. The parameter α, a characteristic
length related to the intervalley scattering matrix, is given as
a function of the interface position with respect to a crystal
(001) plane (called z0 there), showing sharp variations as
z0 runs over a 1-ML range. But the concept of an interface
as an abrupt change in conduction band energy is not well
defined in this scale. This ambiguity comes from the continuum
EMA approach combined with the atomistic band structure
input. These same ingredients affect our results, with the
calculated valley coupling oscillating as a function of zI .19

We estimate that the mean value of the derivative of the
self-consistent potential should be of the order of the field,
〈 ∂u

∂z
〉 ∼= F , and take |α| = 0.43 Å as estimated in Ref. 26.

Therefore, λ(S&N ) = α/2 = 0.21 Å.
More recent EMA-based models20,36,61–63 rely on an effec-

tive coupling potential responsible for the intervalley coupling,
where the perturbation potential is taken as a δ function
with strength obtained from either TB atomistic calculations
or experimental data. In our formalism, it means taking in
Eq. (11) only the term Vδ . As discussed in the previous section
and shown in Fig. 2, this approximation is better for the
relatively low SiGe barriers, but for barrier materials with
higher conduction band offsets, sizable contributions (actually
reducing |VV O |) come from the VE term. The valley couplings
in Refs. 61 and 62 are also found to be linear with electric
field, and their estimated values for λ are 0.72 Å and 1.36 Å,
respectively.

In our model calculations, the direct {kz,k−z} coupling
mediated by VF , the field term in H , is found to be negligible.
The effectiveness of F comes from the electronic charge
being pulled toward the barrier material, increasing the wave-
function amplitude at and beyond the interface position. These
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shifts contribute to the terms Vδ and VE in Eq. (11). From
the linear fit of our data in Fig. 3, we get λ(present work) =
27.4 mV/(V/nm) = 0.27Å, thus comparable to λ(S&N ). [Fits
to the results in Ref. 19 (inset of Fig. 3) give λ = 0.14 Å
or 0.12 Å for U0 = 150 meV or 3 eV. For U0 = 3 eV, the
value λ = 2.7 Å, quoted here, is more reliable since it fits
a wider range of fields, with data points obtained from a
more accurate finite differences numerical solution.] Results in
Ref. 61 (alternatively, Ref. 62) are larger than S&N by a factor
of 3 (6) and are 2 (5) times larger than ours. Of course, there
are many differences between the models which may account
for the different results, but it is interesting to note from Fig. 2
that the δ-function term alone, |Vδ|, always overestimates the
full coupling |VV O | = |Vδ + VE|. Therefore, considering only
the δ function potential in the coupling term may be related to
larger values predicted for λ in Refs. 61 and 62.

The TB approach is also used to obtain more accurate
boundary conditions at the interface for the EMA wave
function.62 Furthermore, the ambiguity introduced by the
interface position discussed before was also recognized in this
study and explored in Ref. 61 to treat the interface position
within the uncertainty range as a fitting parameter to match
the TB and effective mass wave functions in a finite quantum
well.

B. Atomistic approaches

More realistic quantitative estimates may be obtained
from atomistic many band TB description of Si and the
barrier material,33–41 which may also account for interface
disorder such as alloying effects and surface roughness. Such
approaches are not always adequate or meant to give a general
picture of the physical mechanisms behind the intervalley
coupling, since the focus is to achieve quantitative accuracy. In
some cases reasonable trade-off between atomistic description
and analytical interpretations has emerged from simple one-
dimensional two-band TB models.35,40

Usually, the TB simulations are performed within a super-
cell approach, which involves periodic boundary conditions.
So a Si/barrier interface is actually modeled by a finite-width
Si slab surrounded laterally by two barriers, implying a
quantum-well arrangement if the barriers are wide enough
(or superlattice for thin barriers). This introduces a width
parameter to the Si slab that was shown to play an important
role in the intervalley coupling,33,34 except for high external
electric fields and wide-enough Si slabs, so the electron
interacts with a single interface. On the other hand, within
EMA it is possible to pinpoint the role of a single interface, as
both Si and the barrier material correspond geometrically to
semi-infinite slabs.

Despite these differences, some TB studies give empirical
evidence about the EMA analytical insights obtained here:
(i) the linear behavior of the valley splitting with electric field,
as discussed in Sec. IV A; (ii) the relationship between the
penetration of the wave function in the barrier material and the
barrier splitting explained in Sec. III and quantified by terms
(8) and (9) was also empirically obtained by Srinivasan et al.41

for Si electrostatic quantum dots embedded in SiGe buffers;
and, finally, (iii) the connection between the conduction band
offset and the valley splitting demonstrated here in Fig. 2

similar to the TB study reported in Ref. 35. These examples
illustrate how EMA studies may contribute to clarify the
physics behind phenomena numerically obtained by more
detailed atomistic approaches.

Other atomistic studies include ingredients that were not
implemented in our formalism, such as magnetic field and in-
terface disorder, so it is not possible to quantitatively compare
the results demonstrated within our general EMA study to
those obtained within TB for particular systems/geometries.

C. Low field dependence of the valley splitting

A nonlinear dependence of VV O with F has been presented
in TB studies by Grosso et al.33 and Boykin et al.34 at low
fields. We cannot assess this behavior because of instabilities
in our numerical procedure, mainly due to the size of the
simulation cell required by the wave-function spread at very
low electric fields. It is possible that this nonlinear behavior
is connected to the quantum-well behavior at low F , since the
models in Refs. 33 and 34 refer to a quantum well, involving
lengths associated with the Si well and the barriers widths,
on which (particularly the Si well width) the TB results are
quite sensitive. In all cases a linear behavior is obtained at
larger F values. The linear behavior is predicted in Ref. 26
from Eq. (17), obtained there, with 〈 ∂u

∂z
〉 = F . It also emerges

from a model for the variational envelope in a triangular-type
potential with infinite barrier potential, simpler but still similar
to Eq. (12), proposed by Fang-Howard64 and generalized by
Friesen et al.61 to allow some penetration probability into the
barrier region. In this case an analytic solution is obtained,
and it can be shown that |�(zI )|2 is proportional to the electric
field, leading to linear increase of the intervalley coupling with
F . However, in most cases of interest the applied electric field
should lead to a large-enough VV O , thus well within the linear
regime (F � 10−3 V/nm here).

V. SUMMARY AND CONCLUSIONS

We presented an EMA-based study of the valley splitting in
Si induced by a Si/barrier interface. Our approach combines
EMA with calculated Bloch functions, for which we give
values of the relevant plane-wave expansion coefficients. The
range of splittings 2|VV O | we obtained are in fair agreement
with measurements in Si/SiO2 and Si/SiGe interfaces.20,21 Our
results for |Vvo| are comparable with experimentally measured
values, indicating that we have probably included the most
relevant physical ingredients in our model, as discussed in
Ref. 19 and expanded here. In particular, we show that the
puzzling values of the valley splittings obtained in Ref. 21
could result from particularly sharp interfaces in the very high
electric field regime. We also confirm the linear dependence
of the valley splitting on the electric field in this regime.
Nonetheless, many effects contributing to the valley splitting
are not included, such as strain, interface misorientation,61

atomic scale disorder,39 lateral confinement,41 many-body
corrections,26,61 and the recently proposed contribution from
interface states.60

It is important to reiterate the double focus of this paper:
(i) to examine the effect of an applied electric field on the
valley-orbit coupling at the interface and (ii) to provide a clear
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interpretation of the physics of valley splitting. Understanding
these points would hopefully reveal fundamental elements that
affect the electron valley coupling and guide the identification
of a suitable environment for electron spin qubits. By using
the effective mass approximation we implicitly assume that
the atomic configuration at the interface is not changed by the
applied field (which should be a good approximation at low
fields) and that interface roughness is small at the length scale
over which the electron wave function changes significantly.4

A comprehensive study of valley splitting, including the effects
of interface roughness, thickness, applied electric field, and
other elements mentioned in the previous paragraph, would
necessarily contain an atomistic component. Such a study
would be required to clearly establish the limit of applicability
of EMA, which is essentially a mean-field approach for
the bound electron wave function, interface disorder, and
composition profiles.

Our EMA approach provides a clear interpretation of the
physics of valley splitting, revealing fundamental elements
affecting the coupling and eventually providing a suitable
environment for electronic spin qubit operation. While the
investigation of other effects mentioned above is desirable,
a simpler model that goes beyond the phenomenological
approach, as provided here, is useful in guiding nanofabri-
cation and device operation efforts. In particular, a profound

understanding of the valley coupling induced by interfaces may
pave the road to the quantum manipulation and processing of
the valley degree of freedom.65

We also provide a critical analysis of the valley physics
theory available in the literature and discuss some of the
ingredients that are imperative in a comprehensive theory.
These include the correct interpretation of the valley coupling
as a complex number and the inclusion of Umklapp processes.

In conclusion, we have calculated electron valley splitting
in Si at a Si/barrier interface. We show that a sizable single-
particle valley-orbit coupling can be obtained by applying a
high-enough external field and choosing an optimal barrier
material that provides a suitable potential barrier height and
high-quality abrupt interface.
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