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Theory of spatially inhomogeneous Bloch oscillations in semiconductor superlattices
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In a semiconductor superlattice with long scattering times, damping of Bloch oscillations due to scattering is
so small that nonlinearities may compensate it and Bloch oscillations persist even in the hydrodynamic regime.
To demonstrate this, a Boltzmann-Poisson transport model of miniband superlattices with inelastic collisions is
proposed and hydrodynamic equations for electron density, electric field, and the complex amplitude of the Bloch
oscillations are derived by singular perturbation methods. For appropriate parameter ranges, numerical solutions
of these equations show stable Bloch oscillations with spatially inhomogeneous field, charge, current density,
and energy density profiles. These Bloch oscillations disappear as scattering times become sufficiently short. For
sufficiently low lattice temperatures, Bloch and Gunn type oscillations mediated by electric field, current, and
energy domains coexist for a range of voltages. For larger lattice temperatures (300 K), there are only Bloch
oscillations with stationary amplitude and electric field profiles.
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I. INTRODUCTION

Bloch oscillations (BOs) are coherent oscillations of the
position of electrons inside energy bands of a crystal under
an applied constant electric field −F . Their frequency is
proportional to the field F and to the lattice constant l:
ωBloch = eF l/h̄. BOs were predicted by Zener in 1934 as
an immediate consequence of the Bloch theorem,1 but they
were not experimentally found until much later.2 For BOs
to be observable in an experiment, their periods have to be
shorter than the scattering time τ , and therefore the applied
field has to surpass h̄/(elτ ). This value is too large for
most natural materials, in which l is of angstrom size. In
1970, Esaki and Tsu suggested creating an artificial crystal,
which they called a superlattice (SL), by growing many
identical periods comprising a number of layers of two
different semiconductors with similar lattice constants.3 The
period of the resulting one-dimensional crystal may be much
larger, say about 10 nm, and this gives reasonable electric
fields of about 10 kV/cm, which are within the range of
experimental observation. Damped Bloch oscillations were
first observed in 1992 in semiconductor SLs whose initial
state was prepared optically.2 In recent years, BOs have been
observed in other artificial crystals such as atoms placed in the
potential minima of a laser-induced optical standing wave,4

photons in a periodic array of waveguides,5 and Bose-Einstein
condensates in optical lattices,6 among other systems.7

BOs are potentially important to design infrared detectors,
emitters, or lasers which can be tuned in the terahertz frequency
range simply by varying the applied electric field.7 Another
application is based on the fact that BOs give rise to a resonance
peak in the absorption coefficient under dc + ac bias and a
positive gain at THz frequencies.8 The latter has been observed
in quantum cascade laser structures.9 These applications are
severely limited due to scattering which rapidly damps BOs
and, for a dc voltage biased SL, favors the formation of electric
field domains (EFDs) whose dynamics yield self-sustained
oscillations of lower frequency (gigahertz)10,11 (a phenomenon
similar to the Gunn effect in bulk GaAs12). EFD formation may

also preclude THz gain in simple dc + ac driven SL which
is typically calculated assuming spatially uniform solutions
of drift-diffusion or Boltzmann type equations.7,13–16 This
assumption has not been tested by solving space-dependent
equations with appropriate boundary conditions or by experi-
ments in semiconductor superlattices. An interesting idea for
efficient terahertz harmonics generation is to excite relaxation
oscillations in the superlattice by incident radiation from a
waveguide.17

To understand the role of EFD formation in the observation
of BOs or THz Bloch gain, our starting point should be a
model in which BOs and EFDs are both possible solutions of
the governing equations. One simple possibility is to consider
single-miniband SLs described by Boltzmann-Poisson trans-
port equations. In 1971, Ktitorov, Simin, and Sindalovskii
(KSS) considered a one-dimensional Boltzmann transport
equation with a collision model comprising two terms: a
simple relaxation to equilibrium and another term describing
energy-conserving impurity collisions.8 Later Ignatov and
Shashkin used relaxation to a Boltzmann type local equi-
librium proportional to the instantaneous electron density
instead of relaxation to global equilibrium.18 More general
relaxations to Fermi-Dirac local equilibria and self-consistent
coupling of electric field and electron density via the Poisson
equation have been considered recently.19–21 The characteristic
equations of these Boltzmann-Poisson models exhibit BOs
as solutions and there is a hydrodynamic regime for large
applied electric fields described by drift-diffusion equations.19

However both the Boltzmann-Poisson and the drift-diffusion
systems do not have BOs as solutions. Instead, they display
self-sustained oscillations of the current through the SL due
to periodic nucleation and motion of EFDs,19,20 similar to the
Gunn effect in bulk GaAs.12 The reason of this shortcoming
becomes clear when the equations for the moments of the
distribution function are analyzed. It turns out that the current
density and the energy density oscillate at the Bloch frequency
during BOs but the electron density varies slowly. Thus a local
equilibrium that depends only on the electron density (and not
on the instantaneous value of the current and energy densities)
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cannot produce equations for these magnitudes in the hydro-
dynamic limit. The situation is similar to that found in gases
which motivated the Bhatnagar-Gross-Krook (BGK) collision
model.22 If we want to derive hydrodynamic equations for the
mass density, average velocity, and temperature of a gas using
relaxation to local equilibrium as a collision term, the local
equilibrium distribution must depend on these magnitudes.22

In this paper, we study a collision model similar to BGK’s, i.e.,
relaxation to a local equilibrium depending on the electron,
current, and energy densities.23 The most important property
of the proposed model is that it allows the local equilibrium
distribution to oscillate at the Bloch frequency, which is the
crucial feature (missing in the KSS kinetic equation) if we
want to derive a hydrodynamic regime that allows BOs. Since
the scattering processes in a SL dissipate energy and mo-
mentum, our collision model includes two nonzero restitution
coefficients. This is similar to the case of low-density granular
flows in which intergrain collisions preserve momentum but
dissipate energy and the corresponding BGK model includes
one restitution coefficient.24 In low-density granular flows,
inelastic collisions dissipate energy and, as a consequence,
the granular gas is cooling down continuously (unless there
is a continuous injection of energy, for example through the
boundaries). Nevertheless using a Chapman-Enskog method,
it is possible to derive hydrodynamic equations about a local
equilibrium with a temperature that is continuously decreasing,
the so-called homogeneous cooling state.24 The hydrodynamic
equations derived in Ref. 24 for the simple dissipative BGK
model of low-density granular flows have also been obtained
for the inelastic Boltzmann equation (with an integral collision
kernel) in a double limit of small Knudsen number and almost
elastic collisions.25

In this paper we derive and solve numerically hydro-
dynamic equations containing BOs and EFDs among their
solutions for a dc voltage biased SL. Bloch gain for a dc + ac
driven SL will be studied elsewhere. Hydrodynamic equations
are derived in a double limit: (i) The field-dependent term
and the collision term are of the same order and dominate all
others in the kinetic equation, and (ii) the collisions are almost
elastic so that energy and momentum dissipation are of the
same order as the spatial gradients in the balance equations.
Extensions of classical kinetic theory methods based on
assumption (i), such as the Chapman-Enskog technique, yield
transport coefficients which become singular if the electric
field becomes zero. Fixing this shortcoming requires matching
to a multiple time scales expansion based on assumption (ii)
and on a quasistationary solution of the equations for the first
moments of the distribution function. Our techniques might
be useful in other problems in kinetic theory having a similar
structure.

Once these difficulties are overcome, we can show that, in
the appropriate limit, the electron current density and mean
energy oscillate at the Bloch frequency, whereas the electron
density, the electric field, and the envelope of the BOs vary
on a slower scale and are described by balance equations
(hydrodynamic regime). Appropriate boundary and initial
conditions include initiation of the BOs possibly by optical
means.2 Numerical solutions in the appropriate parameter
range show that initial profiles for the field and the BO
amplitude evolve to stable spatially inhomogeneous profiles

at room temperature.26 At low temperature (70 K), we have
found that Bloch oscillations and Gunn-type oscillations due
to EFD dynamics may coexist. Increasing lattice temperature
produces large diffusion coefficients in the electron current
density (averaged over the BOs) as compared to the convective
part thereof. This eliminates the Gunn-type oscillations. At low
lattice temperature, the diffusion does not change that much,
but convection dominates the average electron current density,
thereby facilitating movable EFDs and Gunn-type oscillations.
This novel finding of coexisting BOs of about 0.36 THz and
13.8 GHz Gunn-type oscillations is somewhat unexpected as
it is usually assumed that Gunn-type oscillations have to be
eliminated to get BOs or THz gain.14

The rest of the paper is as follows. In Sec. II, we review the
KSS-Poisson transport equations. These equations are written
in nondimensional form in Sec. III and equations for the two
first moments of the distribution function (electron, current,
and energy densities) are derived from them. The moment
equations do not form a closed set because they depend
on the second moment. Assuming that the second moment
is a function of the lower moments to be found later (the
closure expression), we derive a reduced system of modulation
equations for electron density, electric field, and amplitude of
the BOs by means of a nonlinear multiple scales method. Its
analysis shows that BOs are always damped for the KSS-
Poisson model. In Sec. IV, we present our dissipative BGK
collision model whose local equilibrium distribution depends
on electron, current, and energy densities. The corresponding
modulation equations may support self-sustained BOs as
solutions. They contain closure functions of electron, current,
and energy densities that have to be calculated by a different
method. The precise form of the closure expressions are found
in Sec. V by matching the equations for electric field, electron
density, and amplitude of the BOs found in Sec. III to the result
of using the Chapman-Enskog method (CEM)27 on a modified
kinetic equation for a distribution function that depends on
the BO phase. This method yields equations with transport
coefficients which are singular in the limit of vanishing electric
field but they are compatible with the modulation equations of
Sec. III in an intermediate limit of sufficiently small fields.
This compatibility yields the sought closure expressions. The
results of numerical simulations of the modulation equations
with appropriate boundary and initial conditions are presented
in Sec. VI. Section VII contains our conclusions. Appendix A
shows that Bloch oscillations are always damped for the
dissipative BGK model with some particular local equilibrium
distributions. Appendix B gives some technical details on the
local Boltzmann equilibrium. In Appendix C, we derive a
drift-diffusion system for the electric field in superlattices with
strongly inelastic collisions by using a CEM similar to that
described in Refs. 19 and 27.

II. THE KSS BOLTZMANN-POISSON MODEL

We shall present our ideas in the very simple case of an n-
doped semiconductor SL having only one populated miniband
with the tight-binding dispersion relation:

E(k) = �

2
(1 − cos kl), v(k) = 1

h̄

dE
dk

= �l

2h̄
sin kl. (1)
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Here � is the miniband width, l is the SL period, h̄ is
the Planck constant, and v(k) is the electron group velocity.
Electron motion and the electric field are directed along the
SL growth direction which we take as the x axis. In this case,
the following modified KSS model describes electron motion
including impurity collisions (which conserve energy but not
momentum) and inelastic electron-phonon collisions:19

∂f

∂t
+ v(k)

∂f

∂x
+ eF

h̄

∂f

∂k
= Qe(f ) + Qp(f ), (2)

ε
∂F

∂x
= e

l
(n − ND), (3)

n = l

2π

∫ π/l

−π/l

f (x,k,t) dk, (4)

Qe(f ) = −νe (f − f 1D), (5)

f 1D(k; n) = m∗kBT0

πh̄2 ln

[
1 + exp

(
μ − E(k)

kBT0

)]
, (6)

l

2π

∫ π/l

−π/l

f 1D(k; n) dk = n, (7)

Qp(f ) = −νp Af ≡ −νp

2
[f (x,k,t) − f (x,−k,t)]. (8)

Here f , n, ND , ε, kB , −e < 0, m∗, μ, and −F = −∂W/∂x

are the one-particle distribution function, the 2D electron
density, the 2D doping density, the dielectric constant, the
Boltzmann constant, the electron charge, the effective mass
of the electron, the electrochemical potential, and the electric
field, respectively. W is the electric potential. Note that the
1D distribution functions have the same units as the 2D
electron density n and that the electrochemical potential μ

is a function of n obtained by solving (6)–(7). The 1D
Fermi-Dirac local equilibrium (6) is obtained by integrating
the 3D Fermi-Dirac distribution 1/(1 + e[E(k)−μ]/(kBT0)) with
E(k) = E(k) + h̄2k2

⊥/(2m∗) over the transversal wave vector
k⊥. T0 is the lattice temperature, and νe and νp are collision
frequencies which we take as given constants. The distribution
function is periodic in k with period 2π/l. A quantum version
of the semiclassical equations (2)–(8) was studied in Ref. 28.

The KSS-Poisson system (2)–(8) goes beyond relaxation to
equilibrium and linear response theory. The collision terms in
Eq. (2) push the distribution function close to the local Fermi-
Dirac equilibrium (6) which depends on the instantaneous
value of the electron density as indicated by (7). In the case
of a finite SL biased at zero volts and having insulating
contacts, we can show that the system evolves toward a
global equilibrium (6) with F = 0, n = ND , and the chemical
potential corresponding to this doping density by finding a
free energy functional and using it to prove the H theorem.21

If the SL has Ohmic contacts and is subject to an appropriate
dc voltage, Gunn type self-sustained oscillations are possible
and the free energy oscillates at the same frequency.21

A. Characteristic equations, moment equations,
and Bloch oscillations

The characteristic equations associated with (2) are

dx

dt
= v(k) = �l

2h̄
sin kl,

dk

dt
= eF

h̄
, (9)

which, for constant F , have BO solutions x(t) =
− �

2eF
cos[ eF l

h̄
(t − t0)]. The influence of scattering can be

seen from the equations for the moments of the distribution
function. Since E(k) and f 1D are even in k and v(k) and Af

are odd in k, the collision operators Qe(f ) and Qp(f ) satisfy
the conditions∫ π/l

−π/l

Qe,p(f ) dk = 0,

∫ π/l

−π/l

E(k) Qp(f ) dk = 0, (10)

e

2π

∫ π/l

−π/l

v(k) Qe,p(f ) dk = −νe,pJn, (11)

∫ π/l

−π/l

[
�

2
− E(k)

]
Qe(f ) dk = −νen(E − E1D), (12)

where

Jn(x,t) = e

2π

∫ π/l

−π/l

v(k) f (x,k,t) dk, (13)

E(x,t) = l

2π n(x,t)

∫ π/l

−π/l

[
�

2
− E(k)

]
f (x,k,t) dk, (14)

E1D(x,t) = l

2π n(x,t)

∫ π/l

−π/l

[
�

2
− E(k)

]
f 1D(x,k,t) dk (15)

are electronic current and energy densities. Thus Qe(f )
dissipates energy and momentum whereas Qp(f ) dissipates
momentum but not energy. For a finite SL with insulating
contacts and zero voltage bias, these collision terms dissipate
the electron energy and momentum until the electrons reach
equilibrium at the lattice temperature T0, n = ND , F = 0, and
zero current.21

To obtain equations for n, Jn, and E, we multiply (2) by
1, v(k), and �/2 − E(k), respectively, integrate over k, and
simplify the results by means of (10)–(12), thereby obtaining

e

l

∂n

∂t
+ ∂Jn

∂x
= 0, (16)

∂Jn

∂t
+ e�2l

8h̄2

∂

∂x
(n − Re f2) − e2l nEF

h̄2 = −(νe + νp)Jn,

(17)

∂E

∂t
− lE

en

∂Jn

∂x
− �2l

8h̄n

∂

∂x
Imf2 + F Jnl

n
= −νe(E − E1D).

(18)

Here we have used (1) and the Fourier coefficients fj of the
periodic distribution function:

f (x,k,t) =
∞∑

j=−∞
fj (x,t) eijkl . (19)

Note that Jn = −e� Imf1/(2h̄) and E = � Ref1/(2n). We
can eliminate the electron density from (16) by using the
Poisson equation (3) and integrating the result over x, thereby
obtaining the following form of Ampère’s law:

ε
∂F

∂t
+ Jn = J (t). (20)

Here J (t) is the total current density. Note that (16)–(18) are
a closed system of equations in the case of space-independent
moments. The dissipation terms on the right-hand side of (17)
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and (18) ensure that a global equilibrium f = f 1D with n =
ND , F = 0, Jn = J = 0, and E = E1D is reached.21

Note that space-independent solutions of (16)–(18) with
νe = νp = 0 (elastic collisions) have a constant electron
density n, whereas Jn and E satisfy the equation of a linear
oscillator with the Bloch frequency ωBloch = eF l/h̄:

∂Jn

∂t
− e2lF

h̄2 nE = 0,
∂E

∂t
+ lF

n
Jn = 0

=⇒ ∂2Jn

∂t2
+ e2l2F 2

h̄2 Jn = 0.

III. MOMENT EQUATIONS AND DAMPED BLOCH
OSCILLATIONS FOR THE ALMOST ELASTIC

KSS MODEL

In this section, we shall derive equations for the amplitude
of the BOs in the limit of an almost elastic KSS transport
equation. We shall use a quite general perturbation method that
will be applied to other Boltzmann transport models later in
this paper. Our results will show that BOs cannot be sustained
within the KSS model and point out the insufficiency thereof.

A. Nondimensional KSS-Poisson and moment equations

To study the KSS-Poisson transport equations and its
associated moment equations, it is convenient to nondimen-
sionalize them using the units indicated in Table I. They
are appropriate for the hyperbolic limit δ → 0, in which
the collision and Bloch frequencies are comparable and the
corresponding terms dominate all others in Eq. (2). Let ν

be a typical collision frequency related to νe and νp. The
field-dependent term in Eq. (2) has the order e[F ]l[f ]/h̄,
whereas the collision terms are of order ν[f ]. Here [f ]
and [F ] are typical scales of distribution function and field,
respectively. Equations (3) and (4) with [k] = 1/l imply that
[f ] = [n] = ND . Collision and field dependent terms are of the
same order for [F ] = h̄ν/(el). From the Poisson equation (3),
we obtain [x] = ε[F ]l

eND
= εh̄ν

e2ND
. The ratio from the convective

term proportional to [v(k)] = �l/(2h̄) to the collision term of
order ν is a small dimensionless parameter

δ = e2NDl�

2εh̄2ν2
. (21)

This is also the ratio between the scattering time and the
dielectric relaxation time and it plays the same role as the
Knudsen number in the kinetic theory of gases. Defining
now f̂ = f/ND , n̂ = n/ND , Ê = 2E/�, Ĵn = J/[Jn], x̂ =
x/[x], ...(where [y] are the units in Table I), we can rewrite all
equations so far written in nondimensional form. Omitting the

hats over the variables, we find the following nondimensional
versions of (2)–(8):

F
∂f

∂k
+ νe

ν
(f − f 1D) + νp

ν
Af = −δ

(
∂f

∂t
+ sin k

∂f

∂x

)
,

(22)

∂F

∂x
= n − 1, (23)

n = 1

2π

∫ π

−π

f (x,k,t) dk = 1

2π

∫ π

−π

f 1D(x,k,t) dk, (24)

f 1D(k; n) = m∗kBT0

πh̄2ND

ln

[
1 + exp

(
2μ − �

2kBT0
+ �

2kBT0
cos k

)]
.

(25)

The moment equations (16)–(18) in nondimensional
form are

∂n

∂t
+ ∂Jn

∂x
= 0, (26)

nEF = δ

[
∂Jn

∂t
+ 1

2

∂

∂x
(n − Re f2) + γjJn

]
, (27)

FJn

n
= −δ

[
∂E

∂t
− E

n

∂Jn

∂x
− 1

2n

∂

∂x
Imf2 + γe(E − E1D)

]
,

(28)

provided we define γe and γj through the relations

νe

ν
= δγe,

νe + νp

ν
= δγj . (29)

We can rewrite (27) and (28) in terms of f1 = nE − iJn,
the first harmonic of the distribution function

f (x,k,t ; δ) =
∞∑

j=−∞
fj (x,t ; δ) eijk, (30)

as (
δ

∂

∂t
+ iF + δ

γe + γj

2

)
f1 + δ

γe − γj

2
f1

= δγenE0 − δ

2i

∂

∂x
(n − f2), (31)

where f1 is the complex conjugate of f1. The Ampère law (20)
is simply

∂F

∂t
+ Jn = J. (32)

TABLE I. Hyperbolic scaling and nondimensionalization with ν = 1014 Hz.

f , n F E , E v(k) Jn x k t δ

ND
h̄ν

el

�

2
l�

2h̄
eND�

2h̄
εh̄ν

e2ND

1
l

2εh̄2ν

e2NDl�

e2NDl�

2εh̄2ν2

1010 cm−2 kV/cm meV 104 m/s 104 A/cm2 nm 1/nm ps
4.048 130 8 6.15 7.88 116 0.2 1.88 0.0053
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B. Amplitude of the Bloch oscillations

The moment equations (26) and (31) for n = f0 and f1 are
not closed because the higher moment f2 appears in them. In
general, equations for moments f0, . . . , fn will contain terms
depending on fn+1. Singular perturbation methods, such as the
CEM,27 produce a closure expression

f2 = g(n,F,f1; δ), (33)

in which g can be written as a power series in δ. For
the KSS-Poisson model, such an expression was derived in
Ref. 19. We will assume for the time being that g is a given
known function and derive modulation equations for the slowly
varying quantities n(x,t), F (x,t), and A(x,t).

If we assume (as is usually done in the method of multiple
scales) that the moments and the field are functions of both
a fast time scale τ = t/δ (corresponding to a dimensional
time unit 1/ν) and the slow time scale t , n = n(x,τ,t ; δ), F =
F (x,τ,t ; δ), and f1 = f1(x,τ,t ; δ), so that ∂n/∂t in Eq. (26)
becomes ∂n/∂t + δ−1∂n/∂τ and so on. Equations (26), (31),
and (32) should be replaced by

∂n

∂τ
= −δ

(
∂n

∂t
+ ∂Jn

∂x

)
, (34)

∂F

∂τ
= δ

(
J − Jn − ∂F

∂t

)
, (35)

(
∂

∂τ
+ iF

)
f1 = δ

[
γenE1D − γe + γj

2
f1 − γe − γj

2
f1

− 1

2i

∂

∂x
(n − g) −∂f1

∂t

]
. (36)

Setting now δ = 0, we find

n = n(x,t), F = F (x,t), f1 = A(x,t) e−iF τ , (37)

in which n(x,t), F (x,t), and the envelope function A(x,t) do
not depend on the fast time scale. Equation (34) indicates that
n varies slowly on the time scale t . Similarly and according to
(35), F is independent of τ provided the total current density
J (t) is of order 1. In practice, the size of J is set by Jn

and by the bias condition. Imposing a voltage bias condition
between contacts at the ends of a SL with finitely many periods,
J = O(1) if we assume that this voltage is constant or it varies
on the slow scale t . We shall not consider in this paper the
case of voltage bias varying on the fast time scale τ (e.g.,
an ac voltage biased SL driven at a frequency of order 1/δ),
for which J = O(1/δ), and we have to modify the present
analysis.

The solution (37) of (34)–(36) for δ = 0 exhibits BOs with
frequency F . Before deriving modulation equations, it is useful
to get first a quasistationary distribution function that solves
(36) and is independent of τ :

f1,S = δ

F 2 + δ2γjγe

[
γenE1D(δγj − iF )

+ F + iδγe

2

∂

∂x
(n − Re gS) + δγj − iF

2

∂

∂x
Im gS

+ (iF − δγj )Re hS − (F + iδγe)Im hS

]
, (38)

provided we have replaced h(x,t) = ∂f1/∂t . We introduce the
function h(x,t) because extra terms having this form appear
in the moment equations when we use the CEM. The specific
expressions for gS and hS will be obtained by matching our
results in this section with those obtained by the CEM. See
Sec. V and Appendix C.

Remark 1. All terms in Eq. (38) have nonzero limits as
F → 0 and this equation is the key step in the regularization
of the results obtained in Sec. V using the CEM.

Equation (38) is equivalent to

Jn,S = δ

F 2 + δ2γjγe

[
γeE

1DnF + F

2

∂

∂x
Im gS

− δγe

2

∂

∂x
(n − Re gS) − F Re hS + δγeIm hS

]
,

(39)

ES = δ

F 2 + δ2γjγe

[
δγj

(
γeE

1D + 1

2n

∂

∂x
Im gS

)

+ F

2n

∂

∂x
(n − Re gS) − δγj

n
Re hS − F

n
Im hS

]
. (40)

The subscript S in gS and in hS stresses that these functions are
calculated with τ -independent n, F , Jn,S , and ES . Note that for
F = O(1), f1,S = O(δ/F ), whereas f1,S = O(1) if F � δ.
Thus the order of f1,S depends on the order of magnitude of
F and it is better to treat the compact expression (38) as an
O(δ) quantity. Without the x derivatives and t derivative in
the functions g and h, the right-hand sides of (39) and (40)
correspond to the uniform stationary state

Jn,Su = n vd (F ; n), vd = δγeE
1DF

δ2γjγe + F 2
,

(41)

ESu = δ2γeγjE
1D

δ2γjγe + F 2
.

The Boltzmann limit of (25) corresponds to approximating
ln(1 + x) ≈ x in that expression and then calculating the
chemical potential by means of (24). The resulting expression
f 1D ≈ nπeβ̃0 cos k/I0(β̃0), where β̃0 = �/(2kBT0) and I0(x)
is the modified Bessel function of index zero,29 produces
a constant value E1D = I1(β̃0)/I0(β̃0). Inserting this in the
drift velocity (41) gives the well-known Ignatov-Shashkin
formula18

vd (F ) = 2vMF
1 + F2

, vM = �l

4h̄τe

I1(β̃0)

I0(β̃0)
, F = eF l

h̄νeτe

,

τe =
√

νe + νp

νe

, (42)

which we have written back in dimensional units. It reduces to
the Esaki-Tsu drift velocity in the limit β̃0 → ∞ (zero lattice
temperature), in which the Bessel functions are absent.

Remark 2. Comparing the Ignatov-Shashkin formula (42) to
experimentally obtained current-voltage characteristic curves
yields the numerical values of the collision frequencies νe

and νp.30
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According to (40), the mean energy E decreases as the
field F increases, whereas the average energy 〈E〉 obtained by
averaging (1),

〈E〉 = l

2πn

∫ π/l

−π/l

E f dk = �

2
− E, (43)

increases with the electric field, as one would have expected.
Note that (41) is an asymptotically stable stationary solution
of the moment equations (16)–(18) provided we ignore the
spatial dependence of n, Jn, and E.

If we insert f1 = f1,S(x,t) + �(x,t,τ ) in Eq. (36), we
obtain the equation(

∂

∂τ
+ iF

)
� = −δ

[
γe + γj

2
� + γe − γj

2
� + ∂�

∂t

− 1

2i

∂

∂x
(g − gS)

]
. (44)

Since F and n are still varying on the slow time scale t , it
is appropriate to introduce the following nonlinear fast time
scale instead of τ :

θ = 1

δ

∫ t

0
F (x,s) ds, (45)

which yields ∂θ/∂t = F/δ, ∂θ/∂τ = F . Note that, in dimen-
sional units, the phase θ equals the integral of the Bloch
frequency eF l/h̄ over dimensional time, and therefore the
partial derivative of θ over dimensional time equals the Bloch
frequency. Thus θ is the phase of the Bloch oscillations.

The fast and slow time scales θ and t will be used to set up
a method of nonlinear multiple scales below in order to find
out the modulation equations on the slow time scale t . If we
consider n, F , and � to be functions of x, θ , and t , Eqs. (34),
(35), and (44) become

F
∂n

∂θ
= −δ

[
∂n

∂t
− ∂

∂x
Im (f1,S + �)

]
, (46)

F

(
∂

∂θ
+ i

)
� = −δ

[
∂�

∂t
+ γe + γj

2
�

+ γe − γj

2
� − 1

2i

∂

∂x
(g − gS)

]
. (47)

The method of multiple scales is based on the expansions

n(x,t ; δ) =
1∑

m=0

δmn(m)(θ,x,t) + O(δ2), (48)

F (x,t ; δ) =
1∑

m=0

δmF (m)(θ,x,t) + O(δ2), (49)

�(x,t ; δ) =
1∑

m=0

δm�(m)(θ,x,t) + O(δ2), (50)

and on assuming that n(m), F (m), and �(m) are 2π -periodic
functions of θ . Inserting (48)–(50) in Eq. (46), (47), and (23),
we obtain the following hierarchy of equations:

∂n(0)

∂θ
= 0, (51)

∂F (0)

∂x
= n(0) − 1, (52)

F (0)

(
∂

∂θ
+ i

)
�(0) = 0, (53)

F (0) ∂n(1)

∂θ
= −∂n(0)

∂t
+ ∂

∂x
Im (f1,S + �(0)), (54)

∂F (1)

∂x
= n(1), (55)

F (0)

(
∂

∂θ
+ i

)
�(1) = −∂�(0)

∂t
− γe + γj

2
�(0)

+ γe − γj

2
�(0) + 1

2i

∂

∂x

(
g(0) − g

(0)
S

)
,

(56)

and so on.
The solution of (53) is

�(0) = A(x,t) e−iθ , (57)

whereas (51) and (52) indicate that n(0) and F (0) do not depend
on θ .31 The solutions of (54) and (56) are 2π -periodic functions
of θ only if the right-hand sides of these equations do not
contain secular terms proportional to 1 and e−iθ , respectively.
This is the case if the integral of the right-hand side of (54)
and the integral of eiθ times the right-hand side of (56) over
[−π,π ] are both zero. These solvability conditions give

∂n(0)

∂t
− ∂

∂x
Im f1,S = 0, (58)

∂A

∂t
= −γe + γj

2
A + 1

2i

∂

∂x

∫ π

−π

eiθg(n(0),F (0),f1,S

+Ae−iθ ; 0)
dθ

2π
. (59)

Instead of (58), we can use the Ampère’s law (32) averaged
over θ with 〈Jn〉 = −Imf1,S given by (39):

∂F (0)

∂t
+ δ

F (0) 2 + δ2γjγe

[
γeE

1Dn(0)F (0) + F (0)

2

∂

∂x
Im gS

− δγe

2

∂

∂x
(n(0) − Re gS) − F (0)Re hS + δγeIm hS

]
= 〈J 〉θ , (60)

where 〈J 〉θ is the total current density averaged over one period
of θ . Equations (59), (60), and (52) (the Poisson equation)
describe the Bloch oscillations.

It is important to note that (58) and (60) are continuity and
Ampère’s equations averaged over the fast scale θ . The total
current density depends on the bias condition. For a dc voltage
biased SL of nondimensional length L = (N + 1)l/[x], we
have

1

L

∫ L

0
F (x,t) dx = φ, (61)

where φ = eV/[h̄νe(N + 1)] is a dimensionless average field
proportional to the constant applied voltage V . Integrating the
Ampère’s equation (32) and using dφ/dt = 0, we obtain

J = 1

L

∫ L

0
Jndx = 1

L

∫ L

0
[Jn,S − Im (Ae−iθ )] dx, (62)
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where we have used f1 ∼ f1,S + Ae−iθ and Jn = −Imf1,S =
Jn,S−Im(Ae−iθ ), where Jn,S and θ are given by (39) and (45),
respectively. Equation (60) and the dc voltage bias condition
yield

〈J 〉θ = 1

L

∫ L

0
Jn,S dx =⇒ J − 〈J 〉θ = − 1

L

∫ L

0
Im (Ae−iθ ) dx.

(63)

C. Insufficiency of the KSS-Poisson model

The local equilibrium (25) depends only on n; therefore g is
a function of n and F but it does not depend on A and θ . Thus
g

(0)
−1 = 0, the second term in the right-hand side of (59) is zero,

and therefore A(x,t) = A(x,0) e−(γe+γj )t/2. The amplitude of
the BOs decays exponentially fast to zero. This is consistent
with the previous result that the hydrodynamic limit yields
only a drift-diffusion equation for n and the electric field.19

IV. DISSIPATIVE BGK COLLISION MODEL

We have shown that the KSS-Poisson model cannot sustain
BOs because its local equilibrium function does not depend
on Jn and E and therefore does not depend on the Bloch phase
θ when (57) is used. Equation (60) becomes a drift-diffusion
equation in this case. Similarly to the original BGK collision
model,22 we need a local equilibrium distribution that depends
on n, Jn, and E in order to obtain a richer set of hydrodynamic
equations. To account for thermal effects, we use the following
more general Fermi-Dirac distribution instead of f 1D:23,26,32

f 1Dα(k; μα,uα,Tα)

= m∗kBTα

πh̄2 ln

[
1 + exp

(
μα + h̄kuα − E(k)

kBTα

)]
, (64)

in dimensional units, or

f 1Dα(k; β̃,ũ,μ̃) = m∗�
2πβ̃h̄2ND

ln(1 + eμ̃+ũk−β̃+β̃ cos k), (65)

with

μ̃ = μα

kBTα

, ũ = h̄uα

kBTαl
, β̃ = �

2kBTα

, (66)

in nondimensional units. In Eq. (64), h̄uαk should be consid-
ered a periodic function of k with period 2π/l. Then f 1Dα

is 2π/l-periodic in k, the same as the electron distribution
function f . The multipliers μα , uα , and Tα should be selected
so that the electron density (4), the electronic current density
(13), and the mean energy (14) satisfy the equations

l

2π

∫ π/l

−π/l

f 1Dα dk = n, (67)

e

2π

∫ π/l

−π/l

v(k) f 1Dα dk = (1 − αj )Jn, (68)

l

2πn

∫ π/l

−π/l

[
�

2
− E(k)

]
f 1Dα dk = αeE0 + (1 − αe)E. (69)

Here αj and αe are dimensionless restitution coefficients taking
values on the interval [0,1] (see below). E0 is the mean energy
at the lattice temperature of the global equilibrium reached by

a finite SL with insulating contacts and zero voltage bias. The
nondimensional versions of (67)–(69) are

1

2π

∫ π

−π

f 1Dα dk = n, (70)

1

2π

∫ π

−π

sin k f 1Dα dk = (1 − αj )Jn, (71)

1

2πn

∫ π

−π

cos k f 1Dα dk = αeE0 + (1 − αe)E. (72)

The nondimensional multipliers μ̃, ũ, and β̃ are functions of
n, Jn, and E determined by solving (70)–(72). With these
definitions, the collision operator Qe(f ) of (5) with f 1Dα

instead of f 1D satisfies∫ π/l

−π/l

Qe(f ) dk = 0, (73)

e

2π

∫ π/l

−π/l

v(k) Qe(f ) dk = −νeαjJn, (74)

l

2πn

∫ π/l

−π/l

[
�

2
− E(k)

]
Qe(f ) dk = −νeαe(E − E0). (75)

In nondimensional units, we have

1

2π

∫ π

−π

eik(f − f 1Dα) dk = −αen(E − E0) − αj iJn, (76)

instead of (74) and (75), provided we select ν = νe as our
unit of collision frequency. The restitution coefficients αj and
αe, 0 � αj,e � 1, measure the fraction of momentum and of
energy lost in inelastic collisions, and correspond to the single
restitution coefficient used in granular gases.24 Obviously for
αe,j = 0 the collisions are elastic. Note that we do not use
the temperature Tα = αT as in granular gases because the
relation between energy density and temperature is not linear
in the present case. To simplify matters, we shall assume that
the restitution coefficients are constant. For space-independent
solutions of the kinetic equation, this leads to exponentially fast
decay of the average energy and momentum in contrast with
the algebraic decay of energy found in granular gases.24

A. Choice of local distribution function

The distribution function (64) has the same form as the
equilibrium distribution for an electron-phonon collision term
in which the phonon distribution is nq = (eβh̄(ωq−q·u) − 1)−1,
where ωq is the phonon frequency corresponding to a wave
vector q and u is the average velocity. In fact, the electron-
phonon collision term for a bulk semiconductor is33

C[f ](k) =
∫
B

K(|k − k′|) {δ(E ′ − E + h̄ωq − h̄u · q)

× [nqf
′(1 − f ) − (1 + nq) f (1 − f ′)]

+ δ(E ′ − E − h̄ωq + h̄q · u)[(1 + nq) f ′(1 − f )

− nqf (1 − f ′)]} dk′, (77)

nq = 1

eβh̄(ωq−u·q) − 1
, q = k − k′. (78)

Here K(|q|) depends on the phonon type, B is the Bril-
louin zone, and f = f (k), f ′ = f (k′) with similar notation
for the dispersion relation E(k). For a kinetic equation
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∂tf + v(k) · ∇xf = C[f ](k), if s is a function of k and f

with 0 � f � 1, we find

∂

∂t

∫
B

s(k,f ) dk + ∇x ·
∫
B

v(k) s(k,f ) dk

= −
∫
B

∫
B

K(|k − k′|)δ(E ′ − E + h̄ωq − h̄q · u) e−β(E−h̄k·u)

× (1 + nq)(1 − f ) (1 − f ′)
(

eβ(E ′−h̄u·k′)f ′

1 − f ′

− eβ(E−h̄k·u)f

1 − f

)(
∂s

∂f ′ − ∂s

∂f

)
dkdk′. (79)

The right-hand side of this equation is always less than or equal
to zero for

∂s

∂f
= ln

(
eβ(E−h̄k·u)f

1 − f

)
, i.e., for an entropy density, (80)

s(k,f ) = f ln f + (1 − f ) ln(1 − f ) + β(E − h̄k · u)f,

(81)

and the corresponding integral over k is a Lyapunov functional
for homogeneous distributions. (Note that s � β(E − h̄k · u)
f − 1, and the corresponding integral over k is bounded below
because both the energy and the volume of the Brillouin zone
are finite.) This is the H theorem for the electron-phonon
kinetic equation. From (79), we see that the corresponding
equilibrium solution satisfies eβ(E−h̄k·u)f/(1 − f ) = eβμ (in-
dependent of k), and therefore

feq(k) = 1

1 + eβ [E(k)−h̄k·u−μ]
(82)

is the equilibrium distribution. If we use (82) for a SL,
then the dispersion relation is E(k) = E(k) + h̄2k2

⊥/(2m∗), and
integration of (82) over the lateral wave vector k⊥ yields a
distribution function of the same form as (64) provided u is
directed in the SL growth direction.

A different choice of local distribution function could be

f 1Dα(k; μα,kα,Tα)

= m∗kBTα

πh̄2 ln

[
1 + exp

(
μα − E(k − kα)

kBTα

)]
, (83)

instead of (64). The multipliers would now be μα , Tα , and
kα (instead of uα), selected so that conditions (67)–(69)
would be satisfied. The choice of kα would correspond to the
wave packet momentum in Lei’s formulation.34 For the tight-
binding dispersion relation (1), substitution of cos(k − kα) =
cos k cos kα + sin k sin kα in Eq. (83) would yield a distribution
of the following type:

f 1Dα(k; μα,Pα,Tα)

= m∗kBTα

πh̄2 ln

[
1 + exp

(
μα − E(k) − v(k)Pα

kBTα

)]
. (84)

The distribution (84) could have been obtained from the
maximum entropy principle as suggested in Ref. 35 and, for
the tight-binding dispersion relation, it becomes (83) selecting
appropriately the multipliers μα and Tα; see Appendix A. We
show in Appendix A that the BO solutions corresponding to
transport equations that have local equilibrium distribution

functions (83) and (84) (with the tight-binding dispersion
relation) are always damped.

B. Equations of the model

Since (74) and (75) show that our collision model dissipates
both momentum and energy, we propose a simpler equation for
the distribution function with Qp(f ) = 0 in Eq. (2), and with a
local distribution function (64) instead of (6). Recapitulating,
the equations governing our inelastic BGK model are (2)
and (3) with Qp = 0 and Qe = −νe(f − f 1Dα) given by
(64) and (67)–(69). n, Jn, and E are the moments of the
distribution function given by (4), (13), and (14), respectively.
In nondimensional units, the equations of the model are
(22)–(24) with νp = 0, ν = νe and f 1Dα given by (65) instead
of f 1D:

F
∂f

∂k
+ f − f 1Dα = −δ

(
∂f

∂t
+ sin k

∂f

∂x

)
, (85)

∂F

∂x
= n − 1, (86)

n = 1

2π

∫ π

−π

f (x,k,t) dk = 1

2π

∫ π

−π

f 1Dα(x,k,t) dk,

(87)
1

2π

∫ π

−π

eik(f − f 1Dα) dk = −δγen(E − E0) − δγj iJn,

(88)

f 1Dα(k; n,E,Jn)= m∗�
2πβ̃h̄2ND

ln(1 + eμ̃+ũk−β̃+β̃ cos k). (89)

Here we have assumed that the restitution coefficients are of
order δ and defined γe and γj for this model as

αe = δγe, αj = δγj , (90)

instead of (29) for the KSS equation. The restitution coeffi-
cients αe,j can be fitted to experimentally obtained current-
voltage characteristic curves in the same way as the KSS
collision frequencies νe and νp. We find ναe = νe and ναj =
νe + νp. When modeling a finite SL, we need boundary
conditions for f and F at the contacts attached to the SL
boundaries and an initial condition for f . See Refs. 11 and 20
for a discussion.

C. Boltzmann distribution

We can simplify the previous formulas in the low-
temperature limit in which β̃ → ∞, ũ = O(β̃), μ̃ → −∞ in
(89), which becomes the Boltzmann distribution

f B = m∗�
2πh̄2β̃ND

eμ̃+ũk−β̃ (1−cos k), (91)

and integrals over k are calculated using Laplace’s method. For
sufficiently high temperature, the Boltzmann distribution (91)
is again a good approximation and it yields simpler formulas.
The parameter μ̃ can be explicitly calculated using (91) in
Eq. (87) and the resulting distribution is

f B = n
π eũk+β̃ cos k∫ π

0 eβ̃ cos K cosh(ũK) dK
, (92)
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in which ũ and β̃ are obtained in terms of Jn/n and E by
solving (88). As shown in Appendix B, the latter equations
yield

(1 − αj ) Jn

n
= ũ

β̃
− e−β̃ sinh(ũπ )

β̃
∫ π

0 eβ̃ cos K cosh(ũK) dK

= ũ

β̃

[
1 − e−β̃

I0(β̃) + 2ũ2
∑∞

l=1
(−1)l

ũ2+l2 Il(β̃)

]
,

(93)

E − αe(E − E0) =
∫ π

0 eβ̃ cos K cos K cosh(ũK) dK∫ π

0 eβ̃ cos K cosh(ũK) dK

= I1(β̃) + ũ2 ∑∞
l=1

(−1)l

ũ2+l2 [Il−1(β̃)+Il+1(β̃)]

I0(β̃)+ 2ũ2
∑∞

l=1
(−1)l

ũ2+l2 Il(β̃)
,

(94)

where Is(x) are modified Bessel functions.29 At the lattice
temperature, β̃0 = �/(2kBT0), and for zero current, ũ = 0,
E = E0, and (94) yields

E0 = I1(β̃0)

I0(β̃0)
. (95)

Further simplification follows if we impose αj = 1 in Eq. (93)
(which implies ũ = 0) so that the BGK collision term
dissipates momentum and energy according to (88). Then (92)
becomes

f B = n eβ̃ cos k

I0(β̃)
, (96)

and β̃ is obtained in terms of E by solving (88) with ũ = 0;
i.e.,

αeE0 + (1 − αe)E = I1(β̃)

I0(β̃)
. (97)

The Fourier coefficients of the Boltzmann distribution (96) are
simply

f B
j = 1

2π

∫ π

−π

e−ijkf B(k; n) dk = n
Ij (β̃)

I0(β̃)
. (98)

V. CHAPMAN-ENSKOG METHOD FOR ALMOST
ELASTIC COLLISIONS

In this section, we shall derive modulation equations for
n, F , and A in the case of almost elastic collisions with
0 < αe,j � 1, more precisely in the double limit of small
“Knudsen” number δ and vanishing restitution coefficients
αe,j = δγe,j . For the case of granular gases, Sela and Gold-
hirsch derived hydrodynamic equations from the inelastic
Boltzmann equation using a CEM in a similar double limit.25

We shall use the CEM27 to obtain modulation equations for
the electric field, the electron density, and the amplitude A of
the BOs. Then we will compare these equations with (59) and
(60) and identify g and h.

We can repeat the calculations of Sec. III with the local
equilibrium distribution (89) and get the same modulation
equations (59)–(60) except that E0 replaces E1D in them
and γe,j are defined by (90) instead of (29). Now the local

equilibrium distribution f 1Dα depends on f1 = nE − iJn and
therefore it depends on the Bloch phase θ through (57). Then
the second term on the right-hand side of (59) is no longer
zero and BOs are not necessarily damped by scattering. This
term will be now identified by using the Chapman-Enskog
method to derive modulation equations that will be matched
to (58)–(60). To implement the CEM, we assume that the
distribution function f is a function of θ , k, x, and t , which is
2π -periodic in θ and in k, and that F is of order 1. Equation
(85) becomes

Lf − f 1Dα = −δ

(
∂f

∂t
+ sin k

∂f

∂x

)
, (99)

Lu(k,θ ) = F

(
∂

∂θ
+ ∂

∂k

)
u(k,θ ) + u(k,θ ). (100)

Equations (99) and (100) with F = O(1) display a dominant
balance between the collisions, the force due to the electric
field, and the change of f over the fast time scale θ . We are
ignoring a possible fast relaxation from an initial distribution
function to the BO distribution f (x,k,θ,t ; δ) that depends only
on one fast time scale θ . We are imposing the condition that
f be periodic in θ and considering the possibility of slow
modulations of the BOs in the time scale t .

The moment f1 = f1S + �, � = Ae−iθ + O(δ), has a
dominant part of order 1, Ae−iθ , and a remainder of order
δ. The remainder vanishes as δ → 0 and it can be chosen not
to contain a term proportional to e−iθ . Thus we assume

f1 = Ae−iθ + δB + δ2C + O(δ3). (101)

The local equilibrium f 1Dα is a function of k, n, and f1 through
(87)–(89). Due to (101), f 1Dα is a 2π -periodic function of k

and of θ , which also depends on the slowly varying functions
n(x,t), F (x,t), A(x,t), B(x,t), and C(x,t).

Using the Fourier series

f 1Dα(k,θ ; δ) =
∑
j,l

f 1Dα
j,l ei(jk+lθ), (102)

f (k,θ ; x,t,δ) =
∑
j,l

fj,l(x,t ; δ)eijk+ilθ,

(103)

fj,l =
∫ π

−π

∫ π

−π

e−ijk−ilθ f
dkdθ

(2π )2

in Eq. (99) with δ = 0, we immediately obtain

f (0)(k,θ ; x,t) =
∑
j,l

f
(0)
j,l (x,t) ei(jk+lθ),

(104)

f
(0)
j,l = f

1Dα(0)
j,l

1 + iF (j + l)
,

where the superscripts (0) refer to having set δ = 0 in Eq. (99)
(see below).

The CEM starts from a leading-order expression for the
distribution function (104), which does not depend explicitly
on x and t . Instead, it depends on k and θ , and it is a function
of quantities that vary slowly with x and t (n, F , A, B, C, . . .).
B, C, . . . are to be calculated in terms of A, n, F , and their
differentials. While A, n, and F are not expanded in powers of
δ, their partial derivatives with respect to time (and therefore
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their equations of motion) are expanded instead. Thus the
Chapman-Enskog ansatz is

f (x,k,t ; δ) =
∞∑

m=0

f (m)(k,θ ; F,n,A,B,C) δm, (105)

∂F

∂t
+

∞∑
m=0

J (m)(F,n,A,B,C) δm = 〈J 〉θ , (106)

∂n

∂t
= −

∞∑
m=0

∂

∂x
J (m)(F,n,A,B,C) δm, (107)

∂A

∂t
=

∞∑
m=0

A(m)(F,n,A,B,C) δm. (108)

We have used the Poisson equation (86) and (106) to obtain
(107). The local distribution function f 1Dα can be expanded
in powers of δ,

f 1Dα =
∞∑

m=0

f 1Dα(m)δm, (109)

and then (87) and (88) yield the following compatibility
conditions:

f
(m)
0,0 = f

1Dα(m)
0,0 = n δ0m, (110)

f
(m)
1,−1 = f

1Dα(m)
1,−1 = Aδ0m, (111)

f
(1)
1,0 = B, f

1Dα(1)
1,0 = B + γenE0, (112)

f
(2)
1,0 = C, f

1Dα(2)
1 = C − γen ReB − iγj ImB, (113)

and so on. Inserting (105)–(109) into (99), we obtain a
hierarchy of linear equations for the f (m) whose right-hand
sides contain the functionals J (m) and A(m). The latter are
calculated in such a way that the compatibility conditions
(110)–(113) hold.

The equations for f (1) and f (2) are

Lf (1) − f 1Dα(1) = −
(

∂f (0)

∂t

∣∣∣∣
0

+ sin k
∂f (0)

∂x

)
, (114)

Lf (2) − f 1Dα(2) = −
(

∂f (1)

∂t

∣∣∣∣
0

+ sin k
∂f (1)

∂x

)
− ∂f (0)

∂t

∣∣∣∣
1

.

(115)

The subscripts m = 0,1 on the right-hand side of these
equations mean that ∂F/∂t , ∂n/∂t , and ∂A/∂t are replaced
by (〈J 〉θ δm0 − J (m)), −∂J (m)/∂x, and −A(m), respectively.

Upon insertion of (104) in (114), the compatibility
conditions (110)–(113) yield

J (0) = 0, (116)

A(0) = −1

2
(γe + γj ) A + 1

2i

∂f
(0)
2,−1

∂x
, (117)

B = γenE0

iF
+ 1

2F

∂

∂x

(
n − f

1Dα(0)
2,0

1 + i2F

)
. (118)

Note that B becomes singular in the limit as F → 0. This is
not surprising: We have assumed in this section that F = O(1)
as δ → 0 so that θ �= 0 and the Fourier series in θ of f1 in (101)

has a first harmonic Ae−iθ that is different from all other ones
contained in B, C, etc. If F tends to 0, then the first two terms
in (100) are smaller than the third one and the assumption
(101) breaks down. Despite this shortcoming, we shall use the
CEM to identify the closure functions g and h introduced in the
previous section. The coefficients in the resulting modulation
equations are no longer singular.

The compatibility conditions (113) for f (2) provide the
following functionals:

J (1) = −Im B, (119)

A(1) = 1

2i

∂f
(1)
2,−1

∂x
. (120)

Then the θ -averaged Ampère’s law and the equation for A

including up to O(δ) terms are

∂F

∂t
− δ Im B = 〈J 〉θ , (121)

∂A

∂t
= −1

2
(γe + γj ) A + 1

2i

∂

∂x

(
f

(0)
2,−1 + δ f

(1)
2,−1

)
, (122)

in which B is given by (118) and the Fourier coefficients of
the solution of (114) are

f
(1)
j,l = r

(1)
j,l

1 + iF (j + l)
, (123)

r (1) = f 1Dα(1) −
(

∂

∂t

∣∣∣∣
0

+ sin k
∂

∂x

)
f (0). (124)

A. Identification of g and hS in the modulation equations

We now impose that Eqs. (121) and (122) match (60) (with
E0 instead of E1D) and (59), respectively. The result is that
these equations match term-by-term in the overlap region

δ � F � 1,

(with Bδ ∼ f1,S) provided

gS = f
(0)
2,0 , (125)

g−1 = f
(0)
2,−1 + δ f

(1)
2,−1. (126)

Both equations hold if

g = f
(0)
2 + δ f

(1)
2 . (127)

We have not yet calculated hS in Eq. (60). To determine it,
we require that the resulting equation for the field coincide
with the drift-diffusion equation (C36) derived in Appendix C
for the case of inelastic collisions (without BOs). As seen in
Appendix C, hS in Eq. (60) should be replaced by the uniform
part of ∂f1,S/∂t in Eq. (38); i.e.,

hS = ∂

∂t

(
δγenE0(δγj − iF )

δ2γeγj + F 2

)∣∣∣∣
0

= −δγeE0(δγj − iF )

δ2γeγj + F 2

∂Jn,Su

∂x

+ (〈J 〉θ − Jn,Su)
∂

∂F

(
δγenE0(δγj − iF )

δ2γeγj + F 2

)
. (128)

Here Jn,Su = δγenE0F/(δ2γjγe + F 2) according to (41).
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B. Modulation equations

After straightforward calculations, we obtain the following
reduced equations:

∂F

∂t
+ δ

F 2 + δ2γjγe

[
γeE0nF + F

2

∂

∂x
Im

f
1Dα(0)
2,0

1 + 2iF

− δγe

2

∂

∂x

(
n − Re

f
1Dα(0)
2,0

1 + 2iF

)
− FRe hS + δγeIm hS

]

= 〈J 〉θ , (129)

∂A

∂t
= −γe + γj

2
A + 1

2i

∂

∂x

(
f

1Dα(0)
2,−1 + δ r

(1)
2,−1

1 + iF

)
, (130)

r
(1)
2,−1 = f

1Dα(1)
2,−1 −

(
A(0) ∂

∂A
+ (〈J 〉θ − Jn,Su)

∂

∂F

− ∂Jn,Su

∂x

∂

∂n

)
f

1Dα(0)
2,−1

1 + iF
− 1

2i

∂

∂x

(
A − f

1Dα(0)
3,−1

1 + 2iF

)
,

(131)

in addition to (128) and to the Poisson equation (86):

∂F

∂x
= n − 1. (132)

To calculate f
1Dα(1)
2,−1 in (122), we need to use

f 1Dα(1) =
(

μ̃(1) ∂

∂μ̃(0)
+ ũ(1) ∂

∂ũ(0)
+ β̃(1) ∂

∂β̃(0)

)
f 1Dα(0).

(133)

In this expression, we should substitute μ̃(0), ũ(0), and β̃(0)

given by simultaneously solving

f
1Dα(0)
0 = n, f

1Dα(0)
1 = Ae−iθ , (134)

and also the solutions μ̃(1), ũ(1), β̃(1) of

f
1Dα(1)
0 = 0, (135)

f
1Dα(1)
1 = γenE0 + f1,S − γe + γj

2
Ae−iθ − γe − γj

2
Aeiθ .

(136)

When we substitute these solutions, (133) becomes a function
of k, θ , n, A, and f1,S ∼ Bδ which is 2π -periodic in k and θ .
Its Fourier coefficient f

1Dα(1)
2,−1 is then inserted in Eq. (131).

VI. NUMERICAL SOLUTIONS OF THE MODULATION
EQUATIONS FOR n, F, AND A

A. Modulation equations

According to the results in the previous section, the
modulation equations for the local equilibrium distribution
f 1Dα are (129), (130), and (132). The coefficient functions
appearing in these equations are given by (128), (131), and
(133)–(136). The modulation equations with r

(1)
2,−1 = 0 and

lattice temperature of 300 K were shown in Ref. 26 to exhibit
BOs confined to a portion of the SL provided (γe + γj )/2 < γc

(γc is a critical value).

B. Boundary, bias, and initial conditions

The boundary and bias conditions are

〈J 〉θ − ∂F

∂t
= σ0F (at x = 0),

(137)

〈J 〉θ − ∂F

∂t
= σ1nF (at x = L),

A = 0, at x = 0 and at x = L, (138)

1

L

∫ L

0
F (x,t) dx = φ. (139)

The last equation is the nondimensional dc voltage bias
condition (61) with φ = eV/[h̄νe(N + 1)]. It is also possible
to set ∂A/∂x = 0 in the contacts and the numerical results are
similar. According to (62) and (63), the total current density is

J = 1

L

∫ L

0
Jndx = 1

L

∫ L

0
[Jn,S − Im (Ae−iθ )] dx

= 〈J 〉θ − 1

L

∫ L

0
Im (Ae−iθ ) dx, (140)

for dc voltage bias. In our numerical solutions, we have
adopted uniform profiles for F (x,0) and A(x,0) as initial
conditions.

C. Numerical results

We shall illustrate our results with numerical solutions of
(129)–(132) with the Boltzmann local distribution function
(92)–(94). Using the more general Fermi-Dirac local equilib-
rium (65) complicates the numerical procedure by having to
calculate one more multiplier at each time step: μ̃ in addition
to β̃ and ũ. We shall use indicative values similar to those
in Ref. 30: l = 5.06 nm, � = 16 meV, νe = 1014 Hz, with
αe = αj = 0.006 so that νeαe = νeαj = 6 × 1011 Hz.36 The
3D doping density is N3D = 8 × 1016 cm−3, so that ND =
N3Dl = 4.048 × 1010 cm−2, and ε = 12.85 ε0. We find δ ≈
0.0053 and γe,j = αe,j /δ = 1.1269. We consider a 50-period
(N = 50) dc voltage biased SL with lattice temperature 70 K.
We have used contact conductivities σ0 = 60.6 (� m)−1 and
σ1 = 15.15 (� m)−1 which yield dimensionless conductivities
σ0 = 1 and σ1 = 0.25 in (137) [conductivity units are [σ ] =
e2ND�l/(2h̄2νe)]. Initially, the profiles of A and F are
uniform, with values of 0.5501 and 0.04, respectively.

For V = 0.133 V (therefore φ = 0.04) and after a short
transient that depends on the initial conditions, we observe
coexisting BOs with frequency about 0.4 THz and Gunn type
oscillations with frequency about 14 GHz. See the movie in the
Supplementary Material.37 Figure 1 shows several snapshots
of the field and |A| profiles of the Gunn type oscillation. While
the amplitude of Gunn-type current oscillation is about 0.03
in nondimensional units [as seen in Fig. 1(a) for the total
current density averaged over the BOs], the BO part of the
current oscillation has a larger amplitude of about 0.2; see
Fig. 2(a). Figure 2 illustrates the total current density (140)
of the coexisting 360 GHz Bloch and 13.8 GHz Gunn type
oscillations, respectively. For each lattice temperature, there
is a critical curve in the plane of restitution coefficients such
that, for (γe + γj )/2 > γcrit, BOs disappear after a relaxation
time but they persist for smaller values of (γe + γj ).26
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FIG. 1. (Color online) (a) θ -averaged total current density vs time
during coexisting Bloch and Gunn type oscillations at 70 K. (b) Field
profile vs space at the times t1 to t4 marked in (a). (c) Same for the
complex BO amplitude profile. To transform the magnitudes in this
figure to dimensional units, use Table I. [A] = ND .

Figure 3 shows the profiles of F and A and Fig. 4 depicts
the total current density at temperature 300 K for the same
values of αe,j and the other parameters. We find BOs but not
the slower Gunn type oscillations. Whether Bloch and Gunn
type oscillations coexist depends on the relative size of the
diffusion and convection terms in Eqs. (129) and (130) which,
in turn, are controlled by the lattice temperature. If diffusion
terms are sufficiently small compared to convective terms in
Eqs. (129) and (130) (which happens for small enough lattice
temperature), Gunn type oscillations mediated by EFDs in the
F and A profiles are possible. For larger temperatures, Bloch
and Gunn type oscillations cannot occur simultaneously. This
latter fact was previously revealed by solving numerically a
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FIG. 2. (Color online) (a) Total current density vs time during
coexisting Bloch and Gunn type oscillations at 70 K. (b) Fourier trans-
form of the total current density showing two peaks corresponding to
coexisting Bloch (0.36 THz) and Gunn type (13.8 GHz) oscillations.
The zero-frequency constant corresponding to the time average of the
total current density has been subtracted.

simpler version of the hydrodynamic equations with r
(1)
2 =

0 in Eq. (130) and quite large voltage bias.26 Note that the
largest peak in the current spectrum occurs at a lower frequency
(260 GHz) than in the case of lower lattice temperature of
Fig. 2(b).
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FIG. 3. (Color online) Modulus of the BO complex amplitude
and field profiles vs space for the stationary state at 300 K.
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FIG. 4. (Color online) (a) Total current density vs time during
Bloch oscillations at 300 K. (b) Fourier transform of the total current
density showing only one peak corresponding to BOs (0.27 THz).
The zero-frequency constant corresponding to the time average of
the total current density has been subtracted.

VII. CONCLUDING REMARKS

We have proposed a Boltzmann-BGK kinetic equation for
electron transport in miniband semiconductor superlattices. Its
local equilibrium depends on electron density, mean energy,
and current density and therefore it oscillates periodically in
time with the Bloch frequency when the mean energy and the
current density do the same. This model is richer than the
usual relaxation-time models traditionally used in this field
and its corresponding hydrodynamic equations may exhibit
Bloch oscillations which are absent in the hydrodynamic
regime of the KSS and related models. We have introduced
novel singular perturbation methods to derive hydrodynamic
equations describing Bloch oscillations in the limit in which
collision and Bloch frequencies dominate all other terms in
the kinetic equation and the collisions are almost elastic.
By numerically solving the hydrodynamic equations with
appropriate initial and boundary conditions, we find that
nonlinearities may stabilize Bloch oscillations if the restitution
coefficients are small enough. There are different scenarios
depending on the lattice temperature. For sufficiently low
temperature, Bloch and Gunn type oscillations mediated by
electric field, current and mean energy domains may exist
simultaneously for appropriate voltage ranges. These oscil-
lations are spatially inhomogeneous and have field profiles
with EFDs typical of Gunn oscillations. For larger lattice
temperatures, Bloch and Gunn type oscillations do not coexist:

The profiles of the electric field and the amplitude of the Bloch
oscillations are independent of time but inhomogeneous in
space.26 As the collisions become more inelastic, the parameter
range for which BOs appear shrinks and these oscillations
disappear for the standard superlattices used in experiments.30

In the absence of BOs, the hydrodynamic equations become
the known drift-diffusion system valid for inelastic collisions
that may exhibit Gunn-type self-sustained oscillations due to
periodic recycling of charge dipole domains for appropriate
parameter values.11
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APPENDIX A: LOCAL EQUILIBRIUM DISTRIBUTIONS
THAT CANNOT SUSTAIN BLOCH OSCILLATIONS

Let us consider the local equilibrium distribution (83) which
becomes

f 1Dα(k; n,E,Jn) = m∗�
2πβ̃h̄2ND

ln(1 + eμ̃−β̃+β̃ cos(k−kα)),

(A1)

written in nondimensional units. Inserting this equation in (87),
we find

n = f 1Dα
0 = m∗�

2πβ̃h̄2ND

∫ π

−π

ln(1 + eμ̃−β̃+β̃ cos k) dk,

(A2)

after shifting the integration variable k → (k − kα). Similarly,
we find

f 1Dα
j = m∗�

2πβ̃h̄2ND

e−ijkα

∫ π

−π

e−ijk ln(1 + eμ̃−β̃+β̃ cos k) dk

= m∗�
πβ̃h̄2ND

e−ijkα

∫ π

0
cos(jk) ln(1 + eμ̃−β̃+β̃ cos k) dk.

(A3)

As δ → 0, the left-hand side of (A3) for j = 1 becomes Ae−iθ

according to (112), from which we obtain

|A| = m∗�
πβ̃h̄2ND

∫ π

0
ln(1 + eμ̃−β̃+β̃ cos k) cos k dk, (A4)

kα = θ − arg(A). (A5)

Equations (A3) and (A4) can be solved to produce the leading-
order approximations of μ̃ and β̃ as functions of the slowly
varying quantities n and |A|, whereas (A5) indicates that kα

varies rapidly as a shifted Bloch phase. Then (A3) implies that
f 1Dα

j,l �= 0 for l = −j and all the other harmonics are zero. We

find that f
1Dα(0)
2,−1 = r

(1)
2,−1 = 0 in Eq. (130) and therefore BOs

are always damped for this model.
Let us consider now (84) which, for the tight-binding

dispersion relation, can be rewritten as

f 1Dα(k; n,E,Jn)= m∗�
2πβ̃h̄2ND

ln(1 + eμ̃∗−β̃∗+β̃∗ cos k−P̃α sin k)).

(A6)
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Replacing k = kα + ξ , we obtain

β̃∗ cos k − P̃α sin k = (β̃∗ cos kα − P̃α sin kα) cos ξ, (A7)

provided

β̃∗ sin kα + P̃α cos kα = 0 =⇒ tan kα = − P̃α

β̃∗ . (A8)

Substituting (A8) in Eq. (A7), we get

β̃∗ cos k − P̃α sin k =
(

β̃∗ + P̃ 2
α

β̃∗

)
cos kαcos ξ, (A9)

which, inserted in Eq. (A6), yields (A1) with

β̃ = β̃∗ + P̃ 2
α

β̃∗ , μ̃∗ = μ̃ + β̃∗ − β̃. (A10)

This shows that (84) is equivalent to (83).

APPENDIX B: BOLTZMANN LOCAL EQUILIBRIUM
DISTRIBUTION

In nondimensional units, the Boltzmann distribution (91)
satisfying f B

0 = n is

f B = n
π eũk+β̃ cos k∫ π

0 eβ̃ cos K cosh(ũK) dK
. (B1)

The first moments of this distribution can be used to calculate
β̃ and ũ in terms of E and Jn by solving∫ π

0 eβ̃ cos K cosh(ũK) cos K dK∫ π

0 eβ̃ cos K cosh(ũK) dK
= αeE0 + (1 − αe)E, (B2)

∫ π

0 eβ̃ cos K sinh(ũK) sin K dK∫ π

0 eβ̃ cos K cosh(ũK) dK
= (1 − αj )

Jn

n
. (B3)

The left-hand side of (B3) can be simplified by integrating the
numerator by parts:

ũ

β̃
− e−β̃ sinh(ũπ )

β̃
∫ π

0 eβ̃ cos K cosh(ũK) dK
= (1 − αj )

Jn

n
. (B4)

Equations (B2) and (B4) contain the integral∫ π

0 eβ̃ cos k cosh(ũk) dk which can be calculated using
the generating function29

eβ̃ cos k = I0(β̃) + 2
∞∑
l=1

Il(β̃) cos(lk), (B5)

with the result∫ π

0
eβ̃ cos k cosh(ũk) dk

=
[

I0(β̃)

ũ
+ 2ũ

∞∑
l=1

(−1)l

ũ2 + l2
Il(β̃)

]
sinh(ũπ ). (B6)

From this formula we obtain

∂

∂β̃
ln

∫ π

0
eβ̃ cos k cosh(ũk)dk

=
I1(β̃)

ũ
+ ũ

∑∞
l=1

(−1)l

ũ2+l2 [Il−1(β̃) + Il+1(β̃)]
I0(β̃)

ũ
+ 2ũ

∑∞
l=1

(−1)l

ũ2+l2 Il(β̃)
. (B7)

We now use (B6) and (B7) in Eqs. (B2) and (B4), thereby
obtaining

I1(β̃) + ũ2 ∑∞
l=1

(−1)l

ũ2+l2 [Il−1(β̃) + Il+1(β̃)]

I0(β̃) + 2ũ2
∑∞

l=1
(−1)l

ũ2+l2 Il(β̃)

= αeE0 + (1 − αe)E, (B8)

ũ

β̃

[
1 − e−β̃

I0(β̃) + 2ũ2
∑∞

l=1
(−1)l

ũ2+l2 Il(β̃)

]

= (1 − αj )
Jn

n
. (B9)

APPENDIX C: INELASTIC COLLISIONS AND THE
HYPERBOLIC LIMIT

Here we shall use the CEM to obtain equations for the
electric field and the electron density in the case of inelastic
collisions with 0 < αe,j � 1. In the method of multiple scales,
we expand the distribution function and all its moments in
powers of δ and consider slow and fast time scales. The
condition that the terms in the distribution function be periodic
(or, more generally, bounded as the fast time tends to infinity)
in the fast time determines the modulation equations in the
slow time scale. In the inelastic case, the damping coefficient
(αe + αj )/2 in the equation for the BO amplitude is of order
1. Thus the distribution function relaxes exponentially fast to
a quasistationary function whose current and energy densities
are given (to leading order) by (41). This distribution is the
starting point of the CEM which, in the inelastic case, is similar
to that described in Refs. 19 and 27.

The leading-order expression for the distribution function
depends on time only through the moments n and F which vary
on the slow time scale t . These moments are not expanded in
powers of δ. Instead, their evolution equations are expanded (as
we show below), and the corresponding terms in the expansion
are determined so as to keep compatibility conditions issuing
from the assumptions for the distribution function. The CEM
can be used to obtain reduced equations for the moments
containing terms of different order in δ, and this is something
that the method of multiple scales cannot deliver.

The leading-order distribution function is the solution of
Eq. (99) for δ = 0. Its Fourier coefficients are

Ref (0)
j = Ref 1Dα

j + jF Imf 1Dα
j

1 + j 2F 2
, (C1)

Imf
(0)
j = Imf 1Dα

j − jF Ref 1Dα
j

1 + j 2F 2
. (C2)

We assume that Jn and E have already acquired their
quasistationary values after a fast decay on the time scale
τ . These quasistationary values are functions of n, F , and δ to
be determined now. The Chapman-Enskog ansatz is

f (x,k,t ; δ) =
∞∑

m=0

f (m)(k; F,n) δm, (C3)

∂F

∂t
+

∞∑
m=0

J (m)(F,n) δm = J (t), (C4)
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∂n

∂t
= −

∞∑
m=0

∂

∂x
J (m)(F,n) δm. (C5)

In Eq. (C4), the total current density is of course the same as its
average over one period of the BOs. We have used the Poisson
equation (86) to obtain (C5). The local distribution function
f 1Dα is now a function of n and F because Jn and E depend
now on n, F , and δ. We have

f 1Dα =
∞∑

m=0

f 1Dα(m)δm, (C6)

and then (87) and (88) yield the following compatibility
conditions:

f
(0)
0 = f

1Dα(0)
0 = n, (C7)

Ref (0)
1 = nE(0), Ref 1Dα(0)

1 = n [αeE0 + (1 − αe)E(0)],

(C8)

Imf
(0)
1 = −J (0)

n , Imf
1Dα(0)
1 = −(1 − αj ) J (0)

n . (C9)

Let us now find f 1Dα(m) in Eq. (C6). Inserting (C8) and (C9)
in Eqs. (C1) and (C2), we obtain a system of two algebraic
equations for the unknowns nE(0) and J (0)

n whose solution is

E(0) = αeαjE0

αjαe + F 2
, (C10)

J (0)
n = αeE0nF

αjαe + F 2
, (C11)

f
(0)
1 = nE(0) − iJ (0)

n = n
αeE0(αj − iF )

αjαe + F 2
. (C12)

The approximate electron current density (C11) provides an
approximate electron drift velocity vs field, vd (F ) = J (0)

n /n,
whose maximum value is reached at

vmax = E0

2

√
αe

αj

= I1(β̃0)

2I0(β̃0)

√
αe

αj

, Fmax = √
αeαj , (C13)

in which we have used (95) to relate E0 to the lattice tempera-
ture 1/β̃0 = 2kBT0/� for a Boltzmann local equilibrium. For
αe = αj = 1, (C10) and (C11) become the well-known values
(42) corresponding to the simple KSS-Poisson problem (2)–(8)
with Boltzmann local equilibrium18 provided τe = √

αj/αe. It
is interesting to note that we have derived (C10) and (C11)
for an unspecified general local equilibrium f 1Dα , not just for
the Boltzmann distribution. This means that this expression
for the electron drift velocity is also valid at low temperatures,
when the Fermi-Dirac distribution (89) is a better description,
and it justifies a posteriori the use of (C11) to fit experimental
results.30

Remark C1. To leading order, E and Jn on the right-hand
sides of (B2) and (B4) can be eliminated by using (C10) and
(C11), thereby obtaining∫ π

0 eβ̃ cos K cosh(ũK) cos K dK∫ π

0 eβ̃ cos K cosh(ũK) dK
= αeE0

αj + F 2

αjαe + F 2
, (C14)

ũ

β̃
− e−β̃ sinh(ũπ )

β̃
∫ π

0 eβ̃ cos K cosh(ũK) dK
= αe(1 − αj )E0F

αjαe + F 2
. (C15)

Solving these two equations yields the functions β̃(F ) and
ũ(F ). In the case αj = 1, (C15) yields ũ = 0 and (C14)
becomes

I1(β̃)

I0(β̃)
= αe(1 + F 2)E0

αe + F 2
. (C16)

Equations (87) and (88) yield

f
(0)
0 = n = f

1Dα(0)
0 , f

(m)
0 = 0, for m = 1,2, . . .,

(C17)

Ref (m)
1 = nE(m), Imf

(m)
1 = −J (m)

n . (C18)

The equations for f (1) and f (2) are

Lf (1) − f 1Dα(1) = −
(

∂f (0)

∂t

∣∣∣∣
0

+ sin k
∂f (0)

∂x

)
, (C19)

Lf (2) − f 1Dα(2) = −
(

∂f (1)

∂t

∣∣∣∣
0

+ sin k
∂f (1)

∂x

)
− ∂f (0)

∂t

∣∣∣∣
1

,

(C20)

and so on. The subscript m = 0,1 on the right-hand side of
these equations means that ∂F/∂t and ∂n/∂t are replaced
by (Jδm0 − J (m)) and −∂J (m)/∂x, respectively. In these
equations, the operator is defined by

Lu(k) ≡ F
∂u

∂k
(k) + u(k). (C21)

The compatibility conditions (C17) and (C18) imply the
following solvability conditions for the hierarchy (C19) and
(C20):

(Lf (m))j = 0, j = 0,1. (C22)

Using the solvability conditions (C22) for the linear
hierarchy of equations, we can show that the reduced balance
equations for n and F are obtained by inserting (C3) in
Jn = −Im f1:

Jn = −
∞∑

m=0

δm Imf
(m)
1 , J (m) = −Imf

(m)
1 . (C23)

We have already calculated J (0) = J (0)
n to be given by

Eq. (C11). To get a diffusive correction to this electron current
density, we need to calculate Imf

(1)
1 . From (C19), (C8), (C9),

and (C18), we obtain

Ref (1)
1 = αj Rer1 + F Imr1

αeαj + F 2
, (C24)

Imf
(1)
1 = αeImr1 − F Rer1

αeαj + F 2
, (C25)

in which

r = −∂f (0)

∂t

∣∣∣∣
0

− sin k
∂f (0)

∂x
. (C26)

Thus we need to find

r1 = − ∂

∂x

n − f
(0)
2

2i
− ∂f

(0)
1

∂t

∣∣∣∣∣
0

, (C27)
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in order to calculate (C24); i.e.,

J (1) = αe

[
Im ∂f

(0)
1

∂t

∣∣
0 − ∂

∂x

n−Ref
(0)
2

2

] − F
[
Re ∂f

(0)
1

∂t

∣∣
0 − 1

2
∂
∂x

Imf
(0)
2

]
αeαj + F 2

. (C28)

Equation (C12) yields

∂f
(0)
1

∂t

∣∣∣∣
0

= −αeE0

αeαj + F 2

[
(αj − iF )

∂J (0)
n

∂x
+ n

(
J − J (0)

n

)2αjF + i(αeαj − F 2)

αeαj + F 2

]
. (C29)

The calculation of f
(0)
2 involves that of f

1Dα(0)
2 . Using cos 2k = 1 − 2 sin2 k, sin 2k = 2 sin k cos k, integrating by parts, and using

(B2), (B4) from Appendix B, and (C14) and (C15), we get

n − Re f B
2

2
= αenE0

β̃

1 − (1 − αj )(1 − ũF ) + F 2

αjαe + F 2
, (C30)

1

2
Im f B

2 = −nũ

β̃
− αenE0

β̃

(1 + F 2)ũ − (1 − αj )[ũ + (1 + β̃)F ]

αjαe + F 2
. (C31)

For 1 − αj = ũ = 0, we get Imf B
2 = 0 and

n − Re f B
2

2
= αenE0

β̃

1 + F 2

αe + F 2
. (C32)

In this case, we obtain

n − Ref (0)
2

2
= n

1 + 4F 2

[
2F 2 + αeE0(1 + F 2)

β̃ (αe + F 2)

]
, (C33)

−1

2
Imf

(0)
2 = nF

1 + 4F 2

[
1 − 2αeE0(1 + F 2)

β̃ (αe + F 2)

]
, (C34)

where β̃ is a function of F found by solving the Eq. (C14).
Recapitulating, we have obtained the drift-diffusion equation (C4) (Ampère’s law) for F in whichJ (0) = J (0)

n is given by (C11)
and J (1) is given by (C28) and (C29) and, in the particular case of a Boltzmann local equilibrium with αj = 1, by (C32)–(C34).
We have

∂F

∂t
+ 1

αjαe + F 2

{
αe

[
E0nF − δ

2

∂

∂x

(
n − Re f

(0)
2

) + δ Im
∂f

(0)
1

∂t

∣∣∣∣
0

]
+ δF

[
1

2

∂

∂x
Im f

(0)
2 − Re

∂f
(0)
1

∂t

∣∣∣∣
0

]}
= J (t), (C35)

where n = 1 + ∂F/∂x according to the Poisson equation (86). Note that the drift-diffusion equation (C35) coincides with
the drift-diffusion equation (129) when we substitute hS = ∂f1/∂t |0 given by (C29) and gS = f

(0)
2 in (129) with αe,j = δγe,j

according to (90). Equation (C35) for almost elastic collisions becomes

∂F

∂t
+ δ

F 2 + δ2γjγe

[
γeE0nF + F

2

∂

∂x
Im f

(0)
2,S + δγeIm

∂f
(0)
1

∂t

∣∣∣∣
0,S

− δγe

2

∂

∂x

(
n − Re f

(0)
2,S

) − F Re
∂f

(0)
1

∂t

∣∣∣∣
0,S

]
= 〈J 〉θ , (C36)

where (C29) should be inserted and f
(0)
2 is given by (C1) and (C2). In Eq. (59) for the BO amplitude A, g = f

(0)
2 + δf

(1)
2 with

f1 = f1,S + Ae−iθ and f1,S is given by (C10) and (C11). Therefore in the case of almost elastic collisions, if the amplitude of
the Bloch oscillations decays to zero, we are left with the above written drift-diffusion problem.

Remark C2. Note that (38) with E1D = E0 can be rewritten as

f1,S = δγenE0(δγj − iF )

F 2 + δ2γjγe

+ δ

F 2 + δ2γjγe

[
F + iδγe

2

∂

∂x
(n − Re f2,0) + δγj − iF

2

∂

∂x
Im f2,0

]

+ δ

F 2 + δ2γjγe

[
(iF − δγj )Re

∂f1,S

∂t
− (F + iδγe)Im

∂f1,S

∂t

]
. (C37)

Our result for hS = ∂f1,S/∂t means that we have approximated f1,S by the first term in Eq. (C37). The second and third terms
in Eq. (C37) correspond to (C27) which enter the O(δ) corrections (C24) and (C25) to the distribution function. Thus setting
hS = ∂f1,S/∂t corresponds to hS = (∂f (0)

1 /∂t)|0, with f
(0)
1 given by (C12).
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