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Master equation approach to the central spin decoherence problem: Uniform coupling model and
role of projection operators
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The generalized master equation of Nakajima-Zwanzig (NZ) type has been used extensively to investigate
the coherence dynamics of the central spin model with a nuclear bath in a narrowed state characterized by a
well-defined value of the Overhauser field. We reconsider the perturbative NZ approach and apply it to the
exactly solvable case of a system with uniform hyperfine couplings. This is motivated by the fact that the
effective-Hamiltonian-based theory suggests that the dynamics of the realistic system at low magnetic fields and
short times can be mapped onto the uniform coupling model. We show that the standard NZ approach fails to
reproduce the exact solution of this model beyond very short times, while the effective-Hamiltonian calculation
agrees very well with the exact result on time scales during which most of the coherence is lost. Our key finding
is that, in order to extend the time scale of applicability of the NZ approach in this case, instead of using a single
projection operator one has to use a set of correlated projection operators which properly reflect the symmetries
of the problem and greatly improve the convergence of the theory. This suggests that the correlated projection
operators are crucial for a proper description of narrowed-state free-induction decay at short times and low
magnetic fields. Our results thus provide important insights toward the development of a more complete theory
of central spin decoherence applicable in a broader regime of time scales and magnetic fields.
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I. INTRODUCTION

Qubits based on spins of single electrons confined in a
semiconductor environment1,2 are one of the most promising
platforms for quantum computation. When the host semicon-
ductor is a III–V compound material (i.e., GaAs or InAs),
the presence of nuclear spins, coupled to the electron (or a
hole) by hyperfine (hf) interaction, is unavoidable.3,4 The qubit
decoherence induced by hf interaction with such a nuclear bath
has been a subject of many theoretical works. For this paper, the
directly relevant ones are those focusing on purely hf-induced
dynamics,5–31 i.e., on the problem described by the central spin
Hamiltonian

Ĥ =
∑

k

AkS · Ik + �Sz +
∑

k

ωkI
z
k , (1)

with S denoting the central spin, Ik the nuclear spins, Ak

the hf couplings, and � and ωk the central spin and nuclear
spin Zeeman energies, respectively. This Hamiltonian can
be solved exactly via Bethe ansatz19,32,33 for the case of
uniform ωk =ω, where ω can be removed by going to a
rotating frame.9 However, it is very hard to extract potentially
experimentally relevant information about the dynamics of
the system, for example the time dependence of the reduced
density matrix of the electron spin after initializing it in a
pure state, when starting from the exact eigenstates,19,30,34

and the largest system sizes considered had up to only
N =30 nuclear spins.19 Numerical calculations of the sys-
tem’s evolution can also be obtained using the Chebyshev
polynomial method,8,35 which has been used to calculate the
free-evolution13 and spin-echo27 signals for N � 20. Larger
systems with N ∼104 were investigated using an approximate
spin-coherent-state P representation,14,35 which, however, can
only be used in the case of an unpolarized thermal nuclear bath,
which is too restrictive for many applications including the

considerations presented here. In order to calculate the dynam-
ics of the central spin on experimentally relevant time scales,
and for experimentally relevant system sizes (N ∼ 104–106

in III–V compound quantum dots), one has to resort to
approximate analytical methods, which include the use of
the generalized master equation (GME) of Nakajima-Zwanzig
(NZ) type,9,22,23,28 the GME of the time-convolutionless (TCL)
kind,22,24,36 and the cluster-expansion-type theories using
the effective pure dephasing Hamiltonian,4,12,25–27,36 obtained
perturbatively from the original Hamiltonian of Eq. (1) by an
appropriate canonical transformation.

In this paper we focus on the NZ theory applied to the case
of narrowed-state free-induction decay (NFID), i.e., on the
situation in which the nuclear system is prepared in an eigen-
state of the Overhauser operator hz ≡ ∑

k AkI
z
k . This case

is both important for quantum computation applications and
experimentally relevant, since significant progress in nuclear-
state narrowing has been made recently37–41 (see also Ref. 3
and references therein). Furthermore, the high-magnetic-field
regime of NFID (defined by the condition of � > A where
A ≡ ∑

k Ak ≈ 90 μeV in GaAs) was extensively investigated
using the NZ approach.9,23,28 Let us note that the other GME
approaches, such as the TCL formalism and, more importantly
in the context of this paper, the master equations employing
correlated projection operators,22,24,36 have been until now
employed only in the case of thermal (non-narrowed) nuclear
baths.

Let us briefly recount the main results of the NZ theory
for the case of NFID. In the NZ approach, the equation of
motion for the reduced density matrix of the central spin
has an integro-differential form42,43 with the memory kernel
explicitly showing the influence of the history of the spin
on its dynamics at a given point in time (i.e., the non-
Markovian effects). While this feature is physically appealing
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and offers a natural setting for investigation of the Markovian
approximation and the corrections to it arising from the
temporal nonlocality of the memory kernel, the NZ approach
is technically very demanding. In the case of the central
spin model, the memory kernel is expanded in powers of
the flip-flop operator Vff ∼ S±I∓, and the expansion becomes
very complicated with increasing order of perturbation theory.
It also does not have any diagrammatic structure since it is
not based on expanding a generalized (i.e., time- or contour-
ordered) exponential, which would allow one to write down
more easily higher-order contributions and identify the most
important classes of terms at each order. Furthermore, the
integro-differential equation is solved via Laplace transform,
and the final result is obtained by inverse transform of a rather
complicated expression.

Despite these obstacles, great progress has been made
with this method. The second-order solution9 was shown to
reproduce the exact solution for the fully polarized bath case,7

signifying the important role played by nuclear polarization
(which limits the phase space for flip-flops) in improving the
convergence of the NZ approach. For a general polarization,
the second-order result was shown to lead to a very small
coherence decay at high B fields satisfying A/� � 1.
Specifically, the fraction of coherence lost was only about
A2/N�2 �1. A complete decay of the transverse electron
spin components was obtained after going to the fourth order
of the flip-flop expansion.23,28 There, a controlled solution
was obtained for A/� < 1 in the case of an unpolarized bath:
after an initial quadratic decay shoulder, the decay was of
the exponential form exp(−t/T2), with T2 ∼ N�2/A3, with
the 1/t2 tail appearing at very long times. Recently, it was
shown28 that with finite nuclear polarization, and for nuclear
spin I < 1, it is possible to extend the fourth-order solution
to lower B fields (down to A/� ≈ 1 for unpolarized nuclei).
As � is decreased, corrections to the above formula for T2

appear, and at A/� ≈ 1 a minimum of T2 and a new kind of
coherence envelope oscillation were predicted.28

It has to be stressed that most of the above features of
the high-field NZ solution, especially the exponential decay,
arise due to the inhomogeneous coupling of the nuclei to
the central spin. In the fourth order in electron-nuclear flip-
flops, the processes in which pairs of remote nuclei flip-flop
with each other contribute to the system’s dynamics. In
the effective-Hamiltonian language,12,16,23,25,26 one can say
that the Overhauser field fluctuates due to electron-mediated
flip-flops of these remote nuclei. At short times defined by
t � N/A ∼ 1/Ak the differences of Knight shifts Akl ≡
Ak − Al of these nuclei are unimportant due to the energy-time
uncertainty, leading to a quadratic decay shoulder that is
independent of the wave function shape.28 At longer times, the
Knight shifts must fulfill more stringent energy conservation
conditions, giving rise to long-time Markovian exponential
decay, with the T2 time strongly dependent on the shape of
the wave function.23 (Compare also the expressions for T2

from Refs. 23 and 26 which correspond, respectively, to the
two-dimensional Gaussian e−(x2+y2)/a2

and the same function
modified by a cosine form factor in the z direction.)

An insight into the importance of the short-time regime
is provided by theories based on an effective Hamiltonian,
specifically Ring Diagram Theory (RDT), in which a class of

diagrams of leading order in 1/N is resummed in the cluster
expansion of the electron’s density matrix.4,25,26 According
to these theories, for low fields such that A/

√
N � � < A,

most of the coherence decay occurs at short times, at which
the distribution of the hf couplings does not matter and only
the quantities A and N are important. This suggests that the
low-field dynamics of NFID in a realistic system is closely
related to dynamics in a system with uniform hf couplings.

In RDT, one starts with an approximate effective Hamilto-
nian derived in the second order of perturbation theory with
respect to the flip-flop operator.11,12,23,26 While this step makes
it harder to precisely ascertain the limits of applicability of the
approach, it allows for a very convenient formal simplification
of the problem. The effective Hamiltonian is of the pure
dephasing form, which allows for the use of standard tools of
nonequilibrium quantum dynamics, such as the closed time-
loop contour and the cluster expansion of the bath average of
a generalized exponent.17,25,26 Such methods were previously
used in order to calculate decoherence for many other models
of quantum baths;44–46 however, in the spin bath case there are
additional complications due to the lack of a simple Wick’s
theorem for spin operators. (See Refs. 17 and 47 for the
derivation of all the diagrams in the fourth order of perturbation
theory with respect to internuclear interactions.) However, for
the electron-mediated (or hf-mediated) interactions, due to the
fact that they couple all the N nuclear spins with comparable
strength, one can resum all the leading diagrams in the 1/N

expansion, which amounts to calculating only one diagram at
each order of the cluster expansion.

For NFID at large B fields (A/� � 1), this resummation
leads to an exponential decay with the same T2 as the one
obtained from the NZ approach23,28 (albeit without the the 1/t2

long-time tail), down toA/� ≈ 1, at which the minimum of T2

is not reproduced. Within RDT one can calculate the short-time
decoherence also at low magnetic fields obeying only the
condition A/

√
N� � 1. The spin-echo signal predicted25,26

by RDT was later seen in experiments on double GaAs quan-
tum dots,48 and it was recently rederived using an explicitly
semiclassical approach.31 For NFID, a decay envelope of the
form [1 + (t/τ )2]−1/2, with τ ∼ N�/A2, and a π/2 phase
shift of the electron precession for t � τ were predicted.26

As we show explicitly in this paper, this result arises also as
the large-N limit of the exact solution of the fully quantum
calculation for the system with uniform hf couplings.

In this paper we apply the standard fourth-order NZ
theory9,23,28 to the otherwise exactly solvable model with
uniform hf couplings. We find that the NZ calculation of
NFID disagrees with the exact result beyond a very short
time scale (at which the coherence barely decays), while
the RDT calculation reproduces the envelope of the NFID
signal very well. We show that, in order to improve the
performance of the NZ theory, one needs to replace the
commonly used single projection operator by a family of
projection operators on nuclear subspaces which are singled
out by the electron-nuclear coupling. Such an approach was
used previously in both the NZ and TCL generalized master
equation theories in the simpler case of a thermal nuclear
bath,22,24,36 but to our knowledge it has not been used
until now for the narrowed FID case. This result strongly
suggests that the main physics of the short-time and long-time
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central spin decoherence is significantly different, with simple
dephasing by distinct nuclear states dominating at short times,
and nontrivial dynamics of inhomogeneously coupled nuclei
dominating at long times. The use of the correlated projection
operators allows the NZ theory to fully capture the short-time
dynamics in a wide range of magnetic fields.

Let us briefly note that there exists a family of theories
investigating the problem of dipolar-induced electron spin
dephasing,12,17,47,49–53 in which the dipolar-induced flip-flops
between the nuclear spins lead to fluctuations of the Over-
hauser field. These theories, which are all based on some
version of a linked cluster (cumulant expansion) theorem, are
in agreement with the spin-echo measurements in phosphorus-
doped silicon,54 bismuth-doped silicon,55 and GaAs singlet-
triplet qubits at magnetic fields higher than B ≈ 0.3 T.48

The dipolar processes are indeed expected to dominate the
decoherence at high B since the increasing qubit energy
splitting is suppressing the dynamical processes due to hf
interaction, while the dipolar flip-flops of the nuclei are
practically unaffected by B. These experiments suggest that
the window of parameters in which pure hf interactions
dominate the electron spin decoherence is rather small in
GaAs and Si. In fact, the spin-echo results in large GaAs
dots48 suggest that purely hf effects could be seen in lateral
GaAs dots only at B < 0.3 T. However, it was suggested
that in small and strained InGaAs quantum dots the dipolar
interactions between the nuclei might be suppressed by
strongly inhomogeneous Knight shifts and by the quadrupolar
interactions.28 Experimental results suggesting suppression of
dipolar-induced spin diffusion in such dots have appeared
recently.56

Notwithstanding the future experimental developments,
which hopefully will allow for measurements of purely hf-
induced decoherence in a wide range of B fields, spanning
the short-time semiclassical and long-time Markovian regimes
(with possible nontrivial crossover between them suggested
by the results of Ref. 28), the central spin decoherence
problem remains theoretically interesting in itself. We hope
that its further investigation will lead to establishing deeper
connections between various approaches known from the
theory of open quantum systems, and the properties of the
exact Bethe ansatz solution.

The paper is organized in the following way. In Sec. II, we
introduce the hyperfine Hamiltonian and give the explicit form
of the initial nuclear density matrix characterizing NFID. In
Sec. III, we present the exact solution of NFID for the uniform
coupling model. Section IV offers an extensive review of the
Nakajima-Zwanzig master equation treatment of the central
spin model, with the electron spin coherence computed up
to fourth order in the hyperfine flip-flop interaction. This
section, together with the detailed Appendixes A and B,
can be mostly skipped by a reader deeply familiar with
previous derivations of this theory.9,28 However, we hope that
our derivations, apart from making the paper self-contained,
are useful additions to the existing works, clarifying some
technical issues and expanding the discussion of certain
aspects of a highly technical theory. In the subsequent Sec. V,
we present a derivation of NFID in the uniform coupling model
using the fourth-order NZ approach and show that the results
disagree with the exact solution except at very early times.

We demonstrate that the strong discrepancy between the exact
and NZ solutions can be lifted by replacing the standard single
projection operator in the NZ theory with a family of correlated
projection (CP) operators, and that the modified NZ theory
(which we refer to as the NZ-CP theory) then gives results
which are indistinguishable from the exact solution. We further
show that the NZ-CP result is closely related to and improves
upon that which is obtained by applying RDT to the uniform
coupling model. The reasons for this behavior of the NZ theory,
together with the implications of these findings for coherence
decay in realistic systems with nonuniform couplings, are
discussed in Sec. VI.

II. HAMILTONIAN AND INITIAL NUCLEAR BATH STATE

The Hamiltonian for a single electron spin coupled to a
nuclear spin bath via the hyperfine interaction has the form

H = H0 + Vff, (2)

H0 = �Sz +
∑

k

ωkI
z
k + Szhz, (3)

Vff = 1
2 (h+S− + h−S+), (4)

with

hi ≡
∑

k

AkI
i
k . (5)

The Si are the components of the electron spin operator, while
the I i

k are the components of the spin operator for the kth
nucleus. The electron spin raising and lowering operators S±
and their nuclear counterparts are defined in the usual way:

S± = Sx ± iSy, I±
k = I x

k ± iI
y

k . (6)

We have included a magnetic field which points in the z

direction, and � and ωk are the Zeeman energies of the electron
and nuclei. In order to properly describe the nuclear bath in
III–V semiconductors, we should allow for several different
isotopic species of nuclei. Rather than introduce an extra index
to label distinct nuclear species, we have absorbed this index
into the site index k on the hyperfine couplings Ak and nuclear
Zeeman energies ωk . These quantities will in general depend
on the nuclear species since different species will have different
gyromagnetic factors. For example, the hyperfine couplings
are given by Ak = ν0Aα|�(rk)|2, where ν0 is the volume of
the primitive unit cell, �(rk) is the electron envelope wave
function evaluated at the position rk of the kth nucleus, and Aα

is the total hyperfine interaction energy between the electron
and a nucleus of species α and depends on the electron and
nuclear spin gyromagnetic factors.

The sums in Eqs. (2)–(5) range over some number N of
nuclei which comprise the bath. Quantum dots residing in
III–V materials like GaAs and InAs typically contain 104–106

nuclei which interact appreciably with the electron, so physical
values of N should lie in this range, although in analytical
calculations often one simply performs a sum over an infinite
number of spins (out of which only about N are appreciably
coupled to the electron spin). It is often useful to define the
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“effective number of nuclei appreciably interacting with the
electron” N :

N ≡ A2∑
k A2

k

, (7)

where

A ≡
∑

k

Ak (8)

is the total hyperfine interaction energy between the electron
and the nuclear bath. For the most part, we will leave N

arbitrary in subsequent sections, but when a more precise
definition is necessary, we will use Eq. (7).

Let us quote some numbers in order to make a connection
to experimentally relevant time scales and magnetic field
regimes. In GaAs,A ≈ 90 μeV (see, e.g., Ref. 3 and references
therein). Using the effective g factor geff ≈ 0.5 of an electron in
this material, � ≈ A for a magnetic field of B ≈ 3 T. Another
characteristic magnetic field in the central spin problem is that
corresponding to the typical Overhauser field for a thermal
nuclear bath, A/

√
N , which is on the order of a few millitesla.

Note that the maximal hf coupling of a nuclear spin is Ak ∼
A/N , which is much smaller than � for the magnetic fields
considered in this paper (i.e., fields such that � > A/

√
N ).

An important quantity is also the time scale of N/A, defining
here the boundary of the short-time regime. For N =104–106

this corresponds to time scales of 100 ns–10 μs.
It is difficult to obtain explicit results from the NZ

GME unless strong assumptions are made about the form
of the initial nuclear density matrix, which we denote ρI (0).
Fortunately, the NZ GME seems most tractable in the case of
NFID, which is the primary focus of the present work. As we
develop the structure of the NZ GME adapted to the central
spin problem in Sec. IV, we will attempt to keep the form of
ρI (0) as general as possible at each stage of the calculation
and make clear the points at which it is necessary to further
specify ρI (0). For the sake of clarity, we will state here the
precise final form that we will impose on ρI (0) in order to
obtain explicit results for the electron spin coherence in the
NFID case.

In discussing the initial density matrix of the nuclei, we have
already alluded to the first assumption we will make about the
initial conditions, namely, that the initial density matrix for the
total system is separable:

ρ(0) = ρe(0) ⊗ ρI (0). (9)

Here, ρe is the reduced density matrix describing the electron
spin degrees of freedom. This assumption is quite reasonable
since, in quantum computing applications, it is generally
desirable to initialize the electron spin to some well-defined
state which is independent of the nuclei.

In contrast, a much stronger assumption we will make is that
ρI (0) is diagonal in the basis of hz eigenstates. As in Refs. 9
and 28, we will denote these states by |ni〉 with i = 1, . . . ,2N ;
they are just tensor products of eigenstates of the nuclear spin
operators I z

k :

|ni〉 =
⊗

k

∣∣Ik,m
i
k

〉
, I z

k

∣∣Ik,m
i
k

〉 = mi
k

∣∣Ik,m
i
k

〉
, (10)

where Ik is the spin of the kth nucleus. We may write

hz|ni〉 = hz
ni
|ni〉, hz

ni
≡

∑
k

Akm
i
k. (11)

We will further assume that ρI (0) only contains components
which share the same hz eigenvalue, denoted hz

n:

ρI (0) =
g∑

i=1

ρii |ni〉〈ni |, (12)

where

hz|ni〉 = hz
n|ni〉, ∀ i ∈ 1, . . . ,g, (13)

The form of the density matrix given in (12) and (13) describes
a particular “narrowed” set of allowed states for the nuclear
bath.9 In the so-called box model limit where the hyperfine
couplings are all equal, Ak = A = A/N , this amounts to
restricting the possible nuclear states to a set which contains
only states with a fixed net polarization along the magnetic field
direction. We will see that the NZ GME approach enjoys many
simplifications when the nuclear bath states are constrained in
this way.

For some of the more explicit results we will obtain, we will
also follow Refs. 9 and 28 in assuming that the nuclear spin
bath is uniformly polarized. By this, we mean that all traces
of nuclear spin operators are independent of the nuclear site
indices. For example, the correlator

Tr{I+
p I−

q ρI (0)I−
k I+


 } (14)

is independent of k,
,p,q under this supposition. The uniform
polarization assumption is less crucial than the narrowed-state
condition of Eq. (12) and can be lifted in most cases, albeit
at the expense of having to deal with more complicated
algebraic expressions. For the purposes of elucidating more
general features of the NZ GME approach, it is often a
useful assumption to make. Throughout this paper we make
explicit the points at which we invoke the uniform polarization
condition.

III. UNIFORM COUPLING MODEL

In this section, we will consider the uniform coupling (also
referred to as the box model) limit in which all the hyperfine
couplings are equal,

Ak = A ≡ A
N

. (15)

This is a semiclassical limit of the central spin problem since
we have a large collective nuclear spin I = ∑

k Ik coupled to
the electron spin—the dynamics is mostly classical for large N .
This is also very close to the static bath limit: for � � A/

√
N

and for a typical collective spin magnitude |I | ≈ √
N , I is

almost static as it cannot follow the quickly precessing electron
spin vector (if we neglect the nuclear Larmor precession, which
is crucial for the case of spin-echo decay,25,26,31,48 but which
is of much smaller importance for NFID).

The limit of uniform hyperfine couplings greatly simplifies
the electron-nuclear dynamics, making this a natural limit
in which to compare various approaches to the problem. In
particular, this limit is exactly solvable,7,13,20,22,27,57 and we
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will begin by reviewing this solution for the NFID case. In
Sec. V, we will use this solution to test how well the NZ
approach (both the standard one and the one using correlated
projection operators) can describe the dynamics of the box
model.

Restricting attention to the homonuclear case ωk = ω, with
all the nuclei having spin I = 1/2, we can solve the uniform
coupling model exactly by working in the basis of eigenstates
of the total nuclear spin operator I z = ∑

k I z
k ; we denote these

states by |jm〉 with I z|jm〉 = m|jm〉. In this basis, we may
write the expectation value 〈S+(t)〉 in terms of the appropriate
matrix element of the reduced density matrix evolved with
respect to the full Hamiltonian:

〈S+(t)〉 =
∑
jm

nj 〈↓ ,j,m|e−iH tρ(0)eiHt |↑ ,j,m〉. (16)

The ↑ , ↓ inside the kets denote the eigenstates of the electron
spin operator Sz. ρ(0) is the full density matrix at time t = 0,
and nj is the degeneracy of nuclear states with a fixed j and
m,58

nj = N !(
N
2 − j

)
!
(

N
2 + j

)
!

2j + 1
N
2 + j + 1

. (17)

In order to facilitate the computation, we will assume that the
initial nuclear density matrix is diagonal in the |jm〉 basis. In
fact, in order to compare with the NZ GME result computed in
Sec. V, we will assume that the initial nuclear density matrix is
proportional to the identity in a subspace of fixed m and is zero
outside this subspace. This is equivalent to the form of ρI (0)
that we assumed in Eqs. (12) and (13), if in the latter we make
the further assumption that the nuclei are uniformly polarized,
ρii = 1/Z with Z = ∑

j nj . When the density matrix has this
form, our formula becomes

〈S+(t)〉 = 1

Z

N/2∑
j=|m|

nj 〈↓ ,j,m|e−iH tρe(0)eiHt |↑ ,j,m〉, (18)

where ρe(0) is the initial electron density matrix.
In the case where all hyperfine couplings are equal, Ak = A,

it is straightforward to work out the action of the evolution
operator e−iH t on the |↑/↓,j,m〉 states:22,27

e−iH t |↑ ,j,m〉 = ajm|↑ ,j,m〉 + bjm|↓ ,j,m + 1〉,
(19)

e−iH t |↓ ,j,m〉 = cjm|↓ ,j,m〉 + djm|↑ ,j,m − 1〉,
with

ajm = e−iE+
mt

[
cos

(
N+

jm

2
t

)
− i

Z+
m

N+
jm

sin

(
N+

jm

2
t

)]
,

bjm = −ie−iE+
mt

X+
jm

N+
jm

sin

(
N+

jm

2
t

)
,

(20)

cjm = e−iE−
mt

[
cos

(
N−

jm

2
t

)
− i

Z−
m

N−
jm

sin

(
N−

jm

2
t

)]
,

djm = −ie−iE−
mt

X−
jm

N−
jm

sin

(
N−

jm

2
t

)
,

and

E±
m = (m ± 1/2)ω − A/(4N ),

X±
jm = A

√
j (j + 1) − m(m ± 1)/N,

(21)
Z±

m = ±[� − ω + A(m ± 1/2)/N],

N±
jm =

√
(X±

jm)2 + (Z±
m)2.

Using (19) and expanding the initial electron density matrix as

ρe(0) = 1
2 1 + 2〈Sz(0)〉Sz + 〈S+(0)〉S− + 〈S−(0)〉S+, (22)

one finds that only the S− component of ρe(0) contributes to
〈S+(t)〉:

〈S+〉 = 〈S+(0)〉
Z

N/2∑
j=|m|

nj 〈↓ ,j,m|e−iH tS−eiHt |↑ ,j,m〉

= 〈S+(0)〉
Z

N/2∑
j=|m|

nja
∗
jmcjm. (23)

For later comparison, we transform this result to a certain
rotating frame defined with respect to the frequency �n + ��,
where

�n ≡ � + hz
n, (24)

and the “Lamb shift” �� will be defined later on. In the
rotating frame, the exact solution to the uniform coupling
model is then given by

xexact(t) = x0

Z
e−i(�+Am/N+��)t

N/2∑
j=|m|

nja
∗
jmcjm. (25)

To obtain this expression, we have used that hz
n = Am/N in

the case of uniform coupling.

IV. NAKAJIMA-ZWANZIG MASTER EQUATION
AND ITS PERTURBATIVE EXPANSION

The first step in constructing the NZ GME is to separate
the density matrix for the total system into two parts, often
referred to as the relevant and the irrelevant parts:42,43

ρ = ρrel + ρirr. (26)

The relevant part ρrel is a density matrix for the degrees of
freedom whose evolution one wishes to compute, while the
irrelevant part ρirr contains the remaining degrees of freedom
in the total system. While these remaining degrees of freedom
will influence the evolution of ρrel, their own evolution is not
of direct concern and need not be computed explicitly. In
applications where one considers the dynamics of a system
coupled to a bath, ρrel is typically a density matrix describing
the degrees of freedom of the system. In this case, note that,
strictly speaking, ρirr is not a density matrix since it does not
satisfy Trρirr = 1.

The partition described in Eq. (26) is implemented by
introducing projection superoperators P and Q such that

Pρ = ρrel, Qρ = ρirr, P + Q = 1, PQ = 0. (27)

The last two relations above ensure that P and Q are true
projectors in the sense that P 2 = P and Q2 = Q. With these
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operators, the Liouville equation for ρ can be transformed into
an exact equation for the evolution of ρrel, which in the case
of a time-independent Hamiltonian H has the form42,43

P ρ̇(t) = −iPLPρ(t) − i

∫ t

0
dt ′�̂(t − t ′)Pρ(t ′), (28)

�̂(t) ≡ −iPLQe−iLQtQLP. (29)

The Liouvillian superoperator L implements the evolution of
the total system and is defined to act on an arbitrary operator
O according to

LO = [H,O]. (30)

The superoperator �̂ is referred to as the memory kernel; this
quantity contains the full dynamics of the bath and controls
how this dynamics affects the evolution of the system. It is
important to note that the particular form of the NZ equation
given in Eq. (28) assumes that the initial density matrix satisfies
the condition Qρ(0) = 0.

In the case of our central spin model, Eqs. (2)–(5), we
choose ρrel to be essentially the reduced density matrix for the
electron spin ρe. This means that the projection operator P

involves a trace over the nuclear bath:9,23,28

Pρ = ρI (0)TrI ρ = ρe ⊗ ρI (0). (31)

We have introduced a factor of the initial nuclear density matrix
ρI (0) in the definition of P to satisfy the constraint P 2 = P .
Note that the condition Qρ(0) = 0 is tantamount to assuming
that ρ(0) is separable:

ρ(0) = ρe(0) ⊗ ρI (0). (32)

This is an assumption we will make throughout this work.
It is important to stress that Eq. (31) is not the only possible

choice for the projector P . For example, it is possible to instead
define P as a sum over many projection operators which
project onto various subspaces of the nuclear bath state space,
and the choice of P can strongly influence the convergence
properties of the resulting theory.22,24 In fact, we will see later
on in the context of the uniform coupling model that the choice
made in Eq. (31) is far from ideal, and that a more sophisticated
choice leads to a vast improvement in the convergence of
the theory. Given the connection between the box model and
the short-time, low-B-field regime of the real system with
nonuniform couplings, we will argue that this observation
carries important consequences for the development of a more
complete theory of the central spin problem. For now, we
will keep the definition of P in Eq. (31) and continue our
construction of the “standard” NZ theory.

The form of the NZ equation given in Eq. (28) is quite
difficult to work with. In order to reduce it to a more tractable
form, we will place restrictions on the structure of the initial
nuclear density matrix ρI (0). In particular, we will assume that
ρI (0) is diagonal in the |ni〉 basis: ρI (0) = ∑

i ρii |ni〉〈ni |. If
we then multiply both sides of Eq. (28) by the operator S+ and
take the trace, we obtain an equation for 〈S+〉 only:

d

dt
〈S+(t)〉 = i�n〈S+(t)〉 − i

∫ t

0
dt ′�(t − t ′)〈S+(t ′)〉, (33)

where �n ≡ � + hz
n with

hz
n ≡ TrI [hzρI (0)] =

∑
i

ρiih
z
ni
. (34)

Note that this definition of hz
n is more general than the meaning

we gave this symbol in Eq. (13) in the context of the fully
restricted nuclear density matrix. The two meanings coincide
when ρI (0) has the form of Eq. (12). The memory kernel is
now a function instead of an operator:

�(t) ≡ −iTr[S+PLQe−iLQtQLPS−ρI (0)]. (35)

Without the assumption that ρI (0) is diagonal in the |ni〉
basis, additional terms involving 〈Sz(t)〉 and 〈S−(t)〉 appear
in Eq. (33), and the problem becomes considerably more
complicated. Note that we did not have to assume the fully
restricted form for ρI (0) quoted in Eq. (12) where the sum
is only over |ni〉 states corresponding to the same Overhauser
field. Equation (33) is valid when the sum contains other states
as well, i.e., when the nuclear state is not narrowed.

Equation (33) is an integro-differential equation which can
easily be solved by performing a Laplace transform, after
which the equation becomes algebraic with the solution

〈S+(s)〉 =
∫ ∞

0
dt e−st 〈S+(t)〉 = 〈S+(t = 0)〉

s − i�n + i�(s)
. (36)

The solution in the time domain is then obtained by computing
the Bromwich inversion integral,

〈S+(t)〉 = 1

2πi

∫ γ+i∞

γ−i∞
ds est 〈S+(s)〉, (37)

where the contour defined by the real number γ must be chosen
such that it lies to the right of all the poles of 〈S+(s)〉. Therefore,
solving for 〈S+(t)〉 requires solving for the Laplace transform
of the memory kernel:

�(s) =
∫ ∞

0
dt e−st�(t)

= −iTr

[
S+PLQ

1

s + iLQ
QLPS−ρI (0)

]
. (38)

Exact computation of the memory kernel is a difficult problem
except in very simple cases, so we will proceed to calculate it
perturbatively in the following section.

A. The expansion of the memory kernel

In order to make further progress, it is necessary to construct
a perturbative expansion of the memory kernel given in
Eq. (38). We will expand this quantity in a power series in
the number of flip-flops, i.e., in powers of Vff:

�(s) = �(2)(s) + �(4)(s) + O
(
V 6

ff

)
. (39)

We can have only even terms in this expansion since the flip-
flops are virtual in the physical limit � � ωk . For nuclear
density matrices ρI (0) which are diagonal in the |ni〉 basis, the
odd terms are strictly zero due to the structure of the memory
kernel, Eq. (38). We will see shortly why a zeroth-order term
has not been included in Eq. (39).

To facilitate the expansion, it is convenient to define the
following superoperators:

L0O = [H0,O], (40)

LVO = [Vff,O]. (41)
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Replacing L → L0 + LV in (38), we can then recast our
perturbative flip-flop expansion as an expansion in LV . The
expansion of the memory kernel is tantamount to an expansion
of the operator 1

s+i(L0+LV )Q in powers of LV , and this series is
straightforward to construct:

1

s + iLQ

= {1 − iGQ(s)LV Q − GQ(s)LV QGQ(s)LV Q

+ iGQ(s)LV QGQ(s)LV QGQ(s)LV Q}GQ(s)+O
(
L4

V

)
,

(42)

where

GQ(s) ≡ 1

s + iL0Q
. (43)

Using this expansion, we will compute the memory kernel up
to fourth order.

Before we proceed to compute the terms of the series, we
first pause to write down some identities which will be useful
at various stages of the expansion. When ρI (0) is diagonal in
the |ni〉 basis, the following identity holds for any integers k

and 
:

PLk
0LV L


0P = 0. (44)

This identity can be further generalized to include any
combination of L0’s and an odd number of LV ’s sandwiched
between two P ’s. When ρI (0) is further restricted to the form
given in Eq. (12), we have an additional identity (expressed in
two equivalent ways):

QL0P = 0, QL0Q = QL0. (45)

The first form of this identity allows us to replace one of the
L’s in Eq. (38) with LV :

�(t) = −iTr

[
S+PLQ

1

s + iLQ
QLV PS−ρI (0)

]
, (46)

which indicates that the zeroth-order memory kernel vanishes,
as was already presumed in (39). Note that in using Eq. (45)
to arrive at Eq. (46), we are assuming the fully restricted form
of ρI (0) stated in Eqs. (12) and (13), whereas up until now we
have needed to assume only that ρI (0) is diagonal in the |ni〉
basis. In fact, at this point it is not really necessary to impose
Eq. (12), and we could instead continue to suppose only that
ρI (0) is diagonal, in which case we would find a nonvanishing
zeroth-order term in the memory kernel expansion. However,
slightly further into the calculation we will impose Eqs. (12)
and (13), and so at this stage we may as well make the
simplifications that this form of ρI (0) brings.

B. Second-order memory kernel

Inserting Eq. (42) into Eq. (46), we find at second order

�(2)(s) = −iTr[S+PLV QGQ(s)QLV PS−ρI (0)]

− Tr[S+PL0QGQ(s)LV QGQ(s)QLV PS−ρI (0)].

(47)

The second term on the right-hand side can be shown to vanish
identically for the central spin Hamiltonian. Focusing then on

the first term, this expression is somewhat complicated by the
dependence of GQ(s) on Q. Instead of working with GQ(s),
we choose to work with its time-domain counterpart e−iL0Qt ,
in terms of which we have

�(2)(t) = −iTr[S+PLV Qe−iL0QtQLV PS−ρI (0)]. (48)

It is easy to show that the identity (45) enables the extraction
of the projection operator Q from the exponent:

Qe−iL0Qt = Qe−iL0t ≡ QG(t). (49)

The superoperator G(t) is simply the evolution operator
corresponding to the unperturbed part of the Hamiltonian H0:

G(t)ρ(0) = e−iH0t ρ(0)eiH0t . (50)

Also notice that (49) immediately implies

QGQ(s) = QG(s), (51)

with the “propagator” defined as

G(s) ≡ 1

s + iL0
. (52)

At this point, we will invoke [by using Eq. (45)] the most
constrained form of the initial nuclear density matrix, Eqs. (12)
and (13), as it is not clear how to proceed without factoring
the projector Q out of the propagator G(s). If one could
proceed without performing this factorization, then it would
suffice to assume only that ρI (0) is diagonal in the |ni〉 basis,
albeit several more terms would contribute at each order of
the memory kernel expansion. In any case, we are ultimately
interested in applying this formalism to the case of NFID,
which is defined precisely by Eqs. (12) and (13).

Plugging Eq. (49) into Eq. (48), eliminating factors of Q

with applications of the identity given in Eq. (44), and dropping
factors of P using the observations that PS−ρI (0) = S−ρI (0)
and Tr[S+PO] = Tr[S+O] for any operator O, we arrive
at

�(2)(t) = −iTr[S+LV G(t)LV S−ρI (0)]. (53)

It remains to plug in explicit expressions for the various
operators and perform the trace. Defining the following set
of operators which act in the nuclear subspace:

U±(t) ≡ e∓(i/2)(�+hz)t−i
∑

k ωkI
z
k t , (54)

we can express the action of G(t) on a matrix ρ as

Gρ =
(

U+ρ↑↑U
†
+ U+ρ↑↓U

†
−

U−ρ↓↑U
†
+ U−ρ↓↓U

†
−

)
, (55)

while the action of LV has the explicit form

LV ρ = 1

2

(
h−ρ↓↑ − ρ↑↓h+ h−ρ↓↓ − ρ↑↑h−

h+ρ↑↑ − ρ↓↓h+ h+ρ↑↓ − ρ↓↑h−

)
, (56)

where, for instance, ρ↑↓ = 〈↑|ρ|↓〉, with |↑〉 and |↓〉 denoting
the eigenstates of the electron spin operator Sz. After a bit of
algebra, we find

�(2)(t) = 1

4i

∑
k

A2
ke

iωkt
[
c−
k ei(Ak/2)t + c+

k e−i(Ak/2)t
]
, (57)
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where

c±
k ≡ Tr{I∓

k I±
k ρI (0)}. (58)

The Laplace transform of this is

�(2)(s) = 1

4i

∑
k

A2
k

[
c+
k

s − i
(
ωk − Ak

2

) + c−
k

s − i
(
ωk + Ak

2

)]
.

(59)

C. Lamb shift and rotating frame

The effect of �(2) on 〈S+(t)〉 was studied extensively in
Ref. 9, where it was shown that it leads to both a shift in
the precession frequency of the electron spin (Lamb shift) as
well as a small decay of 〈S+(t)〉 at short times, referred to
as “visibility loss.” In the limit of large N , the visibility loss
effect is suppressed,9,28 and one can make the approximation
that the only role of the second-order memory kernel is to
generate the Lamb shift. We will refer to this as the “Lamb
shift approximation.”

To make the definition of the Lamb shift more precise, first
recall the Bromwich integral formula from Eq. (37):

〈S+(t)〉 = 〈S+(t = 0)〉
2πi

∫ γ+i∞

γ−i∞
ds est 1

s − i�n + i�(s)
. (60)

Since �(s) vanishes at zero hyperfine coupling, it is clear from
this formula that the zeroth-order behavior of 〈S+(t)〉 is just
a precession with frequency �n. At nonzero coupling, this
precession is shifted by an amount determined by the real part
of the memory kernel. We define the Lamb shift �� as the shift
in precession frequency that would occur if the imaginary part
of the memory kernel (the part which produces decay) were
zero. We can read off a self-consistent equation for �� from
Eq. (60) by supposing Im[�(s)] = 0 and requiring that the
integrand have a pole at s = i(�n + ��):

�� = −Re[�(i�n + i��)]. (61)

In our flip-flop expansion, this can be approximated by

�� ≈ −Re[�(2)(i�n + i��)]. (62)

Using this formula in conjuction with Eq. (59), we then find
that the Lamb shift is given by

�� ≈ 1

4�n

∑
k

A2
k(c+

k + c−
k ) (63)

in the limit �n � ωk,Ak .
Now that we have defined the Lamb shift more precisely,

we should also clarify the manner in which the Lamb shift
approximation is implemented. This approximation consists of
replacing �(2)(s + i�n + i��) → −�� in the expansion of
the memory kernel. In order to make this replacement in (60),
we need to shift the integration variable s → s + i�n + i��.
In the Lamb shift approximation, we then have

〈S+〉 = 〈S+(t = 0)〉
2πi

ei(�n+��)t
∫ γ+i∞

γ−i∞
ds est 1

s + i�̃(4)(s)
,

(64)

where we have kept up to fourth order in the memory kernel
and defined

�̃(4)(s) ≡ �(4)(s + i�n + i��). (65)

It is often useful28 to remove the high-frequency oscillations
arising from the prefactor ei(�n+��)t in Eq. (64) by introducing
a “corotating” coherence measure x:

x(t) ≡ 2e−i(�n+��)t 〈S+(t)〉. (66)

Note that �̃(4)(s) is the fourth-order term of the Laplace
transform of the memory kernel in the rotating frame:

�̃(t) = e−i(�n+��)t�(t). (67)

This quantity serves as the kernel in the integro-differential
equation governing the evolution of x(t):

ẋ(t) = −i��x(t) − i

∫ t

0
dt ′�̃(t − t ′)x(t ′). (68)

The rotating frame renders some of the more subtle features
arising from the hyperfine flip-flops more transparent, and
we will make extensive use of it when we solve the uniform
coupling model using the NZ GME later on.

D. Fourth-order memory kernel

The fourth-order terms which emerge from inserting
Eq. (42) into Eq. (46) are

�(4)(s) = iTr{S+P [1 − iL0QGQ(s)]LV QGQ(s)LV Q

×GQ(s)LV QGQ(s)QLV PS−ρI (0)}. (69)

We can again use Eq. (45) to replace QGQ(s) with QG(s) and
to discard most of the projection operators, yielding

�(4)(s) = iTr{S+[1 − iL0QG(s)]LV G(s)LV Q

×G(s)LV G(s)LV S−ρI (0)}. (70)

If we then replace each instance of the propagator G(s) with∫ ∞
0 dt e−stG(t), then the remaining steps can be performed

in a manner quite similar to the treatment we have given
for the second-order memory kernel. This time, however, the
expressions are much more complicated, and we relegate them
to Appendix A.

E. High-frequency limit

From the explicit expression for the fourth-order memory
kernel given in Appendix A, it is clear that the dominant
contribution will come from the region s ≈ −i�n. This is
because the fourth-order memory kernel is a sum of many
terms where each term is a product of three simple poles.
Some of these poles are located at values of s which depend
only on the kth nuclear Zeeman energy and hf coupling.
However, most of the terms contain a pole located in the
vicinity of s ≈ −i�n. Due to this structure, x(s) has poles
at both s ≈ −i�n and at low frequencies, but the residues
at the latter poles are strongly suppressed compared to the
former ones. This means that if we consider the function
�̄(4)(s) ≡ �(4)(s + i�n), we can neglect s, ωk , and Ak relative
to �n. The resulting approximate expression for �̄(4)(s) is
given in Appendix A. The approximate expression for �̄(4)(s)
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can be simplified by using the results of Appendix B to evaluate
bath correlators, with the result

�̄(4) ≈ −i

16�2
n

∑
k �=


A2
kA

2



∑
i

ρiic
(i)−
k c

(i)+



2s + i(Ak − A
)

s + i(Ak − A
)

×
{

1

s − i
[
ωk − ω
 − 1

2 (Ak − A
)
]

+ 1

s + i
[
ωk − ω
 + 1

2 (Ak − A
)
]}

− i

16�2
ns

∑
i

ρii

( ∑
k

A2
k

[
c

(i)−
k + c

(i)+
k

])2

+ i

16�2
ns

(∑
k

A2
k[c−

k + c+
k ]

)2

. (71)

The symbols c
(i)±
k are defined in Appendix B. The fourth-order

memory kernel given in Eq. (71) simplifies considerably if we
assume a uniformly polarized nuclear bath. In this case, the last
two terms in Eq. (71) cancel each other. This follows from the
fact that

∑
i ρiic

(i)±
k c

(i)±

 = c±c± for such a bath; this identity

is proven in Appendix B. (Here, c±
k = c± is independent of k

by definition.) In using this form of the identity, we are also
assuming a homonuclear bath since we have thrown away the
species information in discarding the site indices k and 
. This
assumption could easily be lifted by introducing additional
indices, but we will not do this for the sake of simplicity.
Therefore, for a uniformly polarized homonuclear spin bath,
we have

�̄(4) ≈ −ic+c−

4�2
n

∑
k �=


A2
kA

2



s + i(Ak − A
)
. (72)

Implementing the same procedure for obtaining the high-
frequency limit on the second-order memory kernel, Eq. (59),
we find that the result is a constant:

�̄(2) ≈ −c+ + c−

4�n

∑
k

A2
k ≈ −��. (73)

In the last equality, we have pointed out that the high-frequency
limit of −�̄(2) is just the Lamb shift we have already computed.
This was given in Eq. (63) in the context of a more general
bath (not necessarily uniformly polarized). We see that the
Lamb shift approximation is automatically incorporated into
the high-frequency approximation.

V. THE NZ SOLUTION FOR THE UNIFORM
COUPLING MODEL

We proceed to solve the uniform coupling model within the
NZ framework in the case where all nuclei have spin 1/2. We
will find that the solution is structurally incompatible with the
exact solution reviewed in Sec. III, except at very early times.
Let us define the characteristic time

τ ≡ 4
�n

A
N

A . (74)

Note that τ ≈ ��−1. For times t � τ , the NZ solution agrees
quite well with the exact solution; however, we will show that

beyond this time scale, the NZ result rapidly breaks down.
We will argue that this failure is an unavoidable consequence
of the basic structure of the perturbative NZ approach with
projector as defined in Eq. (31), suggesting that this approach
is inappropriate in the case at hand. A remedy for this problem
will be presented in Sec. V C.

Starting from the expressions for the second- and fourth-
order memory kernels, Eqs. (59) and (A21), assuming a
homonuclear bath, ωk = ω, and setting Ak = A = A/N , we
find in the rotating frame

�̃(2) = − iμc−

s + i�1
− iμc+

s + i�2
, (75)

�̃(4) =
[

1

s + i�1
+ 1

s + i�2

]2[2iμ2c+c−

s + i�3
+ iμ2c+c−

s + i�4

]
,

(76)

with

�1 = �n + �� − ω − A/(2N ),

�2 = �n + �� − ω + A/(2N ),
(77)

�3 = 2�n − 2ω + ��,

�4 = ��,

and

μ ≡ A2

4N
= �n

τ
. (78)

In the limit of uniform couplings with spin-1/2 nuclei, the
Lamb shift reduces to

�� ≈ A2

4N�n

= μ

�n

. (79)

In the above results, we have used the fact that we are restricting
to the case of a uniformly polarized nuclear bath so that the
bath correlators c±

k = c± are independent of the nuclear site
index k. Further details about how the dependence on c± arises
in (75) and (76) are given in Appendix B. For the remainder of
this section, we will absorb ω into the definition of �n. In the
rotating frame, x(t) must depend on ω only in the combination
� − ω, so it is simple to restore the explicit ω dependence if
desired. In any case, it is generally safe to neglect ω since for
any finite magnetic field ω � �.

The solution to Eq. (68) for the electron spin coherence x(t)
in terms of a Bromwich inversion integral is

x(t) = 1

2πi

∫ γ+i∞

γ−i∞
ds est x0

s + i�� + i�̃(2)(s) + i�̃(4)(s)
,

(80)

where x0 ≡ x(t = 0) is the initial condition in the time domain.
Note that we are not making the Lamb shift approximation here
since we are keeping the full �̃(2)(s). The Laplace transform
of x(t) is a rational function:

x(s) = x0
R(s)

�(s)
, (81)

where the polynomials R(s) and �(s) are given by

R(s) ≡ (s + i�1)2(s + i�2)2(s + i�3)(s + i�4), (82)
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�(s) ≡ (s + i��)R(s) + μc− R(s)

s + i�1
+ μc+ R(s)

s + i�2

−μ2c+c−[2s + i(�1 + �2)]2[3s + i�3 + 2i�4].

(83)

The fact that x(s) is a rational function guarantees that the sum
of the residues equals x0 so that x0 is indeed the initial value
of x(t). Denoting the seven zeros of �(s) by si , we may write

�(s) =
6∏

i=0

(s − si). (84)

We can solve for the si perturbatively in the small parameter
A2

N�2
n

� 1 (equivalently, �nτ � 1). This essentially amounts
to an expansion in small μ about the zeros of sR(s), which
are 0, −i�1, −i�2, −i�3, and −i�4. Since −i�1 and −i�2

are each zeros of sR(s) with multiplicity 2, they will each give
rise to two separate zeros of �(s). We must also keep in mind
that the Lamb shift is linear in μ [see Eq. (79)]. We have

�(s) =
(

s + iη
μ

�n

)
R(s) + ημc− R(s)

s + i�1
+ ημc+ R(s)

s + i�2

−μ2c+c−[2s + i(�1 + �2)]2[3s + i�3 + 2i�4].

(85)

We have also introduced the parameter η so that we may
consider the effect of making the Lamb shift approximation,
which would amount to neglecting both the �� and �̃(2)(s)
(under the assumption that they cancel one another) in the
denominator of Eq. (80). This approximation is implemented
by setting η = 0.

Having introduced all the bookkeeping devices we will
need, we can proceed to compute the zeros of �(s) approxi-
mately by finding the ui which solve the equation

�(sR,i + μui) = 0 (86)

to leading order in μ, where sR,i satisfies

sR,iR(sR,i) = 0, (87)

Following this recipe, the si are found to be

s0 = −i
1

2τ
[1 + √

1 + 16c+c−],

s1 = −i
1

2τ
[1 − √

1 + 16c+c−],

s2 = −i�1 + c−

2τ
[−iη −

√
4c+/c− − η],

s3 = −i�1 + c−

2τ
[−iη +

√
4c+/c− − η], (88)

s4 = −i�2 + c+

2τ
[−iη −

√
4c−/c+ − η],

s5 = −i�2 + c+

2τ
[−iη +

√
4c−/c+ − η],

s6 = −i�3.

We have kept only up to first order in A2/N�2
n = (�nτ )−1

in the above expressions for the si . Notice that s6 = −i�3, so
that this root of �(s) is also a root of R(s) and thus is not a pole

of x(s). The residues of x(s) at the poles (si for i = 0, . . . ,5)
are 2πiri where

r0 = x0

2

(
− 1 + η

�nτ

)
1 − √

1 + 16c+c−
√

1 + 16c+c− ,

r1 = x0

2

(
1 − η

�nτ

)
1 + √

1 + 16c+c−
√

1 + 16c+c− ,

r2 = −ix0
c−

4�nτ

(iη + √
4c+/c− − η)2√

4c+/c− − η
,

(89)

r3 = ix0
c−

4�nτ

(−iη + √
4c+/c− − η)2√

4c+/c− − η
,

r4 = −ix0
c+

4�nτ

(iη + √
4c−/c+ − η)2√

4c−/c+ − η
,

r5 = ix0
c+

4�nτ

(−iη + √
4c−/c+ − η)2√

4c−/c+ − η
.

The electron spin coherence in the rotating frame is then

xNZ(t) =
5∑

i=0

rie
si t . (90)

A. Time scale for validity of the NZ GME uniform
coupling model solution

Notice that two of the exponentials contributing to x(t)
always diverge in the large-time limit. The terms associated
with the poles s3 and s5 exhibit this divergence for nearly
all nuclear polarizations. The only exception is the case of
maximal polarization, for which c+c− = 0; we will return
to this special case shortly. The fact that divergences arise
suggests that the NZ result for the uniform coupling model
breaks down on a time scale given roughly by τ ∼ N�/A2.
The positive real parts of the si are direct contributions of the
fourth-order memory kernel. Even though these contributions
appear to introduce a time scale cutoff for the solution, their
presence actually extends the validity of the NZ result to larger
times, as will be shown in the next section when we compare
the NZ solution with the exact solution.

Although the large-time divergences generated by the
positive real parts of the si indicate that there must be a time
scale cutoff, they are not really responsible for this cutoff.
In particular, even if no divergences were present, the result
we have obtained for x(t) in the uniform coupling model
would still be invalid beyond the time scale of τ . This is
because we are solving perturbatively for the phases Im(si)
in the phase factors exp[iIm(si)t] appearing in Eq. (90). If
we solved for Im(si) to order A2/N�n ∼ 1/τ , then the result
would be valid up to time scales which are inversely related
to the next order in the flip-flop expansion (t ∼ N2�3

n/A4),
since corrections to the periodic phase factor exp[iIm(si)t]
resulting from a small correction δsi will become significant
when Im(δsi)t ∼ 1 regardless of the fact that A/

√
N�n � 1.

However, it is important to note that we have not obtained
the full O(A2/N�n) contributions to the si as is suggested
by the particular form of the expressions given in Eq. (88).
Specifically, if we focus only on the fourth-order memory
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kernel contributions by setting η = 0, it is evident that the si

still receive corrections at order A2/N�n ∼ 1/τ . Therefore,
we see that higher-order terms in the flip-flop expansion
modify the lowest-order corrections to the si , and we would
need to include all terms in the expansion of the memory kernel
in order to obtain the full O(A2/N�n) corrections to the si .
Of course, keeping all these terms would yield the exact si and
ri and not just the O(A2/N�n) corrections. We conclude that
the NZ approach with the simple projector defined in Eq. (31)
and in which the memory kernel is computed up to some
finite order in flip-flops will yield a solution for the uniform
coupling model which is valid only up to the time scale of
t < τ . We have checked that even if one computes the poles
of �(s) exactly (numerically), the NZ result still breaks down
at the time scale t ∼ τ , in further support of the conclusion
that the breakdown on this time scale can be avoided
only by keeping higher-order terms in the memory kernel
expansion.

A notable exception to the above argument arises in
the case of maximal nuclear spin polarization m = ±N/2,
where either c+ = 0 or c− = 0. In this case, the fourth-order
memory kernel vanishes identically and so does not modify
the si , suggesting that the NZ result is valid on arbitrarily
large time scales. We will see below that the NZ approach
incorporating only the second-order memory kernel yields
the exact solution7,9 in this special case, confirming this
conjecture.

Note that the above conclusions are compatible with
the considerations of relevant time scales in a realistic,
inhomogeneously coupled system. There we expect the box
model to apply at short times, t � N/A. The previous works
applying the NZ theory to such a problem were focusing on the
high-field regime, A/� < 1, in which the long-time solution
could be controlled perturbatively. Under this condition, τ >

N/A, and the NZ theory successfully describes the short-time
coherence dynamics.28 At low magnetic fields, however, we
have τ < N/A, and the NZ approach is not expected to work
properly at the short time scale.

B. Comparison with the exact solution

When the nuclear spin polarization is maximal, m =
±N/2, the fourth-order memory kernel vanishes identically.
For concreteness, we consider the case m = N/2 (c+ = 0,
c− = 1), in which the Laplace transform of the spin coherence
becomes quite simple:

x(s) = x0
s + i�1

s(s + i�1) + μ
. (91)

Since there are only two poles, we can obtain these exactly,

s± = −i
�1

2
± i

2

√
� 2

1 + 4μ, (92)

and it is likewise a simple matter to compute the residues:

2πir± = x0

2

[
1 ± �1√

� 2
1 + 4μ

]
. (93)

The electron spin coherence is then given by

x(t) =
∑
±

r±es±t = x0e
−i�1t/2

[
cos

(
t

2

√
� 2

1 + 4μ

)
+ i

�1√
� 2

1 + 4μ

sin

(
t

2

√
� 2

1 + 4μ

)]
. (94)

Plugging in the expressions for �1 and μ, Eqs. (77) and (78),
we obtain the exact solution from Eq. (25) with m = N/2.
The fact that the second-order memory kernel suffices for
obtaining the exact solution7 for any distribution of Ak in the
case of maximal polarization was previously pointed out in
Ref. 9.

Returning to the case of arbitrary nuclear polarization m, it
is straightforward to check that the NZ result agrees with the
exact solution for short times. In particular, if we consider the
case t � τ , then we may approximate the poles as follows:

s0 ≈ s1 ≈ 0, s2 ≈ s3 ≈ −i�1, s4 ≈ s5 ≈ −i�2, (95)

leading to the short-time behavior

x(t) ≈ x0 + x0

�nτ
(c−e−i�1t + c+e−i�2t − 1). (96)

Now turning to the exact solution, Eq. (25), we can implement
the same approximation by replacing N+

jm ≈ �2, N−
jm ≈ �1

in the arguments of the sines and cosines arising from a∗
jm and

cjm. Furthermore, we expand the coefficients of the sines to
second order in the hyperfine coupling:

Z+
jm

N+
jm

≈ 1 − A2

2� 2
2 N2

[j (j + 1) − m(m + 1)],

(97)
Z−

jm

N−
jm

≈ 1 − A2

2� 2
1 N2

[j (j + 1) − m(m − 1)].

At least for low to moderate nuclear polarizations and consid-
ering that for typical values of j we may write j (j + 1) ∼ N ,
this approximation is valid roughly in the limit � � A/

√
N .

In the above expressions, we can replace �1 and �2 with
�n since the differences lead to higher-order corrections in
A/(�N ). After some algebra, we arrive at

x(t) ≈ x0

{
1 − 2

�nτNZ

N/2∑
j=|m|

nj [j (j + 1) − m2]

}

+ x0

�nτNZ
e−i�2t

N/2∑
j=|m|

nj [j (j + 1) − m(m + 1)]

+ x0

�nτNZ
e−i�1t

N/2∑
j=|m|

nj [j (j + 1) − m(m − 1)].

(98)

The identity

2

NZ

N/2∑
j=|m|

nj [j (j + 1) − m2] = 1 (99)
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FIG. 1. (Color online) Exact solution of the uniform coupling
model [Eq. (25)] vs NZ GME result [Eq. (90)] for A = �, ω/� =
10−3, and m = 0.

immediately implies that [using also Eq. (B7)]

1

NZ

N/2∑
j=|m|

nj [j (j + 1) − m2 ± m] = c∓, (100)

and we get back the short-time NZ result, Eq. (96).
In Fig. 1, we compare the NZ result with the exact solution

in the case of zero net nuclear polarization (m = 0), and it
is clear that the two agree only for short times t � τ/2. We
have not specified the number of nuclei in the caption of Fig. 1
because the curves are valid for a wide range of N . This is
because the envelope of x(t/τ ) is essentially independent of
N , as can be seen by noticing that the envelope arises from the
first two contributions, r0e

s0t + r1e
s1t , and these contributions

depend on N only through their τ dependence. [In the case
of very long times, the last four contributions to x(t) become
comparable to the first two, and all six terms generate the
envelope, but this is well beyond the regime of validity, t �
τ , of the NZ GME result. Also note that in addition to the
dependence of the first two contributions on N coming from τ ,
there is a weak N dependence coming from the c± factors in the
case of nonzero and nonmaximal nuclear polarization as well.]
The remaining four contributions to x(t) give rise to a small
modulation which is visible in Figs. 2 and 3. The frequency
and amplitude of this modulation are given roughly by �nτ

and 1/(�nτ ), respectively. Since �nτ = 4N�2
n/A2, we see

that the frequency scales linearly with N , while the amplitude
scales as 1/N . This behavior is evident in a comparison of
Figs. 2 and 3.

It should be stressed that, while the value of A/� plays
a crucial role for the long-time results in the nonuniform
coupling case,9,28 this parameter does not have any particular
significance in the uniform coupling case considered here. The
amplitude of the fast oscillation in the exact and NZ results
depends of course on the ratio of A/�, but for large N the
amplitude of this oscillation does not become significant in
the range of � which we consider, i.e., � � A/

√
N . On the

other hand, the envelope of the NFID signal depends on �

and A only through τ ≈ (N/A)(�/A). When the parameter
A/� is varied between 0.1 and 10, the envelopes in Fig. 1 do
not change, only the fast-oscillation components change; the
(dis)agreement between the NZ solution and the exact result
remains unchanged.

0.00 0.05 0.10 0.15 0.20

0.970

0.975

0.980

0.985

0.990

0.995

1.000

t τ

x
x 0

Re NZ LSA

Re NZ

Re exact

FIG. 2. (Color online) Zoomed-in version of Fig. 1 along with the
Lamb shift approximation (LSA) of the NZ GME result for N = 100.

Both the envelope and modulation change under variations
of the nuclear polarization m. The case m = N/4 is shown
in Figs. 4 and 5. Figure 4 reveals that m = N/4 is in some
sense special because the NZ approach is able to reproduce the
oscillation period of the x(t) envelope along with the amplitude
of its real part. We have tried various nuclear polarizations and
found that the NZ approach is able to reproduce these features
only in the m = N/4 case. Generically, the single-projector
NZ result visibly disagrees with the exact solution beyond
t ∼ τ .

The fact that Figs. 1–5 show that the NZ solution, Eq. (90),
disagrees with the exact answer in Eq. (25) beyond time t ∼ τ

is not surprising in light of the fact that the exact solution is a
sum over a large number of oscillatory functions, while the NZ
result consists of a sum of only six exponentials. In the case
of a realistic wave function, the NZ approach can lead to more
complicated behavior due to an appearance of branch cuts in
the continuum limit9,28 It is should also be strongly stressed
that for a realistic wave function, a new pole related to flip-
flops between nuclei with similar, but distinct, values of Ak ,
appears. In fact, this pole dominates the high-field and long-
time decay of coherence, and its influence is well controlled
for times much longer than τ and T2 ≈ τ ( �

A ), as discussed in
Ref. 28. This is in stark contrast to the behavior of a few poles
determining the coherence dynamics in the uniform coupling
case.

0 0.001 0.002

0.99991

0.99994

0.99997

1

t τ

x
x 0

Re NZ LSA

Re NZ

Re exact

FIG. 3. (Color online) Zoomed-in version of Fig. 1 along with the
Lamb shift approximation (LSA) of the NZ GME result for N = 104.
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FIG. 4. (Color online) Exact solution of the uniform coupling
model [Eq. (25)] vs. NZ GME result [Eq. (90)] for N = 104, A = �,
ω/� = 10−3 and m = N/4.

C. The NZ solution of the uniform coupling model using
correlated projectors

We have seen that a straightforward application of the
standard NZ GME to the uniform coupling model yields a
result which is in good agreement with the exact solution
only for very short times. From the technical point of view,
this failure of the NZ approach could be traced back to not
having enough poles in the Laplace-transformed solution, i.e.,
not having enough frequencies to sum over in the real-time
expression. Clearly, in order to reproduce the exact answer one
needs to find a way of bringing all these missing frequencies
back into the theory.

The above NZ results were obtained using a standard
choice for the projection operator P , which was defined in
Eq. (31). However, it was shown in Ref. 22 that the standard
projection operator is far from being the best possible choice
in contexts where the Hamiltonian exhibits a significant degree
of symmetry. When symmetries are present, one can instead
replace P with a series of so-called correlated projection
operators which project onto invariant subspaces of state space,
enabling one to expand the reduced density matrix for the
system as a sum of matrices, each capturing the components
of the state lying in a particular subspace. This greatly enhances
the number of dynamical degrees of freedom, resulting in a
remarkable improvement in the agreement between the NZ

0 0.0005 0.001

0.99994

0.99996

0.99998

1

t τ

x
x 0

Re NZ LSA

Re NZ

Re exact

FIG. 5. (Color online) Zoomed-in version of Fig. 4 along with
the Lamb shift approximation (LSA) of the NZ GME result for
N = 104.

calculation and the exact result. In this section we will show
that, whereas the standard fourth-order NZ result agrees rather
poorly with the exact solution, even at second order the NZ
GME agrees extremely well with the exact answer when
correlated projectors are employed.

For this calculation, we choose to work in the interaction
picture defined with respect to the unperturbed (Zeeman
and Overhauser) part of the Hamiltonian, H0. In terms of
the Liouville operator LI and total density matrix ρ̃ in the
interaction picture, the second-order NZ GME equation for
the electron spin coherence ρ̃e,−+ becomes

˙̃ρe,−+ = −
∫ t

0
dt ′Tr{S+PLI (t)LI (t ′)P ρ̃(t ′)}. (101)

For the uniform coupling model, LI acts on an arbitrary density
matrix as

LI

(
ρ++ ρ+−
ρ−+ ρ−−

)
= 1

2

(
h+−ρ−+ − ρ+−h−+ h+−ρ−− − ρ++h+−
h−+ρ++ − ρ−−h−+ h−+ρ+− − ρ−+h+−

)
,

(102)

with

h+− ≡ (A/N )ei(�−A/(2N))t I−ei(A/N)tI z

,
(103)

h−+ ≡ (A/N )e−i(�+A/(2N))t I+e−i(A/N)tI z = h
†
+−,

where I± = ∑
k I±

k are the total nuclear creation and anni-
hilation operators. At this point, we are ready to define the
correlated projection operators appropriate for the uniform
coupling model. In Sec. III, we already made use of the fact
that in the case of uniform couplings, the total nuclear angular
momentum is conserved, and we may work in the |jm〉 basis
of nuclear states. Defining the nuclear operator �jm to be the
projector onto the subspace of fixed j and m quantum numbers,
we choose the superprojector P to be such that it acts on the
total density matrix as22

P ρ̃ =
∑
jm

TrI (�jmρ̃) ⊗ 1

nj

�jm ≡
∑
jm

ρ̃jm
e ⊗ 1

nj

�jm.

(104)

The ρ̃
jm
e are a set of matrices which sum to give the reduced

density matrix for the electron spin:

ρ̃e =
∑
jm

ρ̃jm
e =

N/2∑
m=−N/2

N/2∑
j=|m|

nj ρ̃
jm
e . (105)

Inserting Eq. (104) into Eq. (101), we obtain after some algebra

˙̃ρjm

e,−+(t) = −1

4

∫ t

0
dt ′[e−iZ+

m (t−t ′)(X+
jm)2

+ eiZ−
m (t−t ′)(X−

jm)2]ρ̃jm
e,−+(t ′), (106)

where X±
jm and Z±

m were defined earlier in Eq. (21). Tak-
ing the Laplace transform of both sides of Eq. (106), we
obtain an algebraic equation for the Laplace transform of
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ρ̃
jm
e,−+(t) [which we call ρ̃jm(s) for brevity] which is readily

solved:

ρ̃jm(s) = ρ
jm

0 (s + iZ+
m)(s − iZ−

m)

{
s3 + i(Z+

m − Z−
m)s2

+
[
Z+

mZ−
m + 1

4
(X+

jm)2 + 1

4
(X−

jm)2

]
s

+ i

4
[Z+

m(X−
jm)2 − Z−

m(X+
jm)2]

}−1

. (107)

ρ
jm

0 is the intial value of ρ̃
jm
e,−+(t). To obtain ρ̃

jm
e,−+(t), we must

use the Bromwich inversion formula:

ρ̃
jm
e,−+(t) = ρ0

2πi
lim
γ→0

∫ γ+i∞

γ−i∞
ds est ρ̃jm(s). (108)

The value of this integral is determined by the three poles of
ρ̃jm(s), which we will call sjm

1 ,sjm

2 ,sjm

3 , and by their associated
residues r

jm

1 ,rjm

2 ,rjm

3 . In terms of these poles, the solution is

ρ̃
jm
e,−+(t) = ρ

jm

0

3∑
i=1

r
jm

i es
jm

i t , (109)

where the residues are given by

r
jm

1 =
(
s
jm

1 + iZ+
m

)(
s
jm

1 − iZ−
m)(

s
jm

1 − s
jm

2 )
(
s
jm

1 − s
jm

3

) ,

r
jm

2 =
(
s
jm

2 + iZ+
m

)(
s
jm

2 − iZ−
m)(

s
jm

2 − s
jm

1 )
(
s
jm

2 − s
jm

3

) , (110)

r
jm

3 =
(
s
jm

3 + iZ+
m

)(
s
jm

3 − iZ−
m)(

s
jm

3 − s
jm

1 )
(
s
jm

3 − s
jm

2

) .

To complete the solution, we must give the explicit forms of
the s

jm

i :

s
jm

1 = −a

3
− 21/3

3d
(3b − a2) + d

21/33
,

s
jm

2 = −a

3
+ (1 + i

√
3)(3b − a2)

22/33d
− (1 − i

√
3)d

21/36
, (111)

s
jm

3 = −a

3
+ (1 − i

√
3)(3b − a2)

22/33d
− (1 + i

√
3)d

21/36
,

with

d ≡ (−2a3 + 9ab − 27c

+ 3
√

3
√

−a2b2 + 4b3 + 4a3c − 18abc + 27c2)1/3,

(112)

and

a = i(Z+
m − Z−

m),

b = Z+
mZ−

m + 1

4
(X+

jm)2 + 1

4
(X−

jm)2, (113)

c = i

4
[Z+

m(X−
jm)2 − Z−

m(X+
jm)2].
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FIG. 6. (Color online) Exact solution of the uniform coupling
model [Eq. (25)] vs NZ-CP result [Eq. (114)] for N = 104, A = �,
ω/� = 10−3, and m = 0.

Since the interaction picture can be thought of as the frame
rotating with frequency �n, to switch to the rotating frame
with frequency �n + �� we simply need to multiply the
result by e−i��t . The electron spin coherence in the rotating
frame and in the presence of fixed nuclear polarization m is
then

xNZ-CP(t) = x0

Z
e−i��t

N/2∑
j=|m|

nj

3∑
i=1

r
jm

i es
jm

i t . (114)

This solution is plotted along with the exact solution in Figs. 6
and 7. It is clear from these figures that the NZ solution with
correlated projectors (NZ-CP) agrees remarkably well with the
exact solution.

It is not difficult to extract analytically the envelope and
modulation from the NZ-CP solution. To do this, it helps to
first perform a large-N expansion, wherein the leading-order
terms in the s

jm

i are

s
jm

1 ≈ iZ−
m − i

(X−
jm)2

4�n

,

s
jm

2 ≈ i
(X+

jm)2 + (X−
jm)2

4�n

, (115)

s
jm

3 ≈ −iZ+
m − i

(X+
jm)2

4�n

,
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FIG. 7. (Color online) Zoomed-in version of Fig. 6.
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while those of the r
jm

i are

r
jm

1 ≈ (X−
jm)2

4�2
n

,

r
jm

2 ≈ 1 − (X+
jm)2 + (X−

jm)2

4�2
n

, (116)

r
jm

3 ≈ (X+
jm)2

4�2
n

.

In the limit of large N , the coherence therefore takes the form

xNZ-CP(t)

≈ x0

Z
e−i��t

N/2∑
j=|m|

nje
i[(X+

jm)2+(X−
jm)2]/4�nt

×
{

1 − (X+
jm)2 + (X−

jm)2

4�2
n

+ (X+
jm)2

4�2
n

× e−i[Z+
m+(X+

jm)2/4�n]t + (X−
jm)2

4�2
n

e−i[−Z−
m+(X−

jm)2/4�n]t

}
.

(117)

The factor in curly brackets in Eq. (117) is precisely that which
gives rise to the small modulation depicted in Fig. 7, while the
rest of the expression produces the envelope in Fig. 6.

The above expression can be obtained from the exact
solution, Eq. (25), by expanding in the limit X±

jm � Z±
m , in

which case we find

a∗
jm ≈ ei(N+

jm/2)t

[
1 − (X+

jm)2

4(Z+
m)2

(1 − e−iN+
jmt )

]
,

(118)

cjm ≈ ei(N−
jm/2)t

[
1 − (X−

jm)2

4(Z−
m)2

(1 − e−iN−
jmt )

]
,

where ajm, cjm, and N±
jm were defined in Eqs. (20) and (21).

These expressions result from expanding only the Z±
m/N±

jm

factors appearing in ajm and cjm. If we furthermore expand
the N±

jm factors in the temporal exponents as

N±
jm ≈ |Z±

m | + (X±
jm)2

4|Z±
m | , (119)

and also make the following approximation in the
denominators:

Z±
m ≈ �n, (120)

then we get back Eq. (117).
If we assume typical values of j and m with j � m, then we

have roughly X±
jm ∼ A/

√
N , and the above approximations

are valid in the limit � � A/
√

N . Recall that this is the
same condition we had for the validity of the NZ solution
without correlated projectors. In fact, the approximations we
have made in the exact solution to arrive at the NZ-CP result
are essentially the same ones we made to relate the exact and
NZ solutions [see Eq. (97)], the only difference being that here
we have kept some of the j dependence in the exponents when
evaluating the sum over j . Moreover, note that the expansion
of the N±

jm factor appearing in the temporal exponent of the
exact solution introduces a time scale on which the solution is

valid. It is somewhat difficult to say precisely what the time
scale of validity is, however, because of the sum over j . To
obtain a very rough estimate, we can again consider a typical
value of j and write X±

jm ∼ A/
√

N . The time scale should
roughly correspond to the inverse of the error introduced by
expanding N±

jm in the temporal exponent. This error is on the
order of

N±
jm − |Z±

m | − (X±
jm)2

4|Z±
m | ∼ (X±

jm)4

|Z±
m |3 ∼ A4

N2�3
(121)

(assuming that j � m), indicating a time scale

t ∼ N2�3

A4
. (122)

D. Comparison with the RDT solution of the
uniform coupling model

We now review the effective-Hamiltonian RDT solution
to the box model and show how it is related to the exact
solution and the NZ-CP result of the previous section. At
second order in the flip-flop expansion, we have processes in
which the electron spin flip-flops with the kth nucleus and then
subsequently flip-flops with the 
th nucleus. This leads to an
effective flip-flop interaction between the kth and 
th nuclear
spins which is mediated by the hyperfine interaction. We can
derive the effective Hamiltonian describing this internuclear
flip-flop process by performing a canonical transformation on
the hyperfine Hamiltonian in Eqs. (2)–(5): Heff = e−SHeS ,
where the unitary operator e−S is chosen in such a way as to
eliminate the original Vff interaction.11,12,23,26 It is important
to note that the transformation on states, |ψ〉 → e−S |ψ〉, is
neglected in the derivation of Heff. The dominant terms in the
resulting effective Hamiltonian are

Heff = −
∑

k

A2
k

4�
Iz
k + Sz

∑
k

A2
k

2�

[
I 2
k − (

I z
k

)2]
+ Sz

∑
k �=


AkA


2�
I+
k I−


 . (123)

The effective-Hamiltonian solution for NFID was obtained
in Ref. 26 in the case of zero nuclear polarization, m = 0. In
the rotating frame, it is given by

x(t) = x0e
−i��t exp[i arctan(t/τ )]√

1 + (t/τ )2
= x0e

−i��t

1 − it/τ
. (124)

This result is compared with the exact solution, Eq. (25), in
Figs. 8 and 9. To generate these figures, we have used the
high-frequency form of the Lamb shift, Eq. (63), where for
zero polarization, c±

k = 1/2 (see Appendix B). It is clear from
Fig. 8 that the envelope of the RDT solution agrees very well
with that of the exact solution up to time scales well beyond
τ . The fact that the two envelopes agree even at very large
time scales is particularly interesting given that, in the case of
RDT, x ∼ 1/t for t � τ ; this 1/t tail is evidently reproduced
by the sum of many exponential terms comprising the exact
solution. On the other hand, Fig. 9 reveals that RDT does not
succeed in capturing the fast small-amplitude modulation of
the coherence.
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FIG. 8. (Color online) Exact solution of the uniform coupling
model [Eq. (25)] vs RDT result [Eq. (124)] for N = 104, A = �,
ω/� = 10−3, and m = 0.

It is not difficult to extract the RDT solution as a limit of
the exact solution. First recall that the RDT result using the ef-
fective Hamiltonian is expected to be valid26 for � � A/

√
N

and in the limit of large N . Starting from the exact solution,
Eq. (25), we can apply the first of these approximations along
with the fact that for the j states which contribute the most to
the sums we have j (j + 1) ∼ N , to write

Z±
m ≈ ±�, N±

jm ≈ �

[
1 + A2

2�2N2
j (j + 1)

]
, (125)

so that we obtain

x(t) ≈ x0e
−i��t 1

Z

N/2∑
j=0

nje
i(2/N)j (j+1)t/τ . (126)

Expanding the exponential and using the result that in the
large-N limit

1

Z

N/2∑
j=0

njj
k(j + 1)k = k!Nk

2k
+ O(Nk−1), (127)

we arrive at the RDT solution:

x(t) ≈ x0e
−i��t

∞∑
k=0

(
it

τ

)k

= x0e
−i��t

1 − it/τ
. (128)

Strictly speaking, this derivation is valid only for t < τ since
otherwise the infinite series in Eq. (128) is not defined, and
the last line in Eq. (128) should be treated as an analytical
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0.99991
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0.99997
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t τ

x
x 0

Re RDT

Re exact

FIG. 9. (Color online) Zoomed-in version of Fig. 8.

continuation of the previous expression along the real axis (a
similar kind of analytical continuation was in fact encountered
in the derivation of the RDT result in Ref. 26). The correctness
of the analytical continuation can be easily checked by
comparing a numerical evaluation of Eq. (126) with Eq. (124)
in the limit N → ∞ for all times t .

Notice that the approximations we have made in the exact
solution to arrive at the RDT result are essentially the same
ones we made to relate the exact and NZ-CP solutions [see
Eq. (119)], the only difference being that in the context of
NZ-CP, we kept one more order in the expansion, yielding the
additional factor in curly brackets in Eq. (117). This additional
factor is precisely that which gives rise to the small modulation
depicted in Fig. 7. Thus, the RDT and NZ-CP solutions of
the box model belong to the same expansion of the exact
solution. Moreover, note that it is the expansion of the N±

jm

factor appearing in the temporal exponent of the exact solution
that introduces a time scale on which the NZ-CP solution is
valid. The fact that we are making the very same expansion
here implies that the RDT solution will be valid on a time scale
similar to that of the NZ-CP result.

VI. DISCUSSION

In this section, we aim to understand the reasons for
the failure of the standard (single-projector) NZ approach
discussed in Sec. V and for the success of the correlated
projector approach from the previous section.

A. Non-narrowed Gaussian bath

It is instructive to take a small detour, and discuss first the
NZ solution for the case of Ising coupling to the bath spins,59

for which Vff =0. Furthermore, let us abandon for a moment
the assumption that the state of the bath is narrowed, and take
ρI ∼ 1.

This case is of course exactly solvable,59 and in the large-N
limit the results are equivalent to the classical calculation,60

in which the bath is assumed to be static, and the central spin
dynamics is calculated by averaging the spin precession over
a Gaussian ensemble of nuclear polarization vectors BI of
the form P (B2

I ) ∼ exp(−B2
I /2σ 2), where σ 2 = 1

3

∑
k Ik(Ik +

1)A2
k . A simple Gaussian integral gives the well-known

exp[−(t/T ∗
2 )2] decay of the envelope of the FID signal, with

T ∗
2 =√

2/σ . For large N , this is practically equivalent to the
evaluation of the quantum expression

〈S+(t)〉 = 1

2N
ei�t

∑
ni

exp
(
ihz

ni
t
)〈S+(0)〉. (129)

Note that, in the above expression, every |ni〉 state present
in ρI (0) contributes a frequency hz

ni
, and the averaging

of these frequencies leads to dephasing (inhomogeneous
broadening).

It was noticed before that the standard NZ approach, when
carried out to a finite order in the expansion (in powers of hz

in this case), cannot reproduce the above simple solution.59

On the other hand, the TCL approach gives the exact result
already in the second order of expansion. This feature can
be traced back to the fact that in the NZ expansion, one
obtains so-called partial cumulants43,59 of the bath operators
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(i.e. 〈h4
z〉pc = 〈h4

z〉 − 〈h2
z〉2 appears in the fourth order), while

in the TCL calculation one encounters the ordered cumulants
(i.e., 〈h4

z〉oc = 〈h4
z〉 − 3〈h2

z〉2), which are clearly closely related
to the usual cumulants. For the Gaussian bath, the ordered
cumulants beyond second order are identically zero, and
the TCL approach succeeds because it captures the crucial
statistical properties of the bath already in the second order
of the expansion.61 The NZ approach, on the other hand, is
incompatible with the structure of the bath correlators, and it
has to be carried out to infinite order to recover the Gaussian
decay of the transverse spin.

B. Uniform coupling model as a classical non-Gaussian bath

The effective-Hamiltonian-based RDT solution for dephas-
ing in the uniform coupling model, Eq. (124), which is the
same as the large-N limit of the exact solution [see the
discussion leading to Eq. (128)], can also be obtained from a
classical calculation.4 We simply fix the Bz

I component of the
nuclear field, perform the Gaussian average of the classical
equations of motion for Sx,y , and recover the RDT results.
The fast oscillation of the exact solution is clearly an effect
which is being missed by the classical large-N limit. The
same result is obtained when one employs the classical limit
of the effective Hamiltonian, Sz[(Bx

I )2 + (By

I )2]/2� (as was
done for the spin-echo case in Ref. 31), and performs the
Gaussian average over all the precession frequencies due to
the possible magnitudes of the transverse nuclear field. This
shows that the RDT (at short times in the general case) and
the uniform coupling calculations are essentially equivalent to
classical averaging over the square of a Gaussian-distributed
classical variable. The latter approach was successfully applied
to the calculation of the Rabi oscillation decay of spin
qubits.62–65

In the case of a bath operator coupling which is the square
of a Gaussian-distributed variable, the bath correlators are
such that cumulants of all orders are nonzero. However,
these cumulants are simply the ring diagrams,26,44 and the
summation of all of them can be performed. In order to achieve
this, it is crucial to use a theoretical approach in which the
standard, i.e., ordered, cumulants appear in a natural fashion,
as occurs in the effective-Hamiltonian-based RDT calculation,
or in the TCL approach.43

As we discussed in the previous section, the standard
(single-projector) NZ theory does not have a natural relation
with the statistical properties of the bath, specifically with
the structure of the ordered cumulants of the bath variables.
Furthermore, in the standard NZ approach we project on a
single tensor product state of the system and a fixed state
of the environment [chosen here, as is usually done, to be
ρI (0)]. The Ising coupling case clearly shows that this can
a suboptimal approximation: in this case, the central spin
coherence decays only due to the fact that the exact density
matrix at finite times possesses a nontrivial structure deriving
from the evolution of each of the nuclear states present in ρI (0),
i.e., in Eq. (129) we have a sum over all the |ni〉 states, and
each state contributes a different frequency. What is explicitly
shown in the exact solution of the uniform coupling model is
the fact that, even for the narrowed state of the bath, this is
the case. The exact solution in Eq. (25) involves a sum over

the j quantum numbers: in order to obtain the correct result,
one has to preserve the structure of the nuclear density matrix
which is singled out by its coupling to the central spin (i.e.,
the nontrivial dynamics in the j,m,m ± 1 subspaces). In the
classical limit this averaging over the nuclear states present
in the narrowed density matrix is expressed by integration
over the Bx

I and B
y

I components of the nuclear field. The
RDT calculation captures correctly this averaging by a proper
resummation of all the diagrams relevant in the large-N limit.
The NZ-CP calculation simply preserves the key structure of
the total density matrix during the system’s evolution, and in
this way recovers the classical averaging limit.

C. Consequences for the nonuniform coupling theory

As noted in Ref. 22, the single-projector approach is
expected to be valid when the system-environment coupling
is weak in some sense. As shown in Refs. 9, 23, and 28, in
the case of the hf-coupled spin bath this “weak coupling”
condition is A/� < 1, and it apparently guarantees that the
single-projector approach is valid at all times. Under this
condition the short-time (t � N/A) decay is very small, i.e.,
a quadratic initial decay, x(t) ≈ 1 − 2(t/τ )2 with t � τ . This
result does not depend on the shape of the electron wave
funtion. The decay at longer times is due to the fluctuations
of the Overhauser field induced by flip-flops involving nuclei
with different couplings to the central spin; the inhomogeneity
of couplings is crucial at this time scale. Most of the decay for
A/� � 1 is of the exponential form recovered by the RDT
calculation. With decreasing �, the nonexponential features
of the single-projector NZ solution become more prominent,
but the form of the NFID at low fields � < A cannot be
determined in a controlled fashion,28 at least for realistic
values of nuclear spin I > 1/2 and for zero or small nuclear
polarization.

At short times, the RDT solution remains controlled (as
long as one believes in the robustness of the transformation
leading to the effective Hamiltonian on this time scale) when
� � A/

√
N . In this regime, the RDT solution is explicitly

independent of the shape of the electron wave function,25,26 as
was the case for the short-time NZ result.28 This agrees with
the intuition that at this time scale all the internuclear flip-flops
should be virtual, and all of them should be equally important.
It suggests that on short time scales it should be possible to
map the dynamics of the real system onto the dynamics of a
model system with uniform couplings.26,36 As we have shown
here, the RDT reproduces the envelope of the exact result
in this case, while the standard NZ approach fails beyond
very short times, t < τ = 4N�/A2 (at which the envelope
is well described by the quadratic decay), suggesting that
the latter approach is indeed unable to describe the low-field
decay, most of which occurs at short times (t < N/A). This is
consistent with the results of Refs. 9,23, and 28, in which only
high fields were considered (or a large nuclear polarization
was assumed), and the single-projector NZ theory was shown
to be very hard to control at low fields. It should be noted,
however, that the broadening of the energy bandwidth available
for multiple internuclear flip-flops in higher orders in Vff,
discussed briefly in Ref. 28, shows that the boundary of
the short-time regime can move to even shorter times as
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one goes to a higher order in the expansion of the NZ
memory kernel. It is nevertheless unclear what happens to
this trend as the expansion is continued to higher orders. The
previous discussion suggests that in order for a single-projector
NZ approach to recover the uniform coupling bath limit
one has to go to an infinite order in the memory kernel
expansion. This makes it hard to perturbatively delineate,
within the single-projector NZ approach, the time scale on
which the uniform coupling model gives a good approximation
to the real problem. A full-Hamiltonian approach, starting
from an assumption that the box model holds on some time
scale and correctly describing the decoherence in a broad
range of magnetic fields, should shed more light on these
issues.

The use of correlated projection operators22,24,43 makes
the second-order NZ result agree very well with both the
envelope and the small oscillations of the exact result for NFID
decay in the uniform coupling case. This strongly suggests
that the correlated projection operator technique should be an
important element of a theory of central spin decoherence
encompassing all the regimes of magnetic fields and time
scales.

VII. CONCLUSIONS

In this paper, we have applied the Nakajima-Zwanzig
generalized master equation, originally developed for the
hyperfine-coupled central spin problem in Refs. 9,23 and 28,
to the exactly solvable case of uniform hyperfine couplings.
We have shown that the NZ calculation of narrowed-state free-
induction decay, i.e., the evolution of the electron coupled to a
nuclear bath acting on it with a well-defined Overhauser field,
fails very quickly in this case, and can only account for the
initial decoherence dynamics. We have traced the origin of this
failure to the fact that, in this NZ approach, a single operator
was used to project the total density matrix onto the tensor
product of the central spin and bath density matrices. While
this approach works well at high magnetic fields, at which
the coherence decays at long times, and the inhomogeneity
of the electron’s wave function (i.e., the inhomogeneity of the
hf couplings) is crucial for the coherence decay,23,28 it fails
at short times and low fields, at which the shape of the wave
function should be irrelevant, and the uniform coupling model
is expected to be applicable. In the latter situation, one has to
modify the NZ approach by introducing a family of correlated
projection operators,22,24 with which one can capture the
essential features of the exact dynamics: the electron loses
its coherence by a rather simple dephasing process, in which
the electron spin states acquire a different phase when
interacting with nuclear states from different subspaces, and
the coherence is lost due to averaging over the initial nuclear
states. With this modification, the NZ GME reproduces
very well the exact solution for the uniform coupling
model.

The exact result for NFID in the uniform coupling model is
also reproduced by the effective-Hamiltonian-based solution
from Refs. 25 and 26 on a time scale long enough to
capture the full coherence decay. This is another example
of the effective-Hamiltonian-based theory25,26 reproducing
the semiclassical limit (i.e., the quantum calculation being

equivalent to an average over classical nuclear fields) of the
central spin dephasing problem.31

According to the effective-Hamiltonian-based theory,
NFID should be described by Eq. (124) up to a time scale
of ∼10 μs in GaAs dots (with N ≈ 106), and this decay will
be significant for magnetic fields smaller than 1 T. The NFID
measurements in this parameter range are within reach of
the fast measurement techniques developed for gated GaAs
dots.39 Upon increasing the magnetic field, the decoherence
times calculated from the purely hf central spin Hamiltonian
quickly become comparable to the predicted decay times due
to dipolar-induced spectral diffusion,12,52 which were obtained
with the cluster methods succesfully describing the high-field
decay of the spin-echo signal in GaAs.48 This probably makes
the long-time regime (the exponential decay) very hard to
observe in large GaAs dots. On the other hand, in InGaAs dots,
especially the smallest ones (N ≈ 104), the short-time regime
extends to at most ∼100 ns, and the low-field requirement
might be incompatible with the spin splitting needed for the
optical manipulation of the qubit. These dots seem to be
more suited for experimentally investigating the high-field and
long-time regime of exponential decay since the predicted52

decoherence times due to the nuclear dipolar interactions
are on the order of 5–10 μs (which is a lower bound since
quadrupolar interactions were not included in that theory),
giving a window of time scales in which the decay due to the
hf interaction only could be observed. The exponential decay
was indeed seen in such dots,37 but more research is needed
to ascertain its magnetic field dependence. If the nuclear-state
narrowing could be done in InGaAs dots at lower magnetic
fields (e.g., around 1 T and possibly below), the crossover
between the short and long time scales should be seen, making
it possible to check the time scale at which the uniform
coupling model predictions hold and to verify the predictions
of Ref. 28 in the � ≈ A regime, in which the single-projector
NZ results differ significantly from the effective-Hamiltonian
results.

The results of this paper make a strong statement regarding
the structure of a theory which could describe the electron spin
decoherence without the use of an effective Hamiltonian in a
broad range of magnetic fields. In order to properly describe
the short-time (t � N/A) regime, in which the coherence is
expected to decay at low magnetic fields, one should employ
the correlated projection operator approach in the derivation of
a generalized master equation. This was done employing both
the NZ and the time-convolutionless methods in the uniform22

and nonuniform24 coupling cases (in the latter case using only
the projectors of spaces of fixed m, not the jm spaces used
here), albeit only for a thermal nuclear bath. In this work we
have shown that this feature of the theory is crucial also in the
case of NFID and uniform couplings. The case of low-field
NFID in a realistic inhomogenously coupled system remains
to be further investigated. While we have focused here on the
NZ approach, which was the subject of intense research9,23,28

in the context of NFID, it might turn out that the TCL approach
(untested yet for NFID) will be both easier to implement and
more natural. The latter statement is supported by the fact
that the structure of TCL is closer to the cumulant expansion
structure which underpins the effective-Hamiltonian solution
from Refs. 25 and 26. These theories not only practically agree
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with the NZ approach at high fields in the nonuniform coupling
case but also capture correctly the exact solution in the uniform
coupling case, strongly suggesting that they correctly describe
the low-field and short-time decay of NFID, just as they
correctly described the spin-echo signal.31,48 However, the
nature of the crossover between the high-field/long-time, and
low-field/short-time decay behaviors remains to be elucidated
using a theory capable of treating both regimes on equal
footing.
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APPENDIX A: THE FULL EXPRESSION FOR THE
FOURTH-ORDER MEMORY KERNEL

In this section, we will work out the explicit form for
the Laplace transform of the fourth-order memory kernel.
We will not make any assumptions about the distribution of
hyperfine couplings or about the magnitude of � relative to
other scales in the problem. The only assumption is that the
initial nuclear density matrix has the form shown in Eq. (12).
Starting from Eq. (70), we replace each occurrence of G(s)
with

∫ ∞
0 dt e−stG(t) to obtain

�(4)(s) = i

∫ ∞

0

4∏
i=1

dtie
−s

∑
i ti Tr{S+[s − iL0QG(t1)]LV G(t2)LV QG(t3)LV G(t4)LV S−ρI (0)}. (A1)

This step allows us to work with G(t) as opposed to its Laplace transform, making it easier to find explicit expressions. We will
evaluate the string of operators appearing inside the trace in two stages. First consider

T ≡ G(t3)LV G(t4)LV S−ρI (0). (A2)

We can evaluate this using Eqs. (55) and (56), finding

T =
(

0 T↑↓
T↓↑ 0

)
, (A3)

with

T↑↓ =
∑
k


ãk
I
−

 ρI (0)I−

k ,

(A4)
T↓↑ =

∑
k


[b̃k
I
+

 I−

k ρI (0) + c̃k
ρI (0)I−
k I+


 ],

where

ãk
 = − 1
4AkA
e

−i[�n−ωk−ω
+(1/2)(Ak−A
)]t3 [ei(ωk−Ak/2)t4 + ei(ω
+A
/2)t4 ],

b̃k
 = 1
4AkA
e

i[�n+ωk−ω
−(1/2)(Ak−A
)]t3ei(ωk+Ak/2)t4 , (A5)

c̃k
 = 1
4AkA
e

i[�n+ωk−ω
+(1/2)(Ak−A
)]t3ei(ωk−Ak/2)t4 .

For the second stage of the evaluation, we define

R ≡ LV G(t2)LV QT . (A6)

Given the structure of T , Eq. (A3), it is not difficult to show that R has a similar form:

R =
(

0 R↑↓
R↓↑ 0

)
. (A7)

In terms of R, we may write the trace in Eq. (A1) as

Tr{S+[s − iL0QG(t1)]R} = Tr{�1R↓↑}, (A8)

with

�1 ≡ s + i
(
hz − hz

n

)
ei(�+hz)t1 . (A9)

Therefore, it is only necessary to compute one of the components of R, and this can be expressed in terms of T according to

R↓↑ = 1
4h+U+(t2){h−T↓↑−h−ρI (0)Tr[T↓↑]−T↑↓h+}U †

+(t2) − 1
4U−(t2){h+T↑↓−T↓↑h− + ρI (0)Tr[T↓↑]h−}U †

−(t2)h+, (A10)
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where U±(t) were defined in Eq. (54). The explicit form of the trace, Eq. (A8), is rather messy, so we first break it up into four
parts in an effort to improve readability:

Tr{�1R↓↑} =
4∑

i=1

Xi, (A11)

X1 = − 1
4 Tr{�1h

+U+(t2)T↑↓h+U
†
+(t2)} − 1

4 Tr{�1U−(t2)h+T↑↓U
†
−(t2)h+},

X2 = − 1
4 Tr[T↓↑]Tr{�1h

+U+(t2)h−ρI (0)U †
+(t2)} − 1

4 Tr[T↓↑]Tr{�1U−(t2)ρI (0)h−U
†
−(t2)h+},

(A12)
X3 = 1

4 Tr{�1h
+U+(t2)h−T↓↑U

†
+(t2)},

X4 = 1
4 Tr{�1U−(t2)T↓↑h−U

†
−(t2)h+}.

These evaluate to

X1 = −1

4

∑
k
pq

ãk
ApAq[ei(ωp+Ap/2)t2 + ei(ωq−Aq/2)t2 ][s + i(Ap − A
)ei(�n+Ap−A
)t1 ]Tr{I+
p I−


 ρI (0)I−
k I+

q }, (A13)

X2 = − s

16
ei�nt3

∑
k


A2
kA

2

e

iω
t2eiωkt4 [c−

 ei(A
/2)t2 + c+


 e−i(A
/2)t2 ][c−
k ei(Ak/2)t4 + c+

k e−i(Ak/2)t4 ], (A14)

X3 = 1

4

∑
k
pq

ApAqe
i(ωp+Ap/2)t2 {sb̃k
Tr{I+


 I−
k ρI (0)I+

p I−
q } + c̃k
[s + i(Ap − Aq)ei(�n+Ap−Aq )t1 ]Tr{I+

p I−
q ρI (0)I−

k I+

 }}, (A15)

X4 = 1

4

∑
k
pq

ApAqe
i(ωp−Ap/2)t2 {sc̃k
Tr{I−

q I+
p ρI (0)I−

k I+

 } + b̃k
[s + i(A
 − Ak)ei(�n+A
−Ak)t1 ]Tr{I+


 I−
k ρI (0)I−

q I+
p }}. (A16)

Performing the fourfold Laplace transform in Eq. (A1) on each of the Xi and denoting the results by Yi , we find

Y1 = 1

16

∑
k
pq

AkA
ApAq

Tr{I+
p I−


 ρI (0)I−
k I+

q }
s + i

[
�n − ωk − ω
 + 1

2 (Ak − A
)
][

1 + i
Ap − A


s − i(�n + Ap − A
)

]

×
[

1

s − i
(
ωp + Ap

2

) + 1

s − i
(
ωq − Aq

2

)][
1

s − i
(
ω
 + A


2

) + 1

s − i
(
ωk − Ak

2

)]
, (A17)

Y2 = − 1

16

∑
k


A2
kA

2



1

s − i�n

[
c−
k

s − i
(
ωk + Ak

2

) + c+
k

s − i
(
ωk − Ak

2

)][
c−



s − i
(
ω
 + A


2

) + c+



s − i(ω
 − A


2 )

]
, (A18)

Y3 = 1

16

∑
k
pq

AkA
ApAq

1

s − i
(
ωp + Ap

2

){
1

s − i
(
ωk + Ak

2

) Tr{I+

 I−

k ρI (0)I+
p I−

q }
s − i

[
�n + ωk − ω
 − 1

2 (Ak − A
)
]

+ 1

s − i
(
ωk − Ak

2

) Tr{I+
p I−

q ρI (0)I−
k I+


 }
s − i

[
�n + ωk − ω
 + 1

2 (Ak − A
)
][

1 + i
Ap − Aq

s − i(�n + Ap − Aq)

]}
, (A19)

Y4 = 1

16

∑
k
pq

AkA
ApAq

1

s − i(ωp − Ap

2 )

{
1

s − i
(
ωk − Ak

2

) Tr{I−
q I+

p ρI (0)I−
k I+


 }
s − i

[
�n + ωk − ω
 + 1

2 (Ak − A
)
]

+ 1

s − i
(
ωk + Ak

2

) Tr{I+

 I−

k ρI (0)I−
q I+

p }
s − i

[
�n + ωk − ω
 − 1

2 (Ak − A
)
][

1 + i
A
 − Ak

s − i(�n + A
 − Ak)

]}
. (A20)

The Laplace transform of the fourth-order memory kernel is given by

�(4)(s) = i

4∑
i=1

Yi(s). (A21)
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In the high-frequency limit, we have in the rotating frame defined by �n [Ȳi = Yi(s + i�n)]

Ȳ1 ≈ 0, (A22)

Ȳ2 ≈ 1

16�2
n

∑
k


A2
kA

2

[c−

k + c+
k ][c−


 + c+

 ]

1

s
, (A23)

Ȳ3 ≈ − 1

16�2
n

∑
k
pq

AkA
ApAq

[
Tr{I+


 I−
k ρI (0)I+

p I−
q }

s − i
[
ωk − ω
 − 1

2 (Ak − A
)
] + s

s − i(Ap − Aq)

Tr{I+
p I−

q ρI (0)I−
k I+


 }
s − i

[
ωk − ω
 + 1

2 (Ak − A
)
]]

, (A24)

Ȳ4 ≈ − 1

16�2
n

∑
k
pq

AkA
ApAq

[
Tr{I−

q I+
p ρI (0)I−

k I+

 }

s − i
[
ωk − ω
 + 1

2 (Ak − A
)
] + s

s − i(A
 − Ak)

Tr{I+

 I−

k ρI (0)I−
q I+

p }
s − i

[
ωk − ω
 − 1

2 (Ak − A
)
]]

, (A25)

and

�(4)(s + i�n) = �̄(s) = i

4∑
i=1

Ȳi(s). (A26)

APPENDIX B: NUCLEAR BATH CORRELATORS

In this Appendix, we evaluate the nuclear bath correlators
which arise in the expression for the fourth-order memory
kernel. For example, in the expression given for Y3 in
Appendix A, there appears the correlator

Tr{I+
p I−

q ρI (0)I−
k I+


 }. (B1)

Since ρI (0) is assumed to be diagonal in the |ni〉 basis, this
correlator is only nonzero when each pair of raising and
lowering operators act on the same nucleus, and we obtain

Tr{I+
p I−

q ρI (0)I−
k I+


 }
= [δk
δpq + δkpδ
q(1 − δkq)]

∑
i

ρiic
(i)+
k c(i)−

q , (B2)

where we have defined

c
(i)±
k ≡ 〈ni |I∓

k I±
k |ni〉 = Ik(Ik + 1) − (

mi
k

)2 ∓ mi
k. (B3)

Recall that Ik is the total spin of the kth nucleus and that
mi

k is the eigenvalue of I z
k associated with the state |ni〉.

(The total spin of the kth nucleus depends on k since we
have incorporated information about different species into
the nuclear site index k.) These quantities are related to the
correlators c±

k according to

c±
k ≡ Tr{I∓

k I±
k ρI (0)} =

∑
i

ρiic
(i)±
k . (B4)

We may express the other four correlators appearing in the Yi

in terms of the c
(i)±
k :

Tr{I+
p I−


 ρI (0)I−
k I+

q }
= [δkqδ
p + δkpδ
q(1 − δk
)]

∑
i

ρiic
(i)+
k c

(i)−

 ,

Tr{I+

 I−

k ρI (0)I−
q I+

p }
= [δk
δpq + δkpδ
q(1 − δkq)]

∑
i

ρiic
(i)−
k c(i)+

q ,

Tr{I+

 I−

k ρI (0)I+
p I−

q } (B5)

=
∑

i

ρii

[
δk
δpqc

(i)−
k c(i)−

q + δkpδ
q(1 − δkq)c(i)−
k c(i)+

q

]
,

Tr{I−
q I+

p ρI (0)I−
k I+


 }
=

∑
i

ρii

[
δk
δpqc

(i)+
k c(i)+

q + δkpδ
q(1 − δkq)c(i)+
k c(i)−

q

]
.

As an aside, we note that in the case of a uniformly
polarized homonuclear bath, the two-operator correlators
become independent of k:

c± = c±
k =

∑
i

ρiic
(i)±
k . (B6)

For the case of spin-1/2 nuclei, these are particularly simple,

c± = 1

2
∓

∑
i

ρiim
i
k = 1

2
∓ m

N
, (B7)

where m is the net polarization of all the nuclei defined by

m ≡
∑

i

ρii

∑
k

mi
k. (B8)

For a uniformly polarized nuclear bath, m is closely related to
the quantity hz

n defined in Eq. (34):

m = Nhz
n

A . (B9)

Next, we will prove a relation which is useful for simplify-
ing the correlators in Eq. (B5). In particular, we want to show
that in the case of a uniformly polarized nuclear spin bath, we
have∑

i

ρiic
(i)+
k c

(i)−

 =

( ∑
i

ρiic
(i)+
k

)(∑
i

ρiic
(i)−



)
= c+c−.

(B10)

In the final expression, we have used the fact that the condition
of uniform polarization implies that the result is independent
of the nuclear site indices k and 
. We have also implicitly
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assumed a homonuclear bath since information about different
nuclear species is incorporated into the site index. This last
assumption can easily be relaxed by retaining this information
in the form of an additional index; however, in the situations
in this paper where Eq. (B10) is employed, the homonuclear
assumption is made anyway for the sake of simplicity. Also
note that we are not assuming spin-1/2 nuclei in Eq. (B10).
Replacing the c

(i)±
k with explicit expressions from Eq. (B3)

and canceling several terms, we obtain

∑
i

ρiic
(i)+
k c

(i)−

 −

(∑
i

ρiic
(i)+
k

)(∑
i

ρiic
(i)−



)

=
∑

i

ρii

(
mi

k

)2
(mi




)2 −
(∑

i

ρii

(
mi

k

)2

)(∑
i

ρii

(
mi




)2

)

−
∑

i

ρii

(
mi

k

)2
mi


 +
( ∑

i

ρii

(
mi

k

)2

)( ∑
i

ρiim
i



)

+
∑

i

ρiim
i
k(mi


)2 −
( ∑

i

ρiim
i
k

)( ∑
i

ρii

(
mi




)2

)

−
∑

i

ρiim
i
km

i

 +

( ∑
i

ρiim
i
k

)( ∑
i

ρiim
i



)
. (B11)

Each term in Eq. (B11) is independent of k and 
 in the
uniformly polarized case, so that the second and third lines on
the right-hand side of the equation vanish identically. Consider
the term

∑
i ρiim

i
km

i

 in the last line. We can multiply this by

AkA
 and sum over k and 
. Since the |ni〉 states all have the
same hz eigenvalue, we know that∑

k


AkA
m
i
km

i

 = (

hz
n

)2
(B12)

is independent of i. On the other hand,
∑

i ρiim
i
km

i

 is inde-

pendent of k and 
, so that multiplying by AkA
 and summing
over k and 
 simply amounts to multiplying this expression by
(
∑

k Ak)2 = A2. These two observations together imply that∑
i

ρiim
i
km

i

 =

(
hz

n

A

)2

. (B13)

From Eq. (B9) we have∑
i

ρiim
i
k = m

N
= hz

n

A , (B14)

showing that the last two terms on the right-hand side of
Eq. (B11) cancel each other.

To finish the proof of Eq. (B10), it remains to show that
the first line on the right-hand side of Eq. (B11) vanishes.
This follows straightforwardly from a simple generalization
of the previous argument. We begin with the following
expression:∑

i

ρiim
i
km

i

m

i
pmi

q −
( ∑

i

ρiim
i
km

i
p

)(∑
i

ρiim
i

m

i
q

)
.

(B15)

We can evaluate explicitly each of the two terms by multiplying
by AkA
ApAq/A4 and summing over k,
,p,q. Since each
term is independent of k,
,p,q under the assumption of
uniform polarization, this procedure should leave the terms
unchanged. We find that the two terms evaluate to the same
expression and thus cancel:∑

i

ρiim
i
km

i

m

i
pmi

q −
(∑

i

ρiim
i
km

i
p

)( ∑
i

ρiim
i

m

i
q

)

=
(

hz
n

A

)4

−
(

hz
n

A

)4

= 0. (B16)

The first line on the right-hand side of Eq. (B11) is just a
special case of Eq. (B15) where p = k and q = 
, so we have
also shown that this line vanishes, completing the proof of
Eq. (B10). Repeated application of these arguments can be
used to show more generally that∑

i

ρiic
(i)±
k c

(i)±

 = c±c±, (B17)

where here the two sets of ± signs are independent of each
other.

The identity in Eq. (B17) is used extensively in the context
of the high-frequency limit considered in Sec. IV E. We can
also use it to simplify the four-operator correlators in Eq. (B5).
In the uniform coupling model, the indices of these correlators
are summed over, so we have∑

k
pq

Tr{I+
p I−


 ρI (0)I−
k I+

q } =
∑
k
pq

Tr{I+
p I−

q ρI (0)I−
k I+


 }

=
∑
k
pq

Tr{I+

 I−

k ρI (0)I−
q I+

p } = 2N2c+c−,

×
∑
k
pq

Tr{I+

 I−

k ρI (0)I+
p I−

q } = N2c−,

×
∑
k
pq

Tr{I−
q I+

p ρI (0)I−
k I+


 } = N2c+. (B18)

These relations were used to obtain Eqs. (75) and (76).
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