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Momentum relaxation due to polar optical phonons in AlGaN/GaN heterostructures
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Using the dielectric continuum (DC) model, momentum relaxation rates are calculated for electrons confined
in quasi-two-dimensional (quasi-2D) channels of AlGaN/GaN heterostructures. Particular attention is paid to the
effects of half-space and interface modes on the momentum relaxation. The total momentum relaxation rates are
compared with those evaluated by the three-dimensional phonon (3DP) model, and also with the Callen results
for bulk GaN. In heterostructures with a wide channel (effective channel width >100 Å), the DC and 3DP models
yield very close momentum relaxation rates. Only for narrow-channel heterostructures do interface phonons
become important in momentum relaxation processes, and an abrupt threshold occurs for emission of interface
as well as half-space phonons. For a 30-Å GaN channel, for instance, the 3DP model is found to underestimate
rates just below the bulk phonon energy by 70% and overestimate rates just above the bulk phonon energy by
40% compared to the DC model. Owing to the rapid decrease in the electron-phonon interaction with the phonon
wave vector, negative momentum relaxation rates are predicted for interface phonon absorption in usual GaN
channels. The total rates remain positive due to the dominant half-space phonon scattering. The quasi-2D rates
can have substantially higher peak values than the three-dimensional rates near the phonon emission threshold.
Analytical expressions for momentum relaxation rates are obtained in the extreme quantum limits (i.e., the
threshold emission and the near subband-bottom absorption). All the results are well explained in terms of
electron and phonon densities of states.
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I. INTRODUCTION

GaN-based wide-band-gap semiconductor heterostructures
such as AlGaN/GaN have attracted intense research interest
due to their envisaged applications in novel high-power
and high-mobility devices such as heterostructure field-effect
transistors (HFETs). At the interface of such a heterostructure,
a two-dimensional (2D) electron gas forms due to internal
spontaneous polarization plus possible strain-induced polar-
ization by the piezoelectric effect. As the 2D electron gas
(2DEG) arises in the absence of doping, impurity scattering can
be minimized and high electron mobility can occur. Therefore,
the electron transport in AlGaN/GaN heterostructures is
determined by phonon scattering processes, which at room
temperature are dominated by polar optical phonon scattering.

It is well known that the momentum relaxation rate1 (MRR)
or, equally, its inverse, the momentum relaxation time, is a key
parameter for describing the dynamics of the electron transport
in semiconductors under an external electric field. While it
is governed by the microscopic electron-phonon scattering
processes, the MRR is closely related to dynamic quantities
of interest such as the electron mobility and the electron drift
velocity. Hence, knowing the MRR, or more specifically its
dependence on the electron energy for different AlGaN/GaN
heterostructures, is fundamental to the optimization of the
HFET device performance.

There have been studies of electron momentum relaxation
in GaAs- and GaN-based quantum wells. For example, in
an early study for GaAs quantum wells,2 both electron
scattering rates and MRRs were numerically calculated and
compared with analytical results3 obtained from the momen-
tum conservation approximation to examine the validity of the

approximation. For GaN quantum wells, Anderson et al.4

studied the momentum relaxation and low-field electron trans-
port in degenerate 2DEGs by solving a linearized Boltzmann
equation. In most calculations, the polar optical phonons
of the quasi-two-dimensional (quasi-2D) systems are simply
taken as the longitudinal-optical (LO) phonons of the bulk
material. This is referred to as the three-dimensional phonon
(3DP) approximation. According to the well-established di-
electric continuum (DC) model, the polar modes of a single
heterostructure include half-space LO modes and interface
modes, and all these modes interact with the electrons in the
quasi-2D channel. Indeed, using the DC model, MRRs and
mobility of electrons due to phonon absorption were calculated
for AlGaN/GaN heterostructures.5 Mori and Ando showed
that the sum of the form factors associated with half-space
and interface modes was equal to the form factor for bulk
phonons. This implied that the total rates calculated with
the 3DP approximation would be close to those obtained
from the DC model.1,6 However, this is only partly true, and
caution should be taken in studying momentum relaxation
with the 3DP approximation. The argument is as follows.
First, evaluation of the MRR depends on not only the form
factor, but also the electron-phonon interaction strength and
detailed electron and phonon densities of states. Second, since
the potential of interface modes decreases exponentially from
the interface according to e−q|z| (Sec. II below), scattering
with interface modes is weak in wide wells making the 3DP
approximation a reasonable model. Indeed, for GaAs wells
with widths greater than 100 Å, the 3DP model suffices for
the evaluation of scattering rates7,8 and energy loss rates.9 For
narrow wells, however, the interface phonons are important
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scattering partners, and the two phonon models yield quite
different rates.8,9 However, as far as we know, there has been
no comparison of MRRs based on the two phonon models.
Third, the dependence of the MRR on the electron energy is
of great interest. Previous scattering rate calculations8 have
shown that, when the electron energy is near to the phonon
energy, the 3DP estimation becomes poorer. It is predicted that
this will be true for MRRs as well. Fourth, the points above
are made assuming no hot-phonon effects. In the hot-phonon
regime, energy loss rates have been found to depend on the
phonon models used.6,9 MRRs are thought to do so as well.

In this paper, we study the momentum relaxation of
electrons in the channels of AlGaN/GaN heterostructures.
As the 3DP treatment is convenient for practical usage, one
of course wants to know the discrepancy between MRRs
estimated by this model and those calculated with the DC
model. This comparison can be made with regard to only the
total rates. On the other hand, there is an advantage of the use
of the DC model in that the contributions from the quasi-2D
phonon modes to the momentum relaxation rate can be singled
out. Thus, it is also of great interest to find and understand
behaviors of the half-space modes and interface modes in
the momentum relaxation process. These are the purposes
of this study. Therefore, using the two phonon models, the
momentum relaxation rate is evaluated as a function of the
electron kinetic energy and the effective channel width for
the respective phonon emission and absorption processes.
The MRRs from the scattering with half-space phonons and
interface phonons are compared and examined, focusing on
the energy dependences, the peak rates variation, and their
energy shift as the heterostructure parameter (e.g., the effective
channel width) is varied. We found that negative MRRs occur
in all interface phonon absorption processes, and this is due
to the stronger forward scattering from the long-wavelength
interface modes involved. Particular attention is also paid to a
comparison of the total MRRs calculated with the DC model
and the 3DP approximation for a number of effective channel
widths to examine the latter phonon model in the estimation of
MRRs. These results are also compared with the bulk situation
to find how both electron and phonon confinement and their
densities of states affect the momentum relaxation.

This paper is organized as follows. In Sec. II, the
dielectric continuum model for single heterostructures is
briefly described where the phonon modes and associated
electron-phonon interactions are given. Then, a formulation
of the momentum relaxation rate in such heterostructures is
presented in Sec. III. In Sec. IV, first we present results
of the momentum relaxation rate in a typical AlGaN/GaN
heterostructure by comparing the respective contributions to
the momentum relaxation from the half-space and interface
modes. Then, we show the momentum relaxation results for
heterostructures with different well widths, and also compare
them with the 3D bulk case. This is to investigate how
quantum confinement in both electronic states and phonon
modes affect the momentum relaxation. In order to examine
the usual 3D phonon approximation in the evaluation of
MRRs, we further compare the momentum relaxation rates
obtained from the 3D phonon and DC models for a variety of
AlGaN/GaN heterostructures. The phonon confinement effects
on the momentum relaxation are discussed in detail. Finally,

Sec. V summarizes the main results obtained. In Appendix A,
a derivation of the final expressions for the MRRs is outlined
for both the half-space and interface phonons. An effective
numerical technique in calculating these rates is described in
terms of handling the singularities of the integrals involved. It
is of great interest to obtain, if at all possible, an analytical
formula for the MRR in a quasi-2D system such as the
heterostructure. To do this, two special cases are considered
in Appendix B: (i) when the kinetic energy of the electron
is sufficiently close to a phonon energy that a half-space or
interface phonon can be emitted, and (ii) when the electron
kinetic energy is close to zero, a phonon is absorbed. In
the former case, we obtain an analytical formula for the
momentum relaxation rate and, further, this rate is equal to
the usual electron-phonon scattering rate. For the latter case,
in contrast, we find from the obtained analytical formulas that
the momentum relaxation rate is always smaller than the usual
scattering rate; further, the MRR for interface phonons can
have a negative value, whereas the MRR for half-space modes
is always positive. These analytical expressions are used to
check and interpret our numerical results.

II. OPTICAL PHONON MODES AND
ELECTRON-PHONON INTERACTIONS IN THE

DIELECTRIC CONTINUUM MODEL

To study the momentum relaxation in heterostructures, we
need electron states, lattice vibration modes, and electron-
phonon interactions. Let the interface of the heterostructure be
at z = 0, with the barrier in the space −L1 < z < 0 and the
electron-containing active region in the space 0 < z < L2. Let
ρ = (x,y) be the position vector in the plane parallel to the
interface. Due to confinement in the growth direction z, the
motion of an electron can be described by the wave function
ψnk(r) = 1√

A
φn(z)eik·ρ , and the corresponding electron energy

Enk = εn + Ek, where A is the sample area, n indexes the
subband, and φn(z) is the confinement envelope function
corresponding to energy εn. k is the electron wave vector
parallel to the heterostructure interface, and Ek is the electron
kinetic energy Ek = h̄2k2/2m∗, with m∗ being the electron
effective mass.

Two types of polar optical modes occur in the wurtzite struc-
ture owing to anisotropy in uniaxial crystals. The anisotropy,
however, causes only a small difference in the two LO-like
phonon frequencies.10 Thus, in this study, the polar modes
are simply taken to be cubiclike LO modes. In the dielectric
continuum model, the polar vibration modes of a single
heterostructure consist of half-space modes and interface
modes.11 The half-space modes have the frequencies of the
polar modes associated with the two constituent materials with
their optical vibrations, electric fields, and scalar potentials
occurring in the respective constituent regions. Different
from half-space modes, the interface modes have different
frequencies from the polar modes of both constituent materials,
and an interface mode has lattice vibrations and electric
fields in both constituent regions. The barrier is a binary
alloy in which the polar optical modes consist of both GaN-
and AlN-like vibrations. When treating phonon modes of
AlxGa1-xN/GaN heterostructures, we neglect all GaN-like
vibrations in the alloy AlxGa1-xN.12 This is based on two
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considerations: (i) the half-space modes associated with the
alloy have very weak interactions with electrons in the GaN
channel; (ii) interface modes and their momentum relaxation
rates can be dealt with in a simple way.

Let L represent the dimension of a constituent half-space in
the growth direction L = Na, with a being the lattice constant.
That is, L = L1 (L = L2) for the half-space of AlxGa1-xN
(GaN). The half-space modes then can be simply indexed by
(qz,q), all having the LO frequency of the material ωLO. Here,
q is the in-plane phonon wave vector, and qz = nπ/L (n =
1,2, . . . ,N − 1). The Hamiltonian of an electron interacting
with these half-space modes can be written as

Hh =
∑
q,qz

γLO√
2V

(
1

q2 + q2
z

)1/2

eiq·ρ2 sin qzz

× [
aqz

(q) + a+
qz

(−q)
]
, (1)

where aqz
(q) and a+

qz
(q) are the annihilation and creation

operators for the half-space mode of (qz,q). γLO is a constant
given by γ 2

LO = 2πe2h̄ωLO( 1
ε∞

− 1
ε0

), where ε0 and ε∞ are the
static and high-frequency dielectric constants of the constituent
material, and e is the electron charge. V is the volume of the
constituent region (V = AL). We use cgs units throughout the
paper.

Let ε(ω) be the lattice dielectric function in the active region
ε(ω) = ε∞(ω2 − ω2

LO)/(ω2 − ω2
TO), where ε∞, ωLO, ωTO are

the high-frequency dielectric constant, the LO and transverse
optical (TO) phonon frequencies of the active region. When
GaN-like vibrations are neglected, the dielectric function in the
barrier is then given by ε̄(ω) = ε̄∞(ω2 − ω̄2

LO)/(ω2 − ω̄2
TO),

where ε̄∞, ω̄LO, ω̄TO are the high-frequency dielectric constant,
the LO and TO phonon frequencies of AlN. The frequencies of
the interface modes are determined by ε(ω) + ε̄(ω) = 0, which
yields two solutions ων (ν = 1,2; let ω1 < ω2). This shows that
the interface phonons have no dispersion. The interface modes
can be simply indexed by (ν,q). The electron-interface-phonon
interaction Hamiltonian can be written as

Hi =
∑
ν,q

γν√
2A

1√
q

eiq·ρe−q|z|[aν(q) + a+
ν (−q)], (2)

where γν is given by γ 2
ν = 4πe2h̄ων/[β−1(ων) + β̄−1(ων)],

with β(ω) and β̄(ω) being dimensionless quantities, β(ω) =
1

ε∞
(ω2−ω2

TO)2

ω2(ω2
LO−ω2

TO)
, β̄(ω) = 1

ε̄∞
(ω2−ω̄2

TO)2

ω2(ω̄2
LO−ω̄2

TO)
. aν(q) and a+

ν (q) are

the annihilation and creation operators for the interface
mode (ν,q).

III. MOMENTUM RELAXATION RATES IN A
SINGLE HETEROSTRUCTURE

By knowing the interaction Hamiltonians, the usual
electron-phonon scattering rates for half-space and interface
modes can be given by Fermi’s golden rule. The electron
momentum relaxation rate describes the response of electrons
to electric fields, and can be approached by weighing the
scattering rate by the appropriate decrease in momentum.1

Let k be the wave vector of an electron before it is scattered by
a phonon with wave vector q, and let θ be the angle between
the two 2D wave vectors. Due to momentum conservation,
the emission (absorption) of the phonon causes a fractional

increase of momentum of −q cos θ/k (q cos θ/k) in the
direction of k.

Thus, the momentum relaxation rate for an electron at state
(n,k) due to emission (upper signs) or absorption (lower signs)
of the half-space phonons can be written as

1

τh

= 2π

h̄

∑
n′,k′

∑
qz,q

±q

k
cos θ |Mqz,q(n′,k′; n,k)|2

×
[
N (ωLO) + 1

2
± 1

2

]
δ(En′k′ − Enk ± h̄ωLO), (3)

where Mqz,q(n′,k′; n,k) is the electron-phonon interaction
matrix element for the electronic transition from state (n,k)
to state (n′,k′) due to the scattering with a half-space mode
phonon of (qz,q) (frequency ωLO), i.e., Mqz,q(n′,k′; n,k) =
〈n′,k′|Hh|n,k〉. N (ω) is the Bose-Einstein distribution func-
tion of the phonons of frequency ω, N (ω) = 1/(eh̄ω/kBTL − 1),
with TL being the lattice temperature.

Similarly, the momentum relaxation rate associated with
the interface modes can be given by

1

τi

= 2π

h̄

∑
n′,k′

∑
ν,q

±q

k
cos θ |Mν,q(n′,k′; n,k)|2

×
[
N (ων) + 1

2
± 1

2

]
δ(En′k′ − Enk ± h̄ων), (4)

where Mν,q(n′,k′; n,k) are the interaction matrix elements
associated with the interface modes (ν,q), Mν,q(n′,k′; n,k) =
〈n′,k′|Hi |n,k〉. Still, the upper (lower) signs are for phonon
emission (absorption).

For half-space phonon scattering [Eq. (3)], each matrix
element carries an integral over z, and only the matrix
elements depend on qz. Thus, summation over qz can be
simply performed for |Mqz,q(n′,k′; n,k)|2. Replacing

∑
qz

by L
π

∫ ∞
0 dqz and expressing the matrix element in terms of

the electron and phonon envelope functions, we convert this
summation

∑
qz

|Mqz,q(n′,k′; n,k)|2 to a triple integral over
qz,z,z

′. The integration over qz can be performed analytically,
reducing the triple integral to a double integral (over z, z′) that
yields a form factor F dependent on q, n, n′. Therefore, we
obtain∑

qz

|Mqz,q(n′,k′; n,k)|2 = γ 2
LO

A

1

q
Fn′n(q)δk′,k∓q, (5)

with the form factor given by

Fn′n(q) =
∫

dz

∫
dz′φ∗

n′(z)φn(z)(e−q|z−z′ | − e−q|z+z′ |)

×φ∗
n(z′)φn′(z′), (6)

where z, z′ run through a half-space.
For interface modes, we find that the matrix elements are

given by

|Mν,q(n′,k′; n,k)|2 = γ 2
ν

2A

1

q
fn′n(q)δk′,k∓q, (7)

where fn′n(q) is the form factor

fn′n(q) =
∣∣∣∣
∫ ∞

−∞
dz φ∗

n′(z)φn(z)e−q|z|
∣∣∣∣
2

. (8)
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The delta function in Eq. (5) [Eq. (7)] reflects momentum
conservation in the scattering of an electron with a half-space
(interface) phonon. This reduces the double summation over
the electron and phonon wave vectors k′, q in Eqs. (3) and
(4) to a single summation over either wave vector (e.g., q),
which can be transformed to an integral over the wave vector
as usual. For general electron energies, however, such integrals
can not be evaluated analytically, and the relaxation rates
1
τh

, 1
τi

[Eqs. (3) and (4)] need to be evaluated numerically.
The numerical techniques are described in Appendix A. We
note that dynamic screening or antiscreening may occur,
depending on electron densities (antiscreening dominates at
small q, while screening is present at large q).13,14 Following
a long established approximation in the literature, here we
have assumed that screening and antiscreening cancel out, and
ignored screening entirely.

Actual AlGaN/GaN heterostructures reported in most
experiments are strained or pseudomorphic heterostructures
grown on sapphire substrates, where the 2DEG is induced
by polarization charges. Self-consistent calculations15,16 have
shown that, for AlxGa1-xN/GaN heterostructures with various
compositions x, the 2DEG densities in the lowest subband
alone fit well with experimental data. The single subband
model will suffice for the momentum relaxation study,5 and in
what follows, the subband index 1 will be omitted for clarity.
We assume that the electrons are completely confined in a
channel parallel to the interface. We model the confinement
envelope function for the lowest subband by the Fang-Howard
wave function17,18

φ1(z) =
√

b3

2
ze−bz/2, (9)

where b is a variational parameter that is determined by
minimizing the total energy of the 2DEG system. b is related
to the areal electron density Ns in the GaN channel via

b =
(

33πe2m∗Ns

2ε0h̄
2

)1/3

. (10)

Therefore, the form factor associated with the half-space
modes is given by

F(q) = b(8b2 + 9bq + 3q2)

8(b + q)3
− b6

(b + q)6
, (11)

and for the interface modes the form factor is

f (q) = b6

(b + q)6
. (12)

We note that, for undoped AlxGa1-xN/GaN heterostructu-
res,15,16 the electron density Ns varies with the alloy compo-
sition x to achieve a balance with the polarization and surface
charges across the entire structure.19 In the wave-function
model, an effective channel width d can be defined as twice
the average penetration depth of the charge in the active GaN
region;20,21 d is related to the Fang-Howard b parameter via
d = 6/b.

In this study, the material parameters are taken from
Refs. 22–24. The LO and TO phonon frequencies used for
GaN are ωLO = 91.13 meV, ωTO = 66.08 meV, and for AlN we
use ωLO = 110.7 meV, ωTO = 76.1 meV. The high-frequency

dielectric constants are taken to be 5.29 and 4.68 for bulk GaN
and AlN, respectively. The electron effective mass for GaN is
m∗ = 0.22m0 (m0 is the free electron mass). The temperature
is fixed at room temperature 300 K, and hot-phonon effects
are not considered. Calculations are performed for a variety
of AlGaN/GaN heterostructures by varying the value of the
electron density. For numerical integration in q space (see
Appendix A), 155 Gauss-Legendre quadrature points are used
and excellent convergence is achieved.

IV. RESULTS AND DISCUSSIONS

Scattering rates and momentum relaxation rates are usually
given for convenience in units of a basic rate W0 (Ref. 25)
relating to bulk parameters W0 = e2

h̄

√
2m∗ωLO/h̄( 1

ε∞
− 1

ε0
).

W0 is 142 THz for bulk GaN, which is approximately 17
times higher than the W0 value for bulk GaAs (the latter
semiconductor has smaller electron effective mass and optical
phonon frequencies). We first look at momentum relaxation
rates calculated using the dielectric model. The optical
phonons contributing for the momentum relaxation are the
GaN half-space modes (h̄ωLO = 91.13 meV), and the lower-
and higher-energy interface modes (h̄ω1 = 69.70 and h̄ω2 =
102.09 meV, respectively). We first choose a heterostructure
with an effective well width of 50 Å (corresponding to an
electron density of Ns = 1013/cm2), and shall discuss later
what happens to the momentum relaxation when the well width
varies. We separate half-space modes from interface modes
and compare their respective contributions to the momentum
relaxation rate. Figure 1 shows the calculated momentum re-
laxation rates in units of W0 as a function of the electron kinetic
energy due to the emission of the half-space modes of GaN
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FIG. 1. (Color online) Momentum relaxation rates from the
emission of half-space modes (dashed line) and interface modes (solid
line, against the right y axis) as a function of kinetic energy for an
electron in the lowest subband of a single AlGaN/GaN heterostructure
with an effective well width of 50 Å (see text). The dotted curve
represents the electron scattering rate due to the emission of half-space
phonons. The momentum relaxation rates and scattering rates are
in units of W0 (see text) and the electron kinetic energy is made
dimensionless with respect to the LO phonon energy h̄ωLO of bulk
GaN.
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FIG. 2. (Color online) Momentum relaxation rates vs electron
kinetic energy due to the absorption of half-space phonons (dashed
line) and interface phonons (solid line). The dotted curve shows the
electron scattering rate (×0.5) due to the absorption of half-space
modes. Other notations are the same as in Fig. 1.

(dashed line) and the interface modes (solid line, against the
right y axis). For clarity, the dimensionless electron energies
are introduced with reference to the bulk GaN LO phonon
energy h̄ωLO. Abrupt threshold emission occurs at h̄ωLO for
half-space modes and at h̄ω1, h̄ω2 for interface modes. In
particular, since the interface modes have two frequencies, the
momentum relaxation rate displays two clear discontinuities at
the two energies h̄ω1, h̄ω2 as expected. The half-space modes
dominate the momentum relaxation. For instance, the peak
rate at h̄ωLO is approximately six times that at the higher
interface phonon energy h̄ω2. It is interesting to note that,
at the threshold for half-space or interface mode emission,
analytical expressions exist for the momentum relaxation rate,
and further this rate is equal to the usual electron-phonon
scattering rate (a proof of this is presented in Appendix B).
This is illustrated in Fig. 1, where the electron scattering rate
due to the half-space modes is also shown (dotted line). In
fact, the analytical solution provides a good criterion for a
check of our numerical result. By substituting the material
parameters into Eq. (B1), one obtains the theoretical rate for
threshold ( 1

τh
)th = 0.631 789 743W0. Numerical calculation of

1
τh

as given by Eq. (A9) with Ek/h̄ωLO = 1 + 10−10 yields a
rate of 0.631 789 784W0, showing that an accurate calculation
has been achieved.

We now turn to phonon absorption. The results of the rates
are shown in Fig. 2 (well width of 50 Å). Clearly, the MRRs
for both half-space and interface modes vary continuously with
the electron kinetic energy. There is no special electron energy
where rates of momentum relaxation and scattering coincide,
and the scattering rates are always faster than the MRRs for
both half-space and interface phonons (compare the rates, for
example, for half-space modes, namely, the dashed and dotted
curves in Fig. 2). We checked numerically that this is true
also for heterostructures with different well widths. These are
quite different from the phonon emission case above. In fact,
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(5/6)
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2(5/6)
6

f’(b/5)=-5(5/6)
6
/bA

B

FIG. 3. (Color online) Form factors associated with the electron-
phonon interactions vs the dimensionless phonon wave vector for
half-space (dashed curve), interface (solid curve), and bulk modes
(dotted curve). The electron is in the lowest subband, the confinement
envelope function of which is modeled by the Fang-Howard wave
function. The diagram shows an analytical MRR solution due to
interface phonon absorption at k → 0. Zero MRR occurs when the
critical wave vector kν is equal to b/5 (dashed vertical line). The
tangent line (dotted oblique line) to the form-factor curve at the point
[b/5,(5/6)6] intersects the vertical axis at the point B, |AB| = |OA|.
The slope of the tangent is f ′(b/5) = −5(5/6)6/b.

in the limiting k → 0 case where analytical solutions exist,
it can be proved that the scattering rate is always larger than
the MRR for half-space and interface modes (Appendix B).
Furthermore, in the phonon absorption case, interestingly the
MRR from the interface modes is negative and approaches
zero as the electron energy increases (solid line in Fig. 2). This
can be explained as follows. According to the expression for
the fractional increase of momentum [Eq. (A1)], in a phonon
absorption process, the phonon wave vector q and the phonon
energy h̄ων counteract each other in changing the crystal
momentum: the former decreases the momentum through
backward scattering, while the latter increases the momentum
by forward scattering. Let kν denote the electron wave vector
for threshold emission of an interface phonon of frequency
ων to occur, that is, kν = √

2m∗ων/h̄. At a particular electron
energy (Ek 
= 0), the momentum relaxation occurs due to the
absorption of all the interface phonons with wave vectors q ∈
[q−

ν ,q+
ν ] [Eq. (A6)]: As q−

ν < kν < q+
ν , the interface modes

of q < kν contribute a negative MRR, whereas the modes
of q > kν make a positive contribution. For interface modes,
their interaction with the electron in the lowest subband is very
different from the interaction of half-space modes. Since the
derivative of the form factor is f ′(q) = −6f (q)/(b + q) < 0,
the electron-interface phonon interaction decreases faster at
smaller phonon wave vectors q, as is seen from the form
factor in Fig. 3 (the form factors of the half-space modes and
bulk modes are also shown for comparison). Thus, when the
contribution of the q < kν modes dominates, a negative MRR
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occurs. It is understood that the higher-frequency modes are
more likely to cause a negative MRR. We have checked and
found that, indeed, the negative MRRs in Fig. 2 are mostly due
to the higher-frequency interface modes. These rates, however,
have a smaller magnitude than the half-space mode rates
(because of the larger density of states of half-space modes), so
the total rates remain to be positive. Negative total MRRs have
been found to occur in one-dimensional systems25,26 where
forward scattering processes dominate.

In the special case k → 0, the MRR can be obtained
analytically (Appendix B) and the rate due to absorption of the
ων interface phonons is proportional to 1 + kνf

′(kν)/f (kν) =
(b − 5kν)/(b + kν) [see Eqs. (B4) and (B6)]. For a negative
MRR to occur, therefore, the logarithmic derivative of f (kν)
multiplied by the critical wave vector kν must be smaller than
−1, or simply kν > b/5. This further proves that it is the rapid
decrease in the form factor that causes the negative MRR.
This analytical solution can be clearly represented using a
geometric diagram as shown in Fig. 3. Consider first kν = b/5.
Let us draw a tangent line to the form factor curve at the point
[b/5,(5/6)6]. With the slope of f ′(b/5) = −5(5/6)6/b, this
tangent intersects the vertical axis at the point with ordinate
f (b/5) − b

5f ′(b/5) = 2(5/6)6, exactly twice the f (b/5) value
and making the derivative term contribution balance with that
of the form-factor term (this balance is given by |AB| = |OA|
in Fig. 3). That is, zero MRR occurs at kν = b/5. When
kν > b/5, one has |AB| > |OA|, i.e., the derivative term
kνf

′(kν) is larger in magnitude than the form factor f (kν),
then the momentum relaxation rate becomes negative. For the
lower- and higher-frequency interface modes, the kν values
are 0.06 and 0.08 Å−1, respectively, and one verifies that, in
the 50-Å well, indeed kν > b/5 = 0.024 Å−1, and a negative
rate due to the interface phonons occurs (Fig. 3). To have a
positive rate, on the other hand, one needs to raise the electron
density Ns and, consequently, the b value according to Eq. (10);
this requires that Ns > 500ε0ων

3/2
√

2m∗h̄/(33πe2). That is,
it is required that Ns >1.5, 2.7 ×1014/cm2 corresponding to
the lower and higher frequencies ω1, ω2. These values are
unacceptably larger than the known electron density values
of AlGaN/GaN heterostructures.15,16,27 Therefore, the small-k
rates are negative at realistic electron densities for both the ω1

and ω2 phonons (as shown in Fig. 4).
We now investigate how MRRs vary with the electron

density or, equally, the well width. In a single heterostructure,
the width of the triangular well is determined by the 2DEG
density;20 the higher the density is, the narrower the well is. In
the Fang-Howard wave-function model we use here, changing
the electron density will change the value of b [Eq. (10)]
and therefore alter the effective well width d (d = 6/b). To
see how MRRs vary with the well width, calculations were
performed for AlGaN/GaN heterostructures at a number of
electron densities. It is estimated that degeneracy will become
important for electron densities in excess of 8 × 1012 cm−2.
Compared with the nondegenerate case, it means that, at room
temperature, more electrons will have the energy to emit
phonons, but the effect of this will be reduced by the occupancy
of the lower state inhibiting the emission. Nevertheless, it will
be true that the energy range over which the interaction occurs
will be generally higher, which, following the well-known
property of the interaction with polar modes, will result in
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FIG. 4. (Color online) The momentum relaxation rates at k → 0
due to absorption of lower- (ω1) and higher-frequency (ω2) interface
phonons as functions of the common logarithm of the electron density
in cm−2.

weakening the interaction strength. Figure 5 illustrates the
results for three electron densities 1011, 1013, 5 × 1013 cm−2

(corresponding to the effective well widths of 215, 50, and
30 Å, respectively). The MRRs shown here are the total
rates due to the emission and absorption of all half-space
and interface modes. The bulk result calculated from the
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FIG. 5. (Color online) Total momentum relaxation rates vs
electron kinetic energy obtained from the dielectric continuum model
for three single AlGaN/GaN heterostructures of effective well widths
215 Å (dashed line), 50 Å (solid line), and 30 Å (dotted line).
The bulk GaN result calculated with the Callen formula is also
shown (dot-dashed line). The effective well widths of these single
AlGaN/GaN heterostructures are determined by the areal electron
densities in the channels: the well width of 215 Å corresponds to the
electron density of 1011/cm2, well width 50 Å corresponds to electron
density 1013/cm2, and well width 30 Å corresponds to electron density
5 × 1013/cm2.

155310-6



MOMENTUM RELAXATION DUE TO POLAR OPTICAL . . . PHYSICAL REVIEW B 84, 155310 (2011)

2 4 6 8
Electron Energy Ek (hω)

0

0.1

0.2

M
om

en
tu

m
 R

el
. R

at
e 

1/
τ k (

W
0)

2 4 6 8
Electron Energy Ek (hω)

0

0.2

0.4

0.6

M
om

en
tu

m
 R

el
. R

at
e 

1/
τ k (

W
0)

Interface Half-space

215A

50A

30A

215A

(a) (b)30A

50A

o

o

o
o

o

o

FIG. 6. (Color online) Momentum relaxation rates from the
emission of (a) interface and (b) half-space phonons for the three
single AlGaN/GaN heterostructures as specified in Fig. 5. The rate
values from interface modes for the 215-Å well have been enlarged
by 10 times.

Callen formula is also shown for comparison. We see that
as the electron density increases (i.e., the well narrows), the
MRRs increase; in particular, the high-rate portion just above
the emission threshold increases fast, its energy region being
widened from the half-space LO energy h̄ωLO to the higher-
frequency interface phonon energy h̄ω2. Further, in narrow
wells, interestingly, the dominant momentum relaxation rates
can exceed those in bulk GaN. However, the MRRs decrease
rapidly with the electron kinetic energy so we see that the
rates in all the wells are smaller than the corresponding bulk
values at high electron energies. To find the cause, we need
to separate and check contributions to the MRRs from the
interface and the half-space modes, respectively. We do so
for the phonon emission case only, as the rates due to the
phonon absorption are very small. In Figs. 6(a) and 6(b),
we show the MRRs from the interface modes and the half-
space modes, respectively, for the three electron densities
above. Clearly, in the wide well (215 Å), the rates from
interface modes are two orders of magnitude smaller than
those from half-space modes, and thus only the abrupt feature
from the half-space modes is visible in Fig. 5 (dashed line).
As the well narrows, both the rates from the interface modes
and those from the half-space modes increase, but the former
increase rapidly. For instance, in the narrow well (30 Å),
the peak rate from the higher-frequency interface modes has
reached approximately half that from the half-space modes.
This is again due to the different electron-phonon interactions
for interface and half-space modes, as is reflected by the
wave-vector dependences of their form factors: the form
factor of the interface modes decreases monotonically, and
the decrease becomes slower as the well narrows. This causes
interface phonons to become increasingly important in narrow
wells. Therefore, the sharp features from both half-space and
interface modes appear on the total rate curve (solid and dotted
lines, Fig. 5). At high electron energies, the quasi-2D system
has smaller electronic density of states than bulk, resulting in
slower 2D rates than 3D rates. We note that the 2D rates at
the three emission thresholds h̄ω1, h̄ω2, h̄ωLO are all finite,
which is different from the situation in bulk where the zero
rate occurs at the emission threshold h̄ωLO. This has been
explained in Ref. 2: In the quasi-2D system, the density
of states associated with the final states of the electronic
transitions is finite, while its counterpart in 3D is zero.
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FIG. 7. (Color online) Total momentum relaxation rates vs
electron kinetic energy calculated from the dielectric continuum (DC)
model and the three-dimensional phonon (3DP) approximation as
labeled for two single AlGaN/GaN heterostructures of effective well
widths (a) 100 and (b) 30 Å. In (b), the rates for energies just below
the LO phonon energy have been enlarged by 10 times for clarity.

The 3DP approximation has been widely used to study
carrier-phonon interactions as well as evaluate carrier-phonon
scattering rates and electron momentum relaxation rates for
quasi-2D semiconductor systems.2,3,25,28 Here, we compare
momentum relaxation rates in AlGaN/GaN heterostructures
calculated with the DC and 3DP models. To do this, we show in
Figs. 7(a) and 7(b) the results of MRRs for a wide well (100 Å)
and narrow well (30 Å), respectively. For the wide well,
the two phonon models yield literally the same momentum
relaxation rates, the two lines being virtually coincident
in Figs. 7(a). This is explained as follows. The potential
of the interface modes decreases exponentially according
to e−q|z| [Eq. (2)]. The average value of the position for
electrons is zav = 50 Å. For the higher- and lower-frequency
interface phonons, the characteristic wave vector kν is 0.06
and 0.08 1/Å, making kνzav = 3,4, respectively. Thus, the
effect of the interface modes can be neglected. In the narrow
well, the MRRs calculated from the two phonon models are
quite different at electron energies around the optical phonon
energies: the DC model yields higher rates below h̄ωLO, due
to significant scattering from the lower-frequency interface
phonons, whereas the 3DP rates are significantly higher above
h̄ωLO but become smaller beyond h̄ω2 than those obtained
from the DC model. The 3DP model underestimates the MRRs
just below h̄ωLO by 70% and overestimates the rates just
above h̄ωLO by about 40%. At further high electron energies,
the two models give similar rates. This is again because the
interface phonon scattering becomes increasingly important
in narrow wells. The effect above becomes more pronounced
as the well width is further reduced. However, only wells
wider than 10 Å have been considered since the effective mass
approximation breaks down below this. We note that our results
[Figs. 7(a) and 7(b)] are consistent with a conservation rule
for optical phonon scattering in heterostructures,29 and this
shows that the rule can be extended to momentum relaxation
rates.

V. CONCLUSIONS

In conclusion, using the dielectric continuum model,
we studied momentum relaxation for quasi-2D electrons in
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AlGaN/GaN heterostructures. We found that half-space
phonon scattering dominates the momentum relaxation pro-
cesses due to the large density of states of half-space
modes. For interface phonons, negative momentum relaxation
rates occur in the phonon absorption processes. This stems
from the peculiar electron-interface-phonon interaction that
decreases rapidly as the wave vector increases, thus causing
stronger forward scattering than the backward scattering.
Our evaluation predicts that this negative rate will occur in
normal AlGaN/GaN heterostructures with electron densities
under 1014/cm2. Further, we examined the three-dimensional
phonon model by comparing the total momentum relaxation
rates calculated with the two phonon models. We found that
the 3DP phonon model is generally a good approximation for
AlGaN/GaN heterostructures with a wide channel (>100 Å).
Interface phonons in the DC model, on the other hand, become
important in electron momentum relaxation for only narrow-
channel heterostructures, with distinctive features associated
with abrupt threshold emission appearing on the rate curves.
For a 30-Å GaN channel, for instance, we found that the
3DP model underestimates the MRRs just below the bulk
phonon energy by 70%, and overestimates the rates just
above the bulk phonon energy by 40%. We also compared
these quasi-2D rates with results for bulk GaN calculated
from the Callen formula. We found that, in narrow-channel
heterostructures, the quasi-2D rates have very large peak
values compared to the 3D rates, but become smaller at
high electron kinetic energies. To interpret numerical results,
we also obtained transparent expressions for momentum
relaxation rates for two limiting cases, namely, the threshold
emission and the near subband-bottom absorption. We dis-
cussed the results in terms of electron and phonon densities of
states.
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APPENDIX A: NUMERICAL CALCULATION OF
ELECTRON MOMENTUM RELAXATION RATES IN A

SINGLE HETEROSTRUCTURE

We first consider interface phonon scattering. In order
to emit an interface phonon of frequency ων (ν = 1,2), the
electron in the lowest subband must have sufficient kinetic
energy, that is, Ek � h̄ων . This defines a wave vector kν :
kν = √

2m∗ων/h̄. This wave vector is a key parameter in
electron and phonon wave-vector space, and will be fre-
quently used for our description and numerical calculation
of momentum relaxation. Its significance will be apparent
shortly.

According to conservation of both energy and momentum,
the fractional increase of momentum is given by1

∓q

k
cos θ = −1

2

[(
q

k

)2

± h̄ων

Ek

]
= − 1

2k2

(
q2 ± k2

ν

)
(A1)

when an interface phonon of frequency ων is emitted (upper
signs) or absorbed (lower signs). Clearly, the fractional

increase of momentum for phonon emission is always negative,
indicating that the momentum projection on the original
electron wave vector k is decreased after a phonon is emitted.
In the phonon absorption case, on the other hand, the fractional
increase of momentum can be positive or negative, depending
on the strength of the forward scattering h̄ω/Ek relative to that
of the backward scattering (q/k)2.

For any given k (k 
= 0), limitations on the phonon wave
vector q are imposed again by the requirement of conservation
of energy and momentum. These can be sought in a similar way
to those in bulk semiconductors.1 The minimum and maximum
interface phonon wave vectors are given by

q−
ν = k

(
1 −

√
1 − k2

ν

k2

)
, (A2)

q+
ν = k

(
1 +

√
1 − k2

ν

k2

)
(A3)

for phonon emission, and

q−
ν = k

(√
1 + k2

ν

k2
− 1

)
, (A4)

q+
ν = k

(√
1 + k2

ν

k2
+ 1

)
(A5)

for phonon absorption. In both cases, one finds that q−
ν <

kν < q+
ν .

To calculate the momentum relaxation rate 1/τi from
interface phonon scattering, we insert the fractional increase
of momentum [Eq. (A1)] together with the interaction matrix
elements for interface modes [Eq. (7)] into Eq. (4). For intra-
subband scattering, the energy terms in the δ function simplify
to Ek′ − Ek ± h̄ων . Further, the wave-vector δ function δk′,k∓q
is used to remove the summation over the electron wave
vector k′. By converting the summation over the phonon wave
vector q to an integral and integrating over angle, we then
obtain

1

τi

= m∗

2πh̄3

∑
ν

γ 2
ν

k

[
N (ων) + 1

2
± 1

2

] ∫ q+
ν

q−
ν

dq

q
f (q)

1

2k2

× (
q2 ± k2

ν

){
1 −

[
1

2

kν

k

(
q

kν

± kν

q

)]2 }−1/2

. (A6)

This rate expression shows that kν has a clear physical
meaning; that is, it is a critical wave vector for the evaluation
of the momentum relaxation rate contributed from all allowed
phonon absorption processes: the q < kν phonon processes
contribute a negative value to the rate, while the q > kν phonon
processes make a positive contribution, and the net rate is
simply their sum.

The integral appearing in Eq. (A6) is dimensionless and
denoted by Iν for simplicity. To calculate this integral, we
need to know the properties of its integrand. Let the quantity
in the latter square brackets be ξ (q), a function of variable q for
a given k: ξ (q) = 1

2
kν

k
( q

kν
± kν

q
). In the phonon emission case,

the function ξ (q) has the minimum value of kν

k
at q = kν ,

and increases smoothly to the maximum value 1 at both
limits of integration q−

ν , q+
ν . This is illustrated in Fig. 8(a)
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FIG. 8. (Color online) Two dimensionless quantities (a) ξ (q) =
1
2

kν

k
( q

kν
+ kν

q
) and (b) [1 − ξ 2(q)]−1/2 in the integrand for numerical

integration [see Eq. (A6) and Appendix A for detail] as a function
of the dimensionless phonon wave vector q/kν for three k values:
k/kν = 2,4,8. Here, k is the magnitude of the two-dimensional
electron wave vector, and kν is the characteristic electron wave vector
for the threshold phonon emission.

for three k values: k/kν = 2, 4, 8. As a result, the function
[1 − ξ 2(q)]−1/2 and, hence, the integrand of Iν go to +∞ at
both limits of q {Fig. 8(b) shows the function [1 − ξ 2(q)]−1/2

for the three k values above}. In the phonon absorption case
(not shown), the function ξ (q) displays different behavior;
it increases monotonically from −1 at q = q−

ν , through 0
at kν , finally to 1 at q+

ν . This again causes [1 − ξ 2(q)]−1/2

and the integrand to approach +∞ at the two limits of q.
Accurate evaluation of the integrals Iν is important in obtaining
the correct momentum relaxation rates. On the other hand,
the calculation should be efficient as all interface and half-
space modes are involved, and a large electron wave-vector
space is to be sampled. Therefore, the singularities of the
integrals need to be properly treated.

In what follows, the treatment is illustrated for phonon
emission, but the phonon absorption case can be dealt with
analogously. If we use G(q)/

√
1 − ξ (q) to represent the

integrand of Iν , clearly, G(q) is a regular function of phonon
wave vector q ∈ [q−

ν ,q+
ν ]. Having known the properties of

the integrand, we can use kν conveniently to partition the
integral into two parts over the intervals [q−

ν ,kν] and [kν,q
+
ν ],

respectively, such that each part contains only one singularity
at q−

ν or q+
ν . That is,

Iν =
∫ kν

q−
ν

G(q)√
1 − ξ (q)

dq +
∫ q+

ν

kν

G(q)√
1 − ξ (q)

dq. (A7)

Then, we transform the integrals on the right-hand side into

Iν =
∫ kν

q−
ν

G(q) − ζ (q)G(q−
ν )√

1 − ξ (q)
dq + G(q−

ν )
∫ kν

q−
ν

ζ (q)√
1 − ξ (q)

dq

+
∫ q+

ν

kν

G(q) − η(q)G(q+
ν )√

1 − ξ (q)
dq

+G(q+
ν )

∫ q+
ν

kν

η(q)√
1 − ξ (q)

dq. (A8)

The functions ζ (q) and η(q) are chosen such that the
limits limq→q−

ν
[G(q) − ζ (q)G(q−

ν )] = 0 and limq→q+
ν

[G(q) −
η(q)G(q+

ν )] = 0, which smooth out the singularities at q−
ν

and q+
ν , respectively, while the second and fourth terms

[in Eq. (A8)] can be integrated analytically. We choose
ζ (q) = ξ

′
(q)/ξ

′
(q−

ν ) and η(q) = ξ
′
(q)/ξ

′
(q+

ν ). The integrals
of the first and third terms are calculated by using the
Gauss-Legendre quadrature method.

For half-space phonons, the electron wave vector at the
threshold emission is kLO = √

2m∗ωLO/h̄. Replacing kν in
Eqs. (A2)–(A5) by kLO then simply gives the limits of phonon
wave vectors q−

LO, q+
LO in the phonon emission and absorption

cases. We find that the momentum relaxation rates are
given by

1

τh

= m∗

2πh̄3

γ 2
LO

k

[
N (ωLO) + 1

2
± 1

2

] ∫ q+
LO

q−
LO

dq

q
F(q)

1

2k2

× (
q2 ± k2

LO

){
1 −

[
1

2

kLO

k

(
q

kLO
± kLO

q

) ]2}−1/2

.

(A9)

These rates can be numerically calculated similar to the
interface phonon rates 1/τi above.

APPENDIX B: MOMENTUM RELAXATION RATES
IN EXTREME QUANTUM LIMITS

Two limiting cases are of great interest: (i) When the
electron kinetic energy Ek is close to h̄ωLO (h̄ων), a half-space
(interface) phonon is emitted; (ii) when Ek is close to zero, a
half-space (interface) phonon is absorbed. These are referred to
as the extreme quantum limits2,3 in which analytical solutions
exist for the electron-phonon scattering rate. Here, we attempt
to obtain an analytical expression for the momentum relaxation
rate for the limiting cases. To do this, deduction is illustrated
in the following for half-space phonons, but solutions to the
interface phonon scattering can be sought similarly, and rate
expressions for both half-space and interface modes will be
given. We first consider case (i), i.e., the threshold emission.
We return to the original rate expression [Eq. (3)]. Insert
the expression for matrix elements Eq. (5) into (3). For
intrasubband processes, the energy terms in the δ function
reduce to Ek′ − Ek + h̄ωLO. The initial electron energy and
wave vector are close to h̄ωLO and kLO, respectively. Energy
conservation requires that the final electron state is near the
bottom of the subband, i.e., k′ → 0, and further momentum
conservation finds the phonon wave vector q → kLO. This
results in the fractional increase of momentum being −1. It
follows that the product of the δ functions, namely, δ(Ek′ −
Ek + h̄ωLO)δk′,k−q in Eq. (3) can be simply approached by
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δ(Ek′ − Ek + h̄ωLO)δq,k. The summation over q is then carried
out, followed by the summation over k′, which is converted to
an integral as usual. Thus, we obtain the momentum relaxation
rate for threshold emission(

1

τh

)
th

= π

2
W0[N (ωLO) + 1]F(kLO), (B1)

where W0 is the basic rate W0 = e2

h̄

√
2m∗ωLO/h̄( 1

ε∞
− 1

ε0
). The

momentum relaxation rate ( 1
τh

)th is in fact equal to the threshold

electron-phonon scattering rate.12 For interface phonons, the
threshold rate can be written as

(
1

τi

)
th

= π

2
W0

∑
ν

√
ων

ωLO

εLO

εν

[N (ων) + 1]f (kν), (B2)

where εLO and εν are given by 1
εLO

= 1
ε∞

− 1
ε0

and 1
εν

=
2/[β−1(ων) + β̄−1(ων)], respectively.

We now look at case (ii). Since momentum relaxation
arises from a decrease in momentum, clearly one requires
that the initial momentum h̄k 
= 0. Mathematically, this is
in accord with the expression for the fractional increase
of momentum, which contains 1/k2. Recall, however, that
we tackle the k → 0 phonon absorption case; that is, both
the denominator and numerator of the fractional increase of
momentum approach zero. This is quite different from the
phonon emission case, and an analytical solution can not be
sought in the direct manner above. We turn to Eq. (A9) for
half-space phonons. Let the integral in this 1

τh
expression be

denoted by ILO, which depends on k, i.e., ILO(k). Change the
variable of integration by using q = kx +

√
k2 + k2

LO, such that
the new variable of integration x is dimensionless (x ∈ [−1,1])
and the k’s contained in the original limits of integration
q−

LO, q+
LO are transferred into the integrand. For simplicity, we

denote the integrand by g(k,x). As k � kLO, then the integrand
g(k,x) can be expanded into a Maclaurin series of powers
of k, i.e., g(k,x) = g(0,x) + g′(0,x)k + 1

2g′′(0,x)k2 + · · · .
Accordingly, the integral ILO(k) can be simply expressed
as ILO(k) = ∫ 1

−1 g(0,x)dx + k
∫ 1
−1 g′(0,x)dx + O(k2). It turns

out that g(0,x) is an odd function of x [thus making the first
term in the ILO(k) expression vanish] and g′(0,x) is an even
function of x. Recalling that in the 1

τh
expression there is

a k-dependent factor 1/k in front of ILO(k), in the limit of
k → 0, therefore, only the second term of ILO(k) contributes
for momentum relaxation. One finds that the final momentum

relaxation rate can be expressed in a simple form in terms of
the logarithmic derivative of the form factor as(

1

τh

)
0

= π

4
W0N (ωLO)F(kLO)

[
1 + kLO

F ′(kLO)

F(kLO)

]
. (B3)

For the momentum relaxation due to interface phonons,
one starts with Eq. (A6) (use the lower signs for phonon
absorption), repeats the process as before, and obtains the
MRR expression for k → 0:(

1

τi

)
0

= π

4
W0

∑
ν

√
ων

ωLO

εLO

εν

N (ων)f (kν)

[
1 + kν

f ′(kν)

f (kν)

]
.

(B4)

From Eq. (B3), clearly the sign of the ( 1
τh

)0 rate value is
determined by the quantity in the square brackets. Using
Eq. (11), it is found that, for any wave vector q,

1 + q
F ′(q)

F(q)

= 2b2

b + q

33b3 + 15b2q + 7bq2 + q3

33b4 + 54b3q + 44b2q2 + 18bq3 + 3q4
> 0.

(B5)

Therefore, the momentum relaxation rate ( 1
τh

)0 due to half-
space phonons always has a positive value. For interface
phonons, we find that

1 + q
f ′(q)

f (q)
= b − 5q

b + q
, (B6)

the sign of which is determined by b − 5q. Therefore, when
the critical wave vector satisfies kν > b/5, the interface modes
of frequency ων contribute a negative MRR.

For the usual electron-phonon scattering rate, however,
the situation is different as the initial electron state can
be exactly at the bottom of the subband k = 0. Then, the
analytical solution can be obtained in a direct manner by
using the approach δ(Ek′ − Ek − h̄ωLO)δk′,k+q = δ(Ek′ − Ek −
h̄ωLO)δq,k′ , similar to that used in case (i) above. The scattering
rate is Wh,0 = π

2 W0N (ωLO)F(kLO) for half-space phonons and

Wi,0 = π
2 W0

∑
ν

√
ων

ωLO

εLO
εν

N (ων)f (kν) for interface phonons.

It is readily found from Eq. (B5) that 1
2 [1 + q

F ′(q)
F(q) ] − 1 < 0

and, thus, the momentum relaxation rate ( 1
τh

)0 is always
smaller than the scattering rate Wh,0. For interface phonons,
similarly, one finds from Eq. (B6) that 1

2 [1 + q
f ′(q)
f (q) ] − 1 < 0

and, therefore, ( 1
τi

)0 < Wi,0.
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