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Calculation of vertical and horizontal mobilities in InAs/GaSb superlattices
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Superlattice (SL) devices such as infrared detectors and quantum-cascade lasers rely on efficient transport
of carriers perpendicular to the SL layers by drift and/or diffusion. While horizontal mobilities are measured
routinely, measurements of perpendicular-carrier mobilities require nonstandard experimental techniques such as
the geometric magneto-resistance. Here we show how perpendicular mobilities can be estimated from horizontal
mobility measurements and calculated mobilities. We treat low-temperature horizontal and vertical transport
in SL on an equal footing by calculating both mobilities using the same interface roughness scattering (IRS)
model from a rigorous solution of the Boltzmann transport equation. The calculation is specialized to the case
of InAs/GaSb SLs, which are of current interest in the development of third-generation infrared detector focal
plane arrays. The results are compared to available data.
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I. INTRODUCTION

The relationship between vertical and horizontal trans-
port in superlattices (SLs) has received renewed interest
because of type-II InAs/GaSb SLs, which are promising
materials for third-generation infrared focal-plane arrays and
photodiodes.1–10 The performance of such devices requires
high vertical carrier mobilities for efficient carrier transport
through drift and/or diffusion. However, vertical mobilities
are not measured routinely since their measurement requires
nonstandard and indirect experimental techniques such as
the geometric magneto-resistance.11,12 Indeed, what is known
about vertical mobility is often inferred indirectly from
fitting current-voltage data.13 Here we develop the necessary
formalism for the calculation of low-temperature vertical and
horizontal mobilities and specialize it to the case of InAs/GaSb
SLs. Then we show how the model results and measured
in-plane mobilities can be used to infer the values of vertical
mobilities for later use in device modeling and materials
improvement.

In InAs/GaSb SLs, hole transport in the growth direction
is inefficient since the valence bands are relatively flat and
the corresponding hole mass very large.14 On the other hand
the electron mass is small, on the order of the bulk mass in
InAs (m = 0.024m0), and electron motion is diffusive, being
limited by the usual scattering mechanisms such as interface
roughness scattering (IRS),15 phonon scattering,16 and point-
or extended-defect scattering.17 Hence, SL devices rely mainly
on electron transport for charge movement. Since vertical and
horizontal electron transport in SLs is limited by the same
scattering mechanisms, one should calculate them using the
same transport model so as to compare them quantitatively
and qualitatively.

While there has been a great deal of work on in-plane
transport in quantum wells,18 there has been no comparable
effort in SL transport, especially addressing both vertical and
horizontal mobilities and applying the results to a realistic
system of current interest.19 The theory of diffusive carrier
transport in SLs was developed by Mori and Ando,20 Dharssi

and Butcher,21 and others.22,23 Most theoretical and experi-
mental developments to date concern horizontal transport.24

Here we address ourselves to the issue of both the vertical and
horizontal transport in SLs, develop the required formalism,
explore its properties, and apply it to the calculation of vertical
and horizontal mobilities in InAs/GaSb SLs.

This paper is organized as follows. In Sec. II the relevant
formalism for both the vertical and horizontal mobilities in
SLs is derived. Since the relevant literature is scattered over
many publications or is incomplete, this paper will try to be
self-contained by providing the salient detail in one place.
In the case of IRS limited mobility it will be shown that
in absence of screening, the in-plane relaxation rates are
smaller than the vertical relaxation rates; hence, in general,
if the carrier masses were isotropic, horizontal mobilities
would be larger than vertical mobilities. Then, in Sec. III
in-plane and vertical-electron mobilities are calculated for a
range of SL and roughness parameters relevant to transport
in InAs/GaSb SLs.

II. ANALYTICAL DEVELOPMENT

Because of the large hole masses of the bulk constituents of
the InAs/GaSb SL, the topmost heavy hole band in the SL is
nearly dispersionless in the growth direction, resulting in the
hole effective mass several orders of magnitude larger than the
electron mass.14 As a result, holes are immobile and largely
confined to the GaSb layer, contributing negligibly to the ver-
tical current in SL devices such as p-n or p-i-n photodetectors.
Since the photocurrent in such devices is carried mainly by
electrons, the present treatment is specialized to electrons.

A transport calculation comprises several components, each
of which is treated in turn subsequently: the calculation of the
energy bands and wave functions—Sec. A; the identification
and the mathematical treatment of the relevant scattering
mechanisms (here IRS)—Sec. B; the calculation of the scatter-
ing rates—Sec. C; the solution of the Boltzmann equation—
Sec. D; development of expressions for IRS relaxation
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rates—Sec. E; development of expressions for the mobilities
and proof of a theorem relating vertical and horizontal
relaxation rates—Sec. F; and the calculation of relaxation
rates—Sec. G.

A. Electronic structure

The electronic structure of electrons in a SL is found
from the solution of the 8×8 EFA (envelope function
Hamiltonian).25 The SL consists of alternating layers of InAs
having width 2a and GaSb having width 2b, with the period
� = 2a + 2b. For energies near the band gap edges, the carrier
wave function can be approximated by a linear combination
of the wave functions of the nearest bands—the conduction
(C), heavy-hole (H), light-hole (L), and spin-orbit bands
(SO)—in each material, with remote bands included via the
Löwdin perturbation scheme.25 Explicitly, let r|| = (x,y) be
the in-plane coordinate and z point in the direction of the SL
axis. The energy bands and wave functions are functions of
the wave vector k = (k||,kz), where k|| is the transverse wave
vector, and the perpendicular wave vector −π/� < kz � π/�

spans the Brillouin zone in the growth direction. Overall the
envelope wave function for the explicitly included components
is written as

〈r||,z | k||,kz〉 = ψk(r||,z) = 1√
A

exp(ik|| • r||)

×
8∑

n=1

cnφn(kz,z), (1)

comprising a plane wave in the in-plane direction and a linear
combination of the eight-envelope functions φn(kz,z) in the
growth direction. Imposition of the usual boundary conditions
gives rise to a secular equation for energies, E(k||,kz), and
wave functions, {φn(kz,z),n = 1 . . . 8}, in the 8 × 8 envelope-
function approximation.

However, for the system of interest here, this level of rigor
is unnecessary since the calculated energy spectra can be well
approximated by the decoupled sum26

E(k||,kz) = h̄2k2
||

2m||
+ ε(kz), (2)

where m|| is the effective mass in the in-plane direction and
ε(kz) is the dispersion in the growth direction. So, in order
to make use of this decoupling and to speed up the transport
calculation, the problem is simplified by breaking it into two
parts. First the effective mass is found by solving the full 8 ×
8 EFA26 at kz = 0 for E(k||,kz = 0) and fitting a parabola to
the calculated band. The parabolic approximation holds very
well several tens of meV above the bottom of the conduction
band.

The band dispersions ε(kz) in the growth direction are
calculated by first setting k|| = 0 and neglecting the far-off
bands, which decouples the 8 × 8 EFA Hamiltonian into two
identical 4 × 4 Hamiltonians.25 In turn each 4 × 4 Hamiltonian
splits into a 1 × 1 problem for the heavy holes and a 3×3

Hamiltonian that couples the C, LH, and SO bands.27 The 3 ×
3 coupled EFA Hamiltonian reads⎛

⎜⎜⎜⎝
VC(z) �

√
2
3pz

i�pz√
3

�

√
2
3pz VLH (z) i�E√

2

− i�pz√
3

− i�E√
2

VSO(z)

⎞
⎟⎟⎟⎠
⎛
⎜⎝

φC(z)

φLH (z)

φSO(z)

⎞
⎟⎠

= ε (kz)

⎛
⎜⎝

φC(z)

φLH (z)

φSO(z)

⎞
⎟⎠ , (3)

where pz = −ih̄(d/dz) is the momentum operator; � =
−i〈s|px |x〉/m0 is the Kane momentum matrix element with
EP = 2m0�

2; VC(z), VLH (z), and VSO (z) denote the appro-
priate strain-dependent, bulk-band edges; and ϕC(z), ϕLH (z),
and ϕSO(z) are the envelope-function components. In terms
of perpendicular and horizontal strains, ε⊥ and ε||, and the
deformation potentials b, the heavy-light band splitting for
(001) growth is �E = 2b(ε⊥ − ε||).8,23 In response to strains
the Kane element changes to � = �(0)(1 − ε⊥), and the band
edges shift as follows.27

VHH = V
(0)
HH + aV

�




− 1

2
�E, (4)

VLH = V
(0)
LH + aV

�




+ 1

2
�E, (5)

VC = V
(0)
C + aC

�




, (6)

VSO = V
(0)
SO + aV

�




, (7)

where �
/
 = 2ε|| + ε⊥; aC and aV are the hydrostatic
conduction and valence band deformation potentials, respec-
tively; �0 is the spin-orbit splitting; and V (0) and �(0) denote
the unstrained band edges and the Kane matrix element in
the absence of strain, respectively. The InAs/GaSb band
overlap—the difference between the valence-band edge of
GaSb and the conduction-band edge of InAs, is taken to be
150 meV.27 The input data used in the model is provided in
Table I, using data from the model solid theory of Van de
Walle28 and Landölt-Borstein tables29; Kane parameters �

are from Bastard.25

Equation (3) can be simplified further to yield a
Schrödinger-like equation27

[
−h̄2

2

d

dz

1

m(z)

d

dz
+ VC(z)

]
φC(z) = ε(kz)φC(z), (8)

with an “effective” C/LH/SO mass m(z) defined by

m(z) = 3[�E2/2 − (VLH (z) − ε)(VSO(z) − ε)]

2�2[2(VSO(z) − �E − ε) + VLH (z) − ε]
, (9)

with the other two components of the envelope wave function
given by,

φLH (z) = h̄

i

(√
2

3

2(VSO (z) − ε) − �E

�E2 − 2(VLH (z) − ε)(VSO(z) − ε)

)

×�
dφC(z)

dz
, (10)
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TABLE I. Material parameters for the model calculation.

EC (meV) EV (meV) ESO (meV) γ1 γ2 γ3

InAs 0 −410 −790 −19.67 −8.37 −9.29
GaSb 960 157 −663 −11.80 −4.03 −5.26

a0(Å) C11(1011 dyncm−2) C12(1011 dyncm−2) C44(1011 dyncm−2)
InAs 6.0584 8.33 4.53 3.96
GaSb 6.0954 9.08 4.13 4.45

�2(eV) aV(eV) aC(eV) b(eV) d(eV)
InAs 21.11 1.0 −5.08 −1.80 −3.60
GaSb 22.88 0.79 −6.85 −2.00 −4.80

φSO(z) = h̄
�E − (VLH − ε)

(�E)2 − 2(VLH − ε)(VSO − ε)

2�√
3

dφC(z)

dz
.

(11)

The effective masses m(z) [Eq. (9)] in both materials are
shown in Fig. 1.

In Fig. 1 the effective mass is strongly energy dependent:
for example, for GaSb the mass becomes negative (light-hole
like) below the valence-band edge of GaSb. Clearly it is
inaccurate to use bulk band-edge masses in effective-mass
like calculations far away from band edges. Because of tensile
strain in InAs, the bottom of the conduction band in InAs
extends slightly below the bottom of the conduction band in
bulk InAs.

The Schrodinger equation for the SL is solved subject to
the usual periodic boundary conditions. In the flat-band case
the envelope function solutions are exponentials of the form25

φA
C (z) = C1e

ikAz + C2e
−ikAz − a � z � a, (12)

φB
C (z) = C3e

ikBz + C4e
−ikBz a � z � a + 2b, (13)

where

kA,B = [2mA,B (ε − VC(z)) /h̄2]1/2, (14)

with A = InAs and B = GaSb (Fig. 1). The boundary
conditions on the continuity of the envelope function φC and
its derivative 1

m(z)
dφC

dz
, together with the Bloch condition, yield

the secular equation

⎛
⎜⎜⎜⎜⎝

eikAa e−ikAa −eikBa −e−ikBa

kA

mA
eikAa − kA

mA
e−ikAa − kB

mB
eikBa kB

mB
e−ikBa

e−ikAa eikAa −e−iqdeikB (a+2b) −e−iqde−ikB (a+2b)

kA

mA
e−ikAa − kA

mA
eikAa −e−iqd kB

mB
eikB (a+2b) e−iqd kB

mB
e−ikB (a+2b)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

C1

C2

C3

C4

⎞
⎟⎟⎟⎠ = 0 (15)

for the wave function and the Kronig-Penney (KP) equation
for the energy eigenvalues,25

cos kzd = cos kALA cos kBLB − 1
2 (η + η−1)

× sin kALA sin kBLB, (16)

where η = kAmB

kBmA
. At the level of approximation of the 3×3

Hamiltonian, the LH and SO components of the wave function
are not continuous.30

As an example, Fig. 2 shows several calculated band
structures for SLs with layer widths 20Å InAs/40Å GaSb,
20Å InAs/20Å GaSb, and 40Å InAs/20Å GaSb that span all
three short (SW)-, mid (MW)-, and long (LW)-wavelength
infrared (IR) detection windows, respectively. As expected,
the narrower the InAs-layer width, the higher the band
centroid, and the wider the period, the narrower the bandwidth.
Owing to the band nonparabolicity evident in Fig. 1, the

higher the band, the heavier the carrier effective mass; the
calculated numbers for the SWIR, MWIR, and LWIR SLs in
Fig. 2 are 0.0396m0, 0.0297m0, and 0.0254m0, respectively.
Importantly, a one-monolayer variation of InAs-layer width
changes the calculated bandwidth only by about 7% for the
cases in Fig. 1, which justifies our use of the Boltzmann
equation approach. For typical values of doping (1010 cm−2

per period), the Fermi levels are on the order of 5–30 meV,
which translates into Fermi wave vectors on the order of a few
tenths of the Brillouin zone size. Therefore, electrons occupy
only the ground-state subband near the bottom of the band.

Once the eigenvalues of the KP equation [Eq. (16)] are
located, the wave function amplitudes (C1,C2,C3,C4) are
found from (15). The corresponding light- and spin-orbit
amplitudes (L1,L2,L3,L4) and (S1,S2,S3,S4) are calculated
from Eqs. (10) and (11), and then the wave function normalized
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as(a) ε � VLH(GaSb), kB = iκB

2a(C1C
∗
1 + L1L

∗
1 + S1S

∗
1 + C2C

∗
2 + L2L

∗
2 + S2S

∗
2 ) + 2b(C3C

∗
4 + L3L

∗
4 + S3S

∗
4 + C4C

∗
3 + L4L

∗
3 + S4S

∗
3 ) +

+ (C1C
∗
2 + L1L

∗
2 + S1S

∗
2 + C2C

∗
1 + L2L

∗
1 + S2S

∗
1 ) sin 2kAa/kA

+ [(C3C
∗
3 + L3L

∗
3 + S3S

∗
3 )e−κBd + (C4C

∗
4 + L4L

∗
4 + S4S

∗
4 )eκBd ] sinh 2κBb/κB = 1 (17a)

and (b) ε < VLH(GaSb)

2a(C1C
∗
1 + L1L

∗
1 + S1S

∗
1 + C2C

∗
2 + L2L

∗
2 + S2S

∗
2 ) + 2b(C3C

∗
3 + L3L

∗
3 + S3S

∗
3 + C4C

∗
4 + L4L

∗
4 + S4S

∗
4 )

+ (C1C
∗
2 + L1L

∗
2 + S1S

∗
2 + C2C

∗
1 + L2L

∗
1 + S2S

∗
1 ) sin 2kAa/kA

+ [(C3C
∗
4 + L3L

∗
4 + S3S

∗
4 )eikBd + (C4C

∗
3 + L4L

∗
3 + S4S

∗
3 )e−ikBd ] sin 2kBb/kB = 1. (17b)

In the case of IRS the scattering rates depend on the modulus
of the carrier-wave function at the interfaces [see Eqs. (24),
(39), and (40) later in the text]. For the three SLs of Fig. 2
the moduli of the wave function at the interfaces are shown in
Fig. 3.

Figure 3 may be understood as follows. The wave function
for the ground state subband at kz = 0 is symmetric with
respect to the reflection across the midpoint z = 0 of the InAs
layer and across the midpoint z = a + b of the GaSb layer;
at kz = π/d the wave function is symmetric about z = 0 but
antisymmetric about z = a + b, which is, therefore, a node.
Hence, the value of |φkz

(a)|2 must decrease as a function of kz

from kz = 0 to kz = π/d, as it does in Fig. 3. For the model
SLs the LH/SO components of the wave function account for
less than 7% of the total normalization.

B. Scattering mechanism

Interface roughness in the form of monolayer fluctuations
has been shown to be the main source of carrier scattering
in SLs, affecting horizontal transport in SLs up to almost

FIG. 1. (Color online) The bulk “effective” C/LH/SO mass m(z)
Eq. ((9)) in the well (InAs) and barrier (GaSb) materials as a function
of energy. The horizontal line is at the value of 0.024m0 that is
appropriate at the conduction band edge of bulk InAs. The zero of
energy is at the bottom of the conduction band of unstrained InAs.
The strain conditions are those for a 20Å InAs/20Å GaSb SL grown
on a GaSb substrate.

the room temperature, where polar-optical phonon scattering
becomes dominant.31 The characteristic signature of IRS is a
strong power dependence of mobility on layer width. Indeed,
in the quantum-well limit, Gold’s theory predicts that mobility
depends on the sixth power of layer width.32

The fluctuation of the interface position at a point r|| is
characterized by height �(r||) and by the lateral correlation
length of interface fluctuations �.33 The fluctuation gives rise
to a perturbation potential at each interface

δV (r||,z) = V0[θ (z − a − �′(r||)) − θ (z − a)]

+V0[θ (−z + a + �(r||)) − θ (−z + a)],

(18)
with the magnitude V0 (given by the height of the InAs
conduction well) and localized at the well/barrier z = a and
barrier/well interfaces z = −a, respectively. To first order
in the fluctuation, the Taylor expansion of the perturbation
yields33

δV (r||,z) = −V0�
′(r||)δ(z − a) + V0�(r||)δ(z + a),

(19)
where the fluctuations �′(r||) and �(r||) are considered
uncorrelated.

FIG. 2. (Color online) Electron energy bands along the growth
direction for three combinations of InAs/GaSb layer widths. For
typical carrier densities, at low temperatures, the Fermi energies are
approximately 5–30 meV.
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FIG. 3. (Color online) The modulus squared of the electron wave
function at SL interfaces |φC(a)|2 for several combinations of layer
widths as a function of the Brillouin zone wave vector in the growth
direction (the continuous curve). Without the light- and spin-orbit
wave function components, one obtains the dashed curves.

The autocorrelation function of interface fluctuations is
assumed to be Gaussian33 with the ensemble average

〈�(r||)�(r′||)〉 = �2 exp(−|r|| − r′|||2/�2), (20)

and spectral density

S(q) = π�2�2 exp(−�2q2/4). (21)

C. Scattering rates

The transition rate for IR-induced scattering between
eigenstates ψk(r||,z) and ψk′(r||,z) of the SL from Fermi’s
Golden Theorem is given by34

T (k,k′) = 2π

h̄
|M(k,k′)|2δ(E(k) − E(k′)), (22)

where the square of transition matrix M(k,k′) is

|M(k,k′)|2 = |〈k||,kz|δV (r||)|k′||,k′
z〉|2. (23)

The ensemble-averaged transition matrix is found to be

V 2
0

A2

∫
exp(i(k′|| − k||) • (r|| − r′||))

× [〈〈�′(r||)�′(r′||)〉〉|φkz
(a)|2|φk′

z
(a)|2

+〈〈�(r||)�(r′||)〉〉|φkz
(−a)|2|φk′

z
(−a)|2]dr||dr′||,

where 〈〈�(r||)�(r′||)〉〉 is the ensemble average of rough-
ness along the z = −a interface and 〈〈�′(r||)�′(r′||)〉〉 for
the z = a interface, the cross-terms vanishing because of no
cross-correlation between the interfaces. Using the Gaussian
autocorrelation function, the transition rate becomes

T (k,k′) = 2π

h̄

πV 2
0

A
{�′2�′2 exp(−|k|| − k′|||2�′2/4)|φk′

z
(a)|2

× |φkz
(a)|2 + �2�2 exp(−|k|| − k′|||2�2/4)

× |φk′
z
(−a)|2|φkz

(−a)|2} δ(E(k) − E(k′)).

In the present paper the potential is symmetric (hence
the wave-function moduli at z = ±a are equal), and the
interfaces are assumed to be characterized by the same degree
of roughness, � = �′, hence21

T (k,k′) = 2 × 2π

h̄

{
V 2

0 π�2�2

A
exp(−|k|| − k′|||2�2/4)

× |φkz
(a)|2|φk′

z
(a)|2

}
δ(E(k) − E(k′)). (24)

Since |φk′
z
(a)|2 = |φ−k′

z
(a)|2, the scattering is

randomizing,34 T (k||,kz; k′||, − k′
z) = T (k||,kz; k′||,k′

z).
The randomizing property is quite general, depending only
on the fact that the autocorrelation function of interface
roughness does not depend on the vertical coordinate.

D. Boltzmann equation

When the conduction band is wide, electron motion is
diffusive and can be described with the Boltzmann transport
equation for the electron distribution function f (k).34 In the
steady state the Boltzmann equation reads35

∂f

∂t

∣∣∣∣
c

= eF • 1

h̄

∂f

∂k
, (25)

where electron acceleration by the applied electric field F is
counterbalanced by electron scattering. The scattering term is
given by the integral34,35

∂f

∂t

∣∣∣∣
c

= − V

(2π )3

∫
[T (k,k′)f (k)(1 − f (k′))

− T (k′,k)(1 − f (k))f (k′)]dk′, (26)

where the first/second terms correspond to out- and in-
scattering. In an applied electric field F the electron-
distribution function can be written as

f = f0 + g, (27)

where f0 is the equilibrium Fermi-Dirac distribution function
f0 = [1 + exp((E − EF )/kT )]−1. In the ohmic regime the
departure from equilibrium g is expanded to first power in
the applied field34,35

g (k) = τ (k)
e

h̄

(
F • ∂E

∂k

)
∂f0

∂E
(29)

in terms of the unknown relaxation time τ (k).
The relaxation times are derived by using the microscopic

reversibility condition,

T
(
k′,k

) = T
(
k,k′) f0 (k)

(
1 − f0

(
k′))

f0 (k′) (1 − f0 (k))
(30)

and inserting the distribution function [Eq. (29)] into the
Boltzmann equation [Eq. (26)], which yields the defining
equation

V

(2π )3

∫
dk′T (k,k′)

1 − f0(k′)
1 − f0 (k)

×
[
g(k) − f0(k)(1 − f0(k))

f0(k′)(1 − f0(k′))
g(k′)

]
≡ g(k)

τ (k)
. (31)
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Hence, in general, the relaxation time is given by34,35

1

τ (k)
= V

(2π )3

∫
dk′T (k,k′)

1 − f0(k′)
1 − f0(k)

×
[

1 − f0(k)(1 − f0(k))

f0(k′)(1 − f0(k′))
g(k′)
g(k)

]
. (32)

1. In-plane relaxation rate

For the field orientation along the x-axis,

g(k) = τ||(k)eFx

∂f0

∂E

(
1

h̄

∂E

∂kx

)

= τ||(k)eFx

f0(1 − f0)

kT

(
1

h̄

∂E

∂kx

)
, (33)

hence assuming an isotropic-parabolic in-plane band
dispersion,34,35

1

τ||(k)
= V

(2π )3

∫
dk′T (k,k′)

1 − f0(k′)
1 − f0(k)

×
[

1 − τ||(k′)k′
|| cos ϕ′

τ||(k)k|| cos ϕ

]
, (34)

where the angles between the field direction and wave vectors
(k||,k′||) are (ϕ,ϕ′), respectively.

Since cos ϕ′ = cos(ϕ + θ ) = cos ϕ cos θ − sin ϕ sin θ ,
where θ is the angle between vectors (k||,k′||),
finally

1

τ||(k)
= V

(2π )3

∫
dk′
[

1 − k′
||

k||

τ||(k′)
τ||(k)

cos θ

]

× 1 − f0(k′)
1 − f0(k)

T (k,k′), (35)

since the sin θ term drops out due to parity considerations.
Since IRS is elastic, f0(k′) = f0(k), the relaxation time
becomes36

1

τ||(kr ,kz)
= V

(2π )3

∫ [
1 − k′

r

kr

τ||(k′
r ,k

′
z)

τ||(kr ,kz)
cos θ

]
× T (kr ,kz; k

′
r ,k

′
z; θ )k′

rdk′
rdk′

zdθ, (36)

where kr = |k|||.

2. Vertical relaxation rate

For the field applied in the z-direction, one similarly
has

1

τ⊥(k)
= V

(2π )3

∫
dk′

⎡
⎣1 −

τ⊥(k′)
(

∂E
∂k′

z

)
τ⊥(k)

(
∂E
∂kz

)
⎤
⎦T (k,k′); (37)

however, owing to randomization, the scattering rate is even in
k′
z while ∂E/∂k′

z is odd, so that the in-scattering term integrates
to zero, hence34,35

1

τ⊥ (kr ,kz)
= V

(2π )3

∫
T
(
k,k′) dk′||dk′

z

= V

(2π )3

∫
T
(
kr ,kz; k

′
r ,k

′
z; θ
)
k′
rdk′

rdk′
zdθ.

(38)

E. Expressions for IRS relaxation rates

1. Vertical relaxation rates

Using Eq. (24) for the scattering rates, the integration
over the in-plane coordinates k′

rdk′
rdθ ′ can be performed

analytically, yielding23

1

τ⊥ (E,kz)
= 2 ×

(
m||�
h̄3 V 2

0 |φkz
(a)|2

)

2�2

×
{∫ π/l

0
dk′

z|φk′
z
(a)|2I0

(
�2k′

rkr

2

)

× exp

(
−�2

4

(
k′2
r + k2

r

))
�
(
E − ε

(
k′
z

))}
,

(39)

where I0 is the zeroth-order,37 modified Bessel function of the
first kind, kr = |k|||, and � is the Heaveside step function.

2. Horizontal relaxation rates

Similarly for the horizontal relaxation rates [Eq. (36)], one
must also integrate the in-scattering term containing cos θ ′,
and we derive the following expression,

1

τ||(E,kz)
= 2 ×

(
m||�
h̄3 V 2

0 |φkz
(a)|2

)

2�2

×
{∫ π/l

0
dk′

z|φk′
z
(a)|2

[
I0

(
�2k′

rkr

2

)

−k′
r

kr

τ||(E,k′
z)

τ|| (E,kz)
I1

(
�2k′

rkr

2

)]

× exp

(
−�2

4

(
k′2
r + k2

r

))
�
(
E − ε

(
k′
z

))}
,

(40)

where I1 is the first-order, modified Bessel function of the first
kind.37 Its properties are

I0(x) > I1(x) � 0,

with the asymptotic values for small x,

I0 (x) ≈ 1 + (x/2)2 + · · · and I1 (x) ≈ x/2 + · · · ,
and for large values

I0 (x) ≈ ex/
√

2πx

(
1 + 1

8x
+ · · ·

)
and I1 (x)

≈ ex/
√

2πx

(
1 − 3

8x
+ · · ·

)
,

hence I1(x) approaches I0(x) asymptotically from below.
In the limit of very large �, one can use the asymptotic

expressions and the fact that

lim
�→∞

�

2
√

π
exp

(
−
(

�

2

)2

(kr − k′
r )2

)
= δ(kr − k′

r ) ∝ δ(kz ± k′
z)

to show that τ−1
⊥ reaches an asymptotic value and τ−1

|| grows
like �−2. In this limit the scattering is purely specular.23
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F. Mobilities

Mobilities μ are found from the calculated current
densities,34,35

j = −enμ • F = − e

4π3

∫
g(k)v(k)dk

= − e

4π3

∫
τ (k)

e

h̄

(
F • ∂f0

∂k

)
v(k)dk, (41)

where velocity v(k) = 1
h̄

∂E
∂k and carrier density n =

1
4π3

∫
f0(k)dk. Hence, the two mobilities are found from

μ|| = j||/enF|| and μ⊥ = jz/enFz,

μ⊥ = −e

∫
τ⊥(k)v2

z

(
∂f0

∂E

)
dk∫

f0(k)dk
, (42)

μ|| = −e

∫
τ||(k)v2

||
(

∂f0

∂E

)
dk∫

f0(k)dk
. (43)

The calculation will be performed for temperatures near
the absolute zero so that ∂f0/∂E = −δ(E − EF ). Since the
relaxation rates themselves are temperature independent,
an extension of the calculation to higher temperatures is
straightforward, requiring only the replacement of the delta
function δ(E − EF ) with ∂f0/∂E = f0(1 − f0)/kT and the
calculation of relaxation rates for energies within several kT of
the chemical potential energy; the main challenge is numerical.

Specializing to the case of SLs with the energy band
dispersion

E(k) = E(kr ,kz) = h̄2k2
r

2m||
+ ε(kz),

the carrier concentration is

n = 1

4π3

2πm||
h̄2

∫ π/l

−π/l

[EF − ε (kz)] dkz, (44)

and the areal density per period is simply n�. Similarly, the
expressions for the mobilities are

μ⊥ = 1

n

e

2π2h̄2

∫ π/l

−π/l

τ⊥ (EF ,kz)

[
m||

(
1

h̄

∂E

∂kz

)2

E=EF

]
dkz,

(45)

μ|| = 1

n

e

2π2h̄2

∫ π/l

−π/l

τ|| (EF ,kz) [EF − ε (kz)] dkz. (46)

1. Theorem on mobilities

From Eqs. (39), and (40) the horizontal relaxation rates are
seen to be smaller than the vertical rates, so that the relaxation
times are related as

τ|| (E,kr ) � τ⊥ (E,kr ) . (47)

If these relaxation rates were weighted equally in Eqs. (42)
and (43), then in absence of screening the IRS horizontal
mobilities would be greater than the corresponding verti-
cal mobilities μ|| � μ⊥. However, equal weighting requires
that the horizontal and vertical masses be equal, which

may not hold for energies far from the conduction-band
bottom.

G. Calculation of the relaxation rates

The relaxation rates are an intermediate result in the
calculation and, as such, rarely examined. However, in order
to understand the calculated mobilities, it is necessary to
examine the behavior of the relaxation rates as a function
of SL and roughness parameters. To this end, the IRS
relaxation rates were calculated for a number of cases of
interest.

1. Iteration experience

First we report on the iteration process used to solve the
integral equation for the horizontal relaxation rates as it bears
on the common approximations used to calculate the in-plane
mobilities.

The iterative process is started with the solution in the
quantum-well limit, for which k′

r = kr , hence τ||(E,kr ) =
τ||(E,k′

r ), so the starting solution is

1

τ||(E,kz)
∝
{∫ π/l

0
dk′

z|φk′
z
(a)|2

[
I0

(
�2k′

rkr

2

)
− I1

(
�2k′

rkr

2

)]

× exp

(
−�2

4

(
k′2
r + k2

r

))
�(E − ε′

z)

}
. (48)

The result is then inserted in Eq. (40) to continue the itera-
tion process by adding a small fraction of the new result to the
previous iteration until the results are converged to one part in a
million. For �2k2

F /2  1, I1(�2k2
F /2)  I0(�2k2

F /2), so that
the solution converges within a few iterations; for �2k2

F /2 �
1, it can take a hundred iterations to achieve convergence. As an
example, Fig. 4 shows the iteration experience for the indicated
parameters.

The zeroth-order solution is seen to overestimate the final
result, especially near the zone edge.

Nevertheless even with such cautious approach to self-
consistency, the next several iterations produce nonphysical,
negative relaxation rates in Fig. 4, which points to the failure
of the nonself-consistent approximation,

1

τ||(E,kz)
∝
{∫ π/l

0
dk′

z|φk′
z
(a)|2

[
I0

(
�2k′

rkr

2

)

− k′
r

kr

I1

(
�2k′

rkr

2

)]

× exp

(
−�2

4

(
k′2
r + k2

r

))
�
(
E − ε′

z

)}
. (49)

The final result in Fig. 4 is physical. Once self-consistency
is achieved, however, further iterations can rapidly degrade the
solution, leading to spurious oscillations owing to the round-
off error.

2. Calculated unscreened relaxation rates

Here we examine the dependence of the relaxation rates on
SL parameters. The simplest dependence is the proportionality

155307-7



SZMULOWICZ, HAUGAN, ELHAMRI, AND BROWN PHYSICAL REVIEW B 84, 155307 (2011)

of the relaxation rates to the square of vertical roughness �,
so that both mobilities are inversely proportional to �2. In all
cases examined, the vertical relaxation rates are greater than
the horizontal rates, in agreement with the theorem derived
previously.

Next we examine the dependence on doping and the
correlation length. For typical values of residual doping,38

the Fermi energy is much less than the bandwidth, hence the
limit of the integration does not extend to the edge of the
Brillouin zone. We distinguish two regimes: �2k2

F /2  1 and
�2k2

F /2 � 1, cases (a) and (b) below.
(a) Small values, �2k2

F /2  1.
For this case because the in-scattering term is small, there

is a very small difference between the horizontal and vertical
relaxation rates. Figure 5 shows the results for a 20Å InAs/40Å
GaSb SL with EF = 25 meV, � = 30Å, and � = 3Å so that
�2k2

F /2 = 0.071. For small values of x = �2
i k

2
F /2, I0(x) →

1, I1(x) → 0, and exp(−x) → 1, so that for both mobilities

1

τ⊥(EF ,kz)
≈ 1

τ||(EF ,kz)
→ |φkz

(a)|2|φkz=0(a)|2
√

EF . (50)

Hence, the scattering rates are proportional to
√

EF , the
extent of the available phase space for scattering in the growth
direction, and the curves in Fig. 5 are spaced as

√
EF . Since

the wave-function amplitudes are largely independent of kz

for small values of kz (Fig. 3), the calculated relaxation rates
(Fig. 5) are also relatively dispersionless.

(b) Large values, �2k2
F /2 � 1.

For the parameters of Fig. 6 and EF = 25 meV, �2
i k

2
F /2 ≈

5.78. The resulting dependence on the Fermi energies and
vertical momentum is complex and best understood by
examining the relaxation rates near the origin kz = 0 and at the
endpoint kz = kFz, which are plotted in Fig. 7. In all cases even
for large values of �, but small Fermi energies, the relaxation
rates are proportional to

√
EF [Eq. (50)].

For larger Fermi energies, one can estimate the expected
dependence as follows. Near the endpoint kz = kFz and

FIG. 4. (Color online) Iteration experience in solving the integral
equation for the horizontal relaxation rates as a function of the
iteration number and the Brillouin zone-wave vector. The graph
highlights the inadequacy of the quantum-well approximation (zeroth
iteration) and of the lack of self-consistency (first iteration).

kr = 0, so that I0(0) = 1. Since the modulus |φk′
z
(a)|2 is a

relatively slowly varying function, as seen in Fig. 3, the vertical
relaxation rate will be proportional to

1

τ⊥(EF ,kFz)
∝ exp(−�2m||EF /2)

∫ π/l

0
dk′

z

× exp(�2m||ε(k′
z)/2)�(EF − ε(k′

z)).

(51)

For the range of doping considered here, the range of
integration is limited by the value of the Fermi wave vector
in the z-direction, π/l > kFz ∝ √

EF . Although the integral
is nonanalytic, in the limit of large EF it is proportional
to exp(�2m||EF /h̄2), so that τ⊥(EF ,kFz)−1 → constant, as
reflected in Fig. 7. In the same limit the horizontal rates for
kFz are found to decrease faster than the vertical rates because
of the growing importance of the in-scattering term.

Near the origin kz = 0 and kr = kF , and for large values of
EF , using the asymptotic expansion of the Bessel functions,
the vertical rates can be shown to saturate

τ⊥(EF ,kz = 0)−1 → constant,

and the horizontal rates to be inversely proportional to the
Fermi energy

τ||(EF ,kz = 0)−1 → 1/EF .

(c) Dependence on layer widths.
The present theory reduces properly to the quantum well

limit, in which the scattering rates are proportional to the sixth
power of layer width, here the width of the InAs layer. The
analytic proof is given in Appendix A.

Figures 8 and 9 show the calculated dependence of the
relaxation rates on layer width for two values of correlation
length. For the short correlation length of � = 30 Å (Fig. 8),
the vertical and horizontal scattering rates are practically
indistinguishable because the in-scattering term is negligible.
For barrier widths 2b = 24, 38, 64 Å, the rates can be
fitted to the power laws τ ∝ a2.3,a3.5,a4.0, respectively, which

FIG. 5. (Color online) Calculated, self-consistent vertical and
horizontal relaxation rates for a 20Å InAs/40Å GaSb SL with �

= 30Å and � = 3Å, as a function of the Brillouin zone wave vector
and Fermi energy. The curves terminate at the value of kz, for which
EF = ε(kz).
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FIG. 6. (Color online) Calculated vertical and (self-consistent)
horizontal relaxation rates for a 20Å InAs/40Å GaSb SL with � =
200Å and � = 3Å, as a function of the Brillouin zone wave vector
and Fermi energy.

approaches the quantum-well limit as InAs wells become more
separated. Using only the data for InAs widths greater than
30 Å, the fitted power laws τ ∝ a2.6,a4.2,a5.0 approach the
quantum-well limit even closer.

For longer correlations lengths � = 200 Å (Fig. 9), the ver-
tical (τ⊥ ∝ a2.3,a3.5,a4.0) and horizontal (τ|| ∝ a2.3,a3.6,a3.9)
scattering rates differ markedly, but their power dependences
are similar to each other and to those for the shorter correlation
length (Fig. 8). Using only the data for InAs widths greater than
30 Å, the fits are τ⊥ ∝ a2.6,a4.2,a5.0 and τ|| ∝ a2.6,a4.3,a5.1.
The similarity of these power laws underscores that the InAs-
width dependence of the scattering rates derives primarily from
the wave-function amplitudes.

FIG. 7. (Color online) Calculated vertical and horizontal relax-
ation rates for a 20Å InAs/40Å GaSb SL with � = 200Å and � =
3Å, as a function of Fermi energy near the center of the Brillouin
zone and at the endpoint kFz.

FIG. 8. (Color online) The calculated electron relaxation rates for
several GaSb barrier widths as a function of InAs well width for a
short correlation length: � = 30 Å, EF = 25 meV, � = 3Å, and
kz = 0.

III. CALCULATED MOBILITIES

A. Unscreened results

A number of mobility curves were calculated as a function
of SL parameters, using converged relaxation rates. For this
section only the parallel mass was fixed at m|| = 0.024m0.
Figure 10 shows the calculated mobilities as a function of
InAs-layer width for correlation lengths � = 30 and 200 Å and
EF = 3 meV. Since with increasing layer width the interface
is an increasingly smaller fraction of the total width, the
calculated mobilities increase with InAs-layer width, which is
the hallmark of IRS.32 For InAs widths greater than 60 Å, the
conduction-band level falls below the top of the bulk-valence
band in GaSb, so that the electron wave function no longer
decays exponentially but oscillates in GaSb. In the 3×3 EFA
model the transition from the decaying to oscillatory behavior
inside the GaSb layer is smooth,39 with mobilities rising at

FIG. 9. (Color online) The calculated electron relaxation rates for
several GaSb barrier widths as a function of InAs well width for a
long correlation length: � = 200 Å, EF = 25 meV, � = 3Å, and
kz = 0.
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FIG. 10. (Color online) Calculated vertical and horizontal un-
screened mobilities as a function of InAs-layer width for the indicated
parameters; the parallel mass m|| = 0.024m0.

an ever increasing rate as the InAs layer widens. For � =
30 Å the vertical mobilities become slightly larger than the
horizontal mobilities because of the unequal weighting of the
corresponding relaxation rates by the velocities in the mobility
integral.

On the other hand the calculated mobilities decrease with
GaSb layer width (Fig. 11) since the electron wave function
cannot penetrate into the barrier material and so is more
susceptible to InAs-layer width fluctuations.

B. Screened results

In this section we use the data for the four samples we
studied earlier. The experimental sample parameters such as
layer widths and horizontal mobilities are listed in Table II.38

In addition we calculate the Fermi energies using the bands
calculated with the 3×3 model, and the parallel masses and
band gaps are calculated using the full 8×8 EFA model. Since
we are dealing with n-type transport, we do not include the
p-type sample, labeled as SL1 in Ref. 38, whose narrow
width and measured low mobility led to the high-power
dependence of mobility on layer width reported in Ref. 38. Its
inclusion at the time was motivated by the fact that we were
using Gold’s theory that is appropriate to isolated quantum
wells, which moreover does not distinguish between n- and
p-type conduction and is independent of parallel mass. The
challenging p-type transport merits an independent study.

FIG. 11. (Color online) Calculated vertical and horizontal un-
screened mobilities as a function of GaSb-layer width for the indicated
parameters; parallel mass m|| = 0.024m0.

For comparison with data it is necessary to take into account
the electron screening of IRS. Here, we adapt the Thomas-
Fermi form of screening, which requires that the transition
matrix be multiplied by the screening factor40

SC(q) =
(

q

q + qs

)2

=
( |k|| − k′|||

|k|| − k′||| + qs

)2

=
( √

k2
r − 2krk′

r cos θ ′ + k′2
r√

k2
r − 2krk′

r cos θ ′ + k′2
r + qs

)2

, (52)

where qs is the Thomas-Fermi screening wave vector qs =
m||e2

2πεh̄2 and ε is the bulk dielectric constant. For the numbers
appropriate to InAs, the Thomas-Fermi screening length is
about q−1

s ≈ 180 Å. Given the carrier densities in Table II,
(kF )−1 ≈ 200Å, which is on the order of q−1

s , so that electronic
screening cannot be neglected. Inclusion of screening makes
the angular integrals for the scattering rates nonanalytic.

The overall effect of screening is to reduce the scat-
tering rates and enhance mobilities. However, the verti-
cal and horizontal scattering rates are affected differently
because of the angular dependence of SC(q). In fact the
vertical rates are reduced more since screening is largest
for backward scattering, θ ′ = π , where 1 − (k′

r/kr ) cos θ ′ =
1 + (k′

r/kr ) so that horizontal rates are accentuated with

TABLE II. Data for the four samples in this study, including the experimental layer widths and horizontal low-temperature (10 K) mobilities,
as well as calculated Fermi energies, parallel masses, and band gaps from the 8×8 EFA model.

Sheet carrier Calculated Measured Calculated
InAs GaSb concentration per period Fermi parallel mobilities band gaps

Superlattice width (Å) width (Å) (×1010 cm−2) energy (meV) mass (8×8 EFA) (cm2/V-sec) (meV) InSb-IFs

SL2 41.1 24.0 1.8 13.38 0.0306 747 120.2
SL3 53.6 24.0 2.4 15.19 0.0291 5043 66.6
SL4 62.3 24.0 3.2 17.73 0.0279 8980 47.3
SL5 72.7 24.0 3.0 16.62 0.0261 15450 43.0
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FIG. 12. (Color online) The calculated vertical (continuous) and
horizontal (dashed) mobilities for four samples for which low-
temperature in-plane mobilities (denoted by squares) are available
(see Table II).

respect to vertical rates. Hence, with screening included, it
is possible for vertical mobilities to be larger than horizontal
mobilities.

As an example of a screened calculation, Fig. 12 shows
the calculated mobilites for the parameters of the four samples
studied earlier (Table II).38 Given the experimentally measured
carrier concentrations, the Fermi levels for all the samples were
calculated from Eq. (24) using the theoretically calculated
band dispersions ε(kz). For the sheet carrier concentrations
per period on the order of 3.0 × 1010 cm−2 (Table II), the
Fermi energies for the four samples are between 13.38 and
17.73 meV. Vertical roughness � is taken to be one monolayer,
and the correlation length is left as a free parameter. Figure 12
spans the range of correlation lengths found experimentally by
scanning tunneling microscopy by Lew et al. 41 (� = 1.9 ±
0.1 Å, � = 112 ± 16 Å; � = 2.8 ± 0.2 Å, � = 174 ± 21 Å) for
InAs on InGaSb and (� = 3.2 ± 0.2 Å, � = 301 ± 39 Å; � =
4.3 ± 0.2 Å, � = 327 ± 38 Å) for InGaSb on InAs interfaces
in (110)/(1–10) cross-sections, and by Feenstra et al. 42 (� =
1.8 Å, � = 19 Å) for InAs on GaSb and (� = 2.5 Å, � =
40 Å) for GaSb on InAs interfaces. The calculated mobilities
together with the measured data are shown in Fig. 12.

As in the case of quantum wells,32 the horizontal mobility is
a double-valued function of �, with a minimum corresponding
to the value of � comparable to the Fermi wavelength, where
the carriers experience the greatest scattering. To the left
of the minimum, the electron averages over the small-scale
roughness, so the mobility is high. To the right of the minimum,
the electron wavelength is smaller than �, and the interface
appears smooth for in-plane transport, and the mobility is
high again. Vertical mobility reaches a steady-state value,
since once the interface is sufficiently smooth, scattering
becomes specular and depends only on vertical roughness.23

For low values of �, the vertical mobilities are larger than the
horizontal mobilities by a factor of approximately 3 to 2. For
� around 225 Å, the horizontal mobilities are twice as large as
the vertical mobilities; for � around 300 Å, that ratio is about
3 to 1.

FIG. 13. (Color online) Calculated IRS-limited mobilities for a
41.1Å InAs/24Å GaSb SL with screening for two values of the
autocorrelation length as a function of the Fermi level. The carrier
concentrations corresponding to the given Fermi level can be read off
along the right-hand scale.

Using the assumed value of �, two values of � will
fit the experimental mobilities for the three widest samples,
but no value of � will fit the experimental mobility for the
narrowest SL. Since mobilities are inversely proportional to
the square of vertical roughness, one can achieve agreement
with experiment by simply adjusting the value of �. However,
we also considered possible problems with the measurement
and theory. Experimentally, we find that at InAs widths greater
than 40 Å samples type-convert from p to n, which may
indicate a more complicated physics than assumed in the
theory. In addition, there is great sample-to-sample variability
in mobilities, depending on the exact growth conditions.
Theoretically, there may also be other sources of scattering. For
example, we considered the effect of possible alloy scattering
due to antimony interdiffusion into InAs43 but found the
strength of such scattering to be two orders of magnitude
too small to account for the observed discrepancy between
experiment and theory (see Appendix B).

Since the ratio of the two mobilities is independent of �,
curves like those in Fig. 12 make it possible to estimate the
values of vertical mobilities given the measured value of the
corresponding horizontal mobility, if an additional piece of
information such as horizontal roughness or correlation length
are known. Alternatively, horizontal mobility measurements
over an extended temperature range may provide enough
additional information to make an independent determination
of � unnecessary.

An example of the concentration dependence of mobilities
is given in Fig. 13 for a 41.1Å InAs/24Å GaSb SL for two
values of correlation length. For a small correlation length, �=
30 Å, both mobilities decrease as a function of the Fermi level
or, equivalently, the carrier density. For the long correlation
length of � = 200 Å, the horizontal mobility first decreases
and then rises again, while the vertical mobility decreases to
an asymptotic value. This behavior is consistent with that in
Fig. 12, except that in Fig. 13 the correlation length is fixed and
the minimum is found at the Fermi energy corresponding to the
Fermi wavelength on the order of the fixed correlation length.
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For � = 30Å the minimum takes place at carrier densities
beyond the range of the graph.

IV. CONCLUSIONS

The theory of low-temperature electron transport in SLs
was presented, treating vertical and horizontal mobilities on
an equal footing within the same IRS model. Low temperature
vertical and horizontal electron mobilities in InAs/GaSb SLs
were calculated by solving the corresponding Boltzmann
equations using the energy spectra and wave functions ob-
tained from the solution of the coupled envelope-function
Hamiltonians (3×3 for the vertical and 8×8 for the horizontal
dispersions) for the SL. The behavior of the scattering rates
and mobilities was examined as a function of SL parameters
and explained in terms of the underlying physics. In absence
of screening a theorem was derived showing that vertical
scattering rates are greater than the horizontal rates so that the
vertical mobilities should be generally smaller than horizontal
mobilities. With screening included, backward scattering in
horizontal transport is accentuated, so that no general predic-
tions can be made. The calculated mobilities were found to be
strong functions of the interface roughness parameters, carrier
concentration, and carrier screening. Theoretically calculated
mobilities compared favorably with limited low-temperature,
horizontal mobility data on four selected samples. Using the
present results and the measured values of horizontal mobil-
ities, it is possible to estimate the value of the corresponding
vertical mobilities.
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APPENDIX A

In order to evaluate the quantum-well limit of the expression
for mobility, it is necessary to find the product of well height
and the fourth power of the modulus of the wave function in
the limit of infinite barrier height.21 Let the quantum well of
height V0 be located between −a � z � a. The electron-wave
function in the ground state is

ϕ(z) =
{

A cos kz

Be−κz

−a � z � a

|z| > a
, (A1)

where k =
√

2m∗E/h̄2 and κ =
√

2m∗(V0 − E)/h̄2. The
boundary conditions on the wave function and its derivative
furnish the relation ϕ(a)/ϕ′(a) = −1/κ , so that

V 2
0 ϕ4(a) = V 2

0

(
ϕ′ (a) /κ

)4 = V 2
0

(
h̄2

2m∗ (V0 − E)

)2

× (kA sin ka)4. (A2)

In the limit of infinite barrier height, the amplitude A =
1/

√
a, k = π/2a, and sin ka = 1, so that

lim
V0→∞

V 2
0 ϕ4(a) = (h̄2π2/m∗)2/(2a)6. (A3)

Inserting this dependence into the expression for the
relaxation rate gives

1

τ||(k)
=
(

�

4πh̄

π4h̄4�2�2

(m∗)2 (2a)6

)∫ π/l

−π/l

dk′
z

×
∫

(1 − cos θ ′) exp(−�2(k′
|| − k||)2/4)

× δ(ε − ε′)d2k′
||, (A4)

and using ε(k||) = h̄2k2
||/2m∗, the kz integral gives 2π/�.

Integrating over k′
|| with δ(ε − ε′) = m∗δ(k′

|| − k||)/(h̄2k||), the
final result is

1

τ||(k||)
=
(

π4h̄�2�2

2m∗ (2a)6

)∫ (
1 − cos θ ′)

× exp

(
−�2

i k
2
||

1 − cos θ ′

2

)
dθ ′, (A5)

so that τ|| and mobility are proportional to the sixth power
of layer width. This agrees with the expression for quantum
wells derived by Gold.32 The relaxation rate in the vertical
direction has the same functional dependence but without the
cos θ ′ term. Hence, the present theory correctly reduces to the
quantum-well limit as the barrier height becomes infinite.

APPENDIX B: ESTIMATE OF ALLOY SCATTERING

In this section we develop an expression for the relaxation
time in SLs for alloy scattering in order to compare the
strengths of alloy and IRS scatterings. In the binary-binary SL,
alloy scattering can be due to Sb interdiffusion into InAs layers,
which results in an InAs1−xSbx alloy with the alloy profile x(z).
In order to calculate the relaxation rates for alloy scattering,44

the potential in the current-carrying region is written in the
virtual crystal form as45

V0(r) =
∑

a

[xVInSb(r − a) + (1 − x)V InAs(r − a)], (B1)

where the sum is over all the molecular sites. Scattering is due
to random deviations from the average crystal,

δV0(r) =
∑

a

ca[VInSb(r − a) − V InAs(r − a)], (B2)

where ca is a random function equal to

ca =
{

1 − x

−x

for an InSb molecule at a,

for an InAs molecule at a,
(B3)

and the scattering potential is

VInSb(r − a) − V InAs(r − a) ≡ ν0ω0δ(r − a), (B4)

where ω0 = a3/4 is the volume per anion-cation pair46 and ν0

is the conduction-band offset between InSb and InAs.
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The matrix element of the scattering potential is calculated
to be

|M(k,k′)|2 = δk||,k′ ||

(
ν2

0ω0

A

)∫
[1 − x(z)]x(z)|φkz

(z)|2

× |φk′
z
(z)|2dz, (B5)

which, like IRS, is also randomizing and elastic. Since the
scattering mechanism is isotropic and independent of the
scattering angle θ ′, the in-scattering term for the horizontal
relaxation rate integrates to zero, so that the horizontal and
vertical relaxation times are equal,

1

τ⊥(E,kz)
= 1

τ||(E,kz)
= �m||

2πh̄3

(
ν2

0ω0
)

×
∫

I(kz,k
′
z)�(E − ε′

z)dk′
z, (B6)

where

I
(
kz,k

′
z

) ≡
∫ l

0
(1 − x(z))x(z)|φkz

(z)|2|φk′
z
(z)|2dz (B7)

is the overlap of the grading profile with the initial and final
state wave functions. Equation (B6) agrees with the similar
expressions derived earlier for quantum wells.47−49

To compare alloy to IRS scattering, we assume that Sb
diffuses into InAs at both interfaces by about one monolayer,
δ ≈ 3A, so that

x(z) =

⎧⎪⎨
⎪⎩

1 − (z + a) /δ

0

1 + (z − a) /δ

−a � z � −a + δ

−a + δ � z � a − δ

a − δ � z � a

. (B8)

Inserting this profile into Eq. (B6), one may approximate
the relaxation rate by

1

τ⊥(E,kz)
=
(

m||�
h̄3 ν2

0 |φkz
(a)|2

)
δω0

3π

×
∫ π/�

0
|φk′

z
(a)|2�(E − ε′

z)dk′
z.

(B9)

The difference between Eq. (B4) for alloy scattering and
Eqs. (39) and (40) for IRS scattering is mainly in the strength
parameters: ν2

0δω0/3π for alloy scattering and 2V 2
0 
2�2 for

IRS. Inserting typical numbers for the InAs/GaSb SL shows
that alloy scattering is about 100 times weaker than IRS
scattering.
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