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Kinetics of spin relaxation in quantum wires and channels: Boundary spin echo
and formation of a persistent spin helix
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In this paper we use a spin kinetic equation to study spin-polarization dynamics in one-dimensional (1D)
wires and 2D channels. The spin kinetic equation is valid in both diffusive and ballistic spin transport regimes
and therefore is more general than the usual spin drift-diffusion equations. In particular, we demonstrate that
in infinite 1D wires with Rashba spin-orbit interaction the exponential spin-relaxation decay can be modulated
by an oscillating function. In the case of spin relaxation in finite length 1D wires, it is shown that an initially
homogeneous spin polarization spontaneously transforms into a persistent spin helix. We find that a propagating
spin-polarization profile reflects from a system boundary and returns back to its initial position similarly to the
reflectance of sound waves from an obstacle. The Green’s function of the spin kinetic equation is derived for
both finite and infinite 1D systems. Moreover, we demonstrate explicitly that the spin relaxation in specifically
oriented 2D channels with Rashba and Dresselhaus spin-orbit interactions of equal strength occurs similarly to
that in 1D wires of finite length. Finally, a simple transformation mapping 1D spin kinetic equation into the
Klein-Gordon equation with an imaginary mass is found thus establishing an interesting connection between
semiconductor spintronics and relativistic quantum mechanics.
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I. INTRODUCTION

Dynamics of electron spin polarization in semiconductor
structures1 has attracted a lot of attention recently in the context
of spintronics.2 It is also important for understanding the time-
dependent response of certain memory-resistive (memristive)
devices.3,4 Typically, the most significant mechanism of spin
relaxation in semiconductors lacking inversion symmetry
is the D’yakonov-Perel’ spin-relaxation mechanism,5,6 inti-
mately related to the spin splitting of the electronic states.
Numerous studies of D’yakonov-Perel’ spin relaxation in the
past have dominantly concentrated on spin relaxation in infi-
nite two-dimensional (2D) systems,5–18 while the electron spin
relaxation in confined geometries is not yet well understood.
This problem, however, is of crucial importance since actual
spin-based electronic devices19 are normally of a finite size.

There are only several examples in the literature where
the effects of boundary conditions on D’yakonov-Perel’ spin
relaxation have been explored theoretically and/or experimen-
tally. In particular, previous investigations of spin relaxation in
systems with boundaries include studies of spin relaxation in
2D channels,20–25 2D half space,26 2D systems with antidots,27

large quantum dots,28,29 and one-dimensional (1D) finite-
length wires30 and rings.31 The common conclusion of these
studies is that in the diffusive regime of spin transport the
introduction of boundary conditions results in an increased
spin lifetime. In particular, in Ref. 30 the present authors
studied spin relaxation in finite length quantum wires using
the drift-diffusion equations approach. It was demonstrated
that a persistent spin helix32,33 spontaneously emerges in the
course of relaxation of homogeneous spin polarization.

In this paper, we extend the results of our previous study30

applying the spin kinetic equation approach to the problem of
spin relaxation in 1D wires and 2D channels with spin-orbit in-
teraction. The formalism of the spin kinetic equation describes

both diffusive and ballistic regimes of spin transport at any
value of spin rotation angle per mean free path. Therefore the
spin kinetic equation is more general than the traditional spin
drift-diffusion equations8–10,34,35 and can be strictly justified
by using quasiclassical Green’s functions.21,36 Basically, the
spin kinetic equation describes the spin-polarization dynamics
on shorter time and space scales than the scales of spin
drift-diffusion equations. Consequently, the application of the
spin kinetic equation to the problem of spin relaxation pro-
vides deeper insights into the spin-polarization dynamics. In
particular, in this paper we report the boundary spin-echo effect
in which a localized spin-polarization profile reflects from a
sample boundary and returns with a decreased amplitude to its
initial position similarly to the usual spin echo of sound waves.
This type of spin echo is essentially different from the spin echo
in nuclear magnetic resonance. The latter is related to nuclear
spins dephasing in an applied magnetic field.37 Moreover,
we find a simple transformation that maps the spin kinetic
equation into the Klein-Gordon equation with an imaginary
mass, which is a relativistic analog of Schrödinger’s equation.
It is worth mentioning that the Klein-Gordon equation with
an imaginary mass describes tachyons38–41—hypothesized
particles that travel faster than light. Consequently, we suggest
that semiconductor spintronics structures have a potential
to be used as a laboratory test bed for relativistic quantum
mechanics.

Our paper is organized as follows. In Sec. II we introduce
a spin kinetic equation and derive a set of equations for spin-
polarization components and boundary conditions. We also
demonstrate that the spin kinetic equation can be transformed
into the Klein-Gordon equation. Next, in Sec. III, we employ
the spin kinetic equation to study spin relaxation in infinite
and finite length wires with Rashba spin-orbit interaction. In
particular, in Sec. III D, we present the boundary spin-echo
effect. The spin relaxation in two-dimensional channels with
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Rashba and Dresselhaus42 spin-orbit interactions of equal
strength is investigated in Sec. IV. We demonstrate that such
a problem, for channels in a specific direction, can be mapped
into the problem of spin relaxation in finite length wires with
Rashba interaction only. The results of our investigations are
summarized in Sec. V.

II. THEORETICAL FRAMEWORK

A. Spin kinetic equation

The main goal of this paper is to study the kinetics
of spin relaxation in wires made of 2D quantum well or
heterostructure with Rashba spin-orbit interaction.43 Therefore
we first introduce the Hamiltonian for an electron in 2D space
in the presence of spin-orbit interaction and all important
parameters that will be used later in the spin kinetic equation.
The standard Hamiltonian with the Rashba43 term is given by

H = H0 + HR = p2

2m
+ α (σ × p) · z, (1)

where p = (px,py) is the 2D electron momentum operator, m

is the effective electron’s mass, σ is the Pauli-matrix vector,
α is the spin-orbit coupling constant, and z is a unit vector
perpendicular to the confinement plane.

It is not difficult to demonstrate35 that in the case of
Hamiltonian (1) the quantum-mechanical evolution of a spin
of an electron with a momentum p can be reduced to a spin
rotation with the angular velocity � = 2αp/h̄ about the axis
determined by the unit vector n = p × z/p. In this way, the
spin-orbit coupling constant α enters into equations through
the parameter η = 2αmh̄−1, which gives the spin precession
angle per unit length.

Besides this evolution, 2D electrons experience different
bulk scattering events such as, for example, due to phonons or
impurities. These scatterings randomize the electron trajecto-
ries. Correspondingly, the direction of spin rotation becomes
fluctuating, which causes average spin relaxation (dephas-
ing). This is the famous D’yakonov-Perel’ spin-relaxation
mechanism.5,6 The time scale of the bulk scattering events
can then be characterized by a single rate parameter, the
momentum relaxation time τ . It is connected to the mean free
path by � = vτ , where v = p/m is the mean electron velocity.
To take into account these scatterings we use a kinetic model of
spin transport, presented below. When a characteristic system
size L � �, the time scale of interest is much longer than τ , and
�τ � 1, the spin kinetic model yields the spin drift-diffusion
equations (such as, e.g., reported in Ref. 35).

In the semiclassic approximation the kinetic equation for
electron spin polarization can be written as (see, e.g., Refs. 12,
21,28, and 36)(

∂

∂t
+ p

m
· ∇

)
Sp = �p × Sp + St{Sp}, (2)

where Sp(r,t) is the vector of spin polarization of electrons
moving with momentum p, and St{Sp} is the collision
integral describing electron-scattering processes. In the τ

approximation the collision integral is given by

St{Sp} = − 1

τ
(Sp − 〈Sp〉), (3)

where the angle brackets denote averaging over the direction
of electron momentum. The conditions of applicability of
Eq. (2) can be found in Ref. 21. The collision integral (3)
corresponds to the elastic scattering of electrons by scatterers
with a characteristic time τ between the collisions. Note that
the collision integral (3) conserves the total spin polarization
redistributing spin polarization between electrons moving
in different directions. For the 1D case the average spin
polarization simplifies to the following expression: 〈Sp〉 =
(S+ + S−)/2, where S+ and S− are the spin polarizations
of electrons moving along the wire in the positive (with
momentum p = mvex) and negative (p = −mvex) directions
with the average velocity v. Thus the kinetic equation (2) for a
1D wire takes the form of the system of two vector equations,(

∂

∂t
+ v

∂

∂x

)
S+ = −�ey × S+ − 1

2τ
(S+ − S−), (4)(

∂

∂t
− v

∂

∂x

)
S− = �ey × S− − 1

2τ
(S− − S+). (5)

This system of equations should be complimented by initial
conditions for the spin densities S+ and S−,

S+(x,t = 0) = S+
0 (x), (6)

S−(x,t = 0) = S−
0 (x), (7)

and by boundary conditions (for finite length wires). The
boundary conditions conserving the spin polarization in elastic
scatterings at the boundary � = [x = 0,x = L] have the form

(S+ − S−)|� = 0. (8)

Taking the sum and difference of Eqs. (4) and (5) we easily
obtain

∂S
∂t

+ v
∂�

∂x
+ �ey × � = 0, (9)

∂�

∂t
+ v

∂S
∂x

+ �ey × S + �

τ
= 0, (10)

where the following notations are used: S = S+ + S− and � =
S+ − S−. As we are mainly interested in finding the total spin
polarization S, � can be eliminated from Eqs. (9) and (10) via
the following transformation. First of all, we multiply Eq. (10)
by et/τ and rewrite it as

∂(et/τ�)

∂t
+ vet/τ ∂S

∂x
+ �et/τ ey × S = 0. (11)

Then, Eq. (9) is multiplied by et/τ and is differentiated with
respect to the time,

∂

∂t

(
et/τ ∂S

∂t

)
+ v

∂

∂x

∂(et/τ�)

∂t
+ �ey × ∂(et/τ�)

∂t
= 0.

(12)

Finally, we substitute ∂(et/τ�)/∂t from Eq. (11) into Eq. (12).
The resulting equations for spin polarization can be presented
as

∂2S
∂t2

+ 1

τ

∂S
∂t

− v2 ∂2S
∂x2

− 2�vey × ∂S
∂x

+ �2(S − Syey) = 0,

(13)

where Sy is the y component of S.
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Next, we would like to reformulate the boundary condition
given by Eq. (8) in terms of the function S only. It is easy to
notice that Eq. (8) corresponds to �|� = 0. Substituting this
boundary value of � into Eq. (10) we obtain(

v
∂S
∂x

+ �ey × S
)∣∣∣∣

�

= 0. (14)

Previously, the same form of boundary condition was derived
using the Green’s-function method.44

Moreover, since Eq. (13) is the second-order differential
equation with respect to the time, one must specify both the
spin polarization and its time derivative at the initial moment
of time t = 0,

S(x,t = 0) = S0(x),

(
∂S
∂t

)
t=0

= Ṡ0(x). (15)

Note that if we know � at the initial moment of time t = 0
then we can find the first time derivative of S at t = 0 using
Eq. (9). In particular, if 	(x,t = 0) = 0 then it follows from
Eq. (9) that Ṡ0(x) = 0.

Considering y components of Eqs. (13) and (14) we find that
Sy is not coupled to any other component of spin polarization.
Specifically, Eqs. (13) and (14) for Sy can be rewritten as

∂2Sy

∂t2
+ 1

τ

∂Sy

∂t
− v2 ∂2Sy

∂x2
= 0, (16)

∂Sy

∂x

∣∣∣∣
�

= 0. (17)

Consequently, selecting Sy(x,t = 0) = 0 we can safely take
out Sy from our consideration.

Let us introduce a complex polarization,

S = Sx + iSz. (18)

It is straightforward to show that Eq. (13) and boundary
conditions (14) can be rewritten in a more compact form
using S:

∂2S

∂t2
+ 1

τ

∂S

∂t
−

(
v

∂

∂x
− i�

)2

S = 0, (19)(
v
∂S

∂x
− i�S

)∣∣∣∣
�

= 0. (20)

Moreover, it follows from Eqs. (19) and (20) that they have
only one stationary solution,

S = S0e
iηx, (21)

where S0 is an arbitrary complex constant. This solution is the
so-called spin helix,11,33 which is persistent in 1D Rashba wires
despite electron collisions. Taking the real and imaginary parts
of Eq. (21) with S0 = Aeiδ , we find the usual representation
of spin helix,

Sx = A cos(ηx + δ),Sz = A sin(ηx + δ), (22)

where A is the spin helix amplitude and δ is its phase. Since the
solution (22) of Eqs. (19) and (20) is the only stationary one,
any initial spin-polarization distribution eventually transforms
into the spin helix,30 in some cases, however, having zero
amplitude A = 0.

B. Klein-Gordon equation

We can exclude rotations of the spin-polarization vector
that are still present in Eqs. (19) and (20) by introducing a
complex field u via

u(x,t) = e−iηxet/2τ S(x,t). (23)

It can be shown that Eqs. (19) and (20) transform into

∂2u

∂t2
− v2 ∂2u

∂x2
− 1

4τ 2
u = 0, (24)

∂u

∂x

∣∣∣∣
�

= 0. (25)

The transformation given by Eq. (23) is useful, in particular,
since it allows us writing down the Green’s function SG(x,t)
of Eq. (19) through the known Green’s function of Eq. (24)
(we will take advantage of this fact below).

We note that Eq. (24) coincides with the well-known
Klein-Gordon equation (see, for example, Ref. 45), but with
an imaginary “mass” (see the sign of the last term). In
relativistic quantum mechanics such an equation describes
hypothetical particles called tachyons.38–41 Because of the
transformation (23), the tachyon physics is somewhat “hidden”
in the dynamics of spin polarization and can be recovered
by an inverse transformation. Analogies between certain
exotic particles and condensed-matter systems have attracted
a strong attention. For example, electrons in graphene46 and
graphite47 exhibit properties of Dirac fermions, signatures of
magnetic monopoles were spotted in spin ice materials,48

and some exotic quasiparticle excitations in a variety of
condensed-matter systems show a similarity with Majorana
fermions.49 Therefore we believe that our observation is not
only exciting by itself but will also stimulate further theoretical
and experimental work in this area.

III. SPIN RELAXATION IN WIRES

In this section we present our studies of kinetics of spin
relaxation in 1D infinite and finite length wires with Rashba
spin-orbit coupling using the spin kinetic equation approach.
Our analysis is essentially based on Eq. (19) supplemented by
initial and, where appropriate, boundary conditions (20). It is
assumed that a thin narrow wire is made of a semiconductor
heterostructure with spin-orbit coupling and the conduction
electrons in the wire occupy the lowest size-quantization
level corresponding to the transverse confinement. In addition,
the length of finite length wires is considered to be much
longer than the phase coherence length. Therefore the electron
transport in the direction along the wire is described in terms
of the classical transport regime.

A. Relaxation of homogeneous polarization in infinite wires

Let us start the analysis of solutions of Eq. (19) with
the most simple case, namely, with a problem of relaxation
of homogeneous initial spin polarization in an infinite wire,
−∞ < x < ∞. In this case, assuming that the solution of
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Eq. (19) does not depend on x, we can rewrite this equation
and initial conditions as

d2S

dt2
+ 1

τ

dS

dt
+ �2S = 0, (26)

S(t = 0) ≡ S(0) = Sx(0) + iSz(0),
dS

dt

∣∣∣∣
t=0

= 0. (27)

The solution of Eq. (26) with initial conditions (27) can be
represented in the form

S(t) = S(0)e−t/2τ

(
cosh κt + sinh κt

2τκ

)
, (28)

where κ =
√

1/(4τ 2) − �2. It should be emphasized that the
parameter κ can take both real and imaginary values depending
on system parameters. Moreover, in addition to the description
of the spin-polarization decay in infinite wires, Eq. (28) also
describes spin relaxation at long distances from boundaries of
finite length (and semi-infinite) wires.

Generally, we can distinguish two spin-relaxation regimes.
It follows from Eq. (28) that when 2τ� < 1 [Im(κ) = 0], the
spin relaxation is described by two exponents with relaxation
rates 1/(2τ ) ± κ . In the limit of a small spin precession angle
per mean free path, τ� � 1, we find

S(t) = S(0)e−τ�2t . (29)

The above expression coincides with the spin-relaxation time
predicted by the D’yakonov-Perel’ theory for 1D relaxation.
It is clearly seen that in this situation the relaxation of spin
polarization is characterized by the time constant (τ�2)−1,
which is much longer than τ .

The second regime of spin relaxation is realized when
2τ� > 1. In this case κ is purely imaginary meaning that
the spin-relaxation decay described by Eq. (28) consists of
an exponential decay with a rate of 1/(2τ ) modulated by
oscillating functions. In the limiting case τ� � 1 we obtain

S(t) = S(0)e−t/(2τ ) cos �t. (30)

Both regimes of spin relaxation are presented in Fig. 1.

B. Relaxation of inhomogeneous polarization in infinite wires

As it is mentioned below Eq. (24), the Green’s function
of Eq. (19), SG(x,t), can be obtained by performing a back
transformation (from u to S) of the known50 Green’s function
of Eq. (24) [the forward transformation is given by Eq. (23)].
Following this procedure we find

SG(x,t) = 1

2v
�(vt − |x|)eiηx−t/2τ I0

(√
v2t2 − x2

2vτ

)
, (31)

where �(t) is the Heaviside step function, and I0(t) is the
modified Bessel function of zero order. We note that the
Green’s function (31) of Eq. (19) describes the evolution of a
point excitation of spin polarization with the following initial
conditions:

SG(x,t) = 0 for t � 0,
∂SG

∂t

∣∣∣∣
t=0

= δ(x). (32)

τ

τκ
τκ
τκ

τ

τκ
τκ

FIG. 1. (Color online) Dynamics of spin relaxation of homoge-
neous spin polarization in infinite wires; (a) and (b) correspond to
two different regimes of spin relaxation of Eq. (28) as discussed in
the text. The values of κ are indicated on the plots.

The Green’s function (31) can be employed to determine the
spin polarization at any moment of time for any given initial
conditions using the relation

S(x,t) =
[

∂

∂t
+ 1

τ

] ∫ ∞

−∞
dξSG(x − ξ,t)S(ξ,0)

+
∫ ∞

−∞
dξSG(x − ξ,t)Ṡ(ξ,0). (33)

In order to better understand the meaning of Eq. (31), let us
consider the spin dynamics of the following initial excitation
of spin polarization in the z direction:

S(x,t = 0) = 0,
∂S(x,t)

∂t

∣∣∣∣
t=0

= iδ(x). (34)

Accordingly to Eq. (33), at any t � 0 the spin polarization in
the system is given by

Sx(x,t) = −�(vt − |x|)
2v

sin ηxe−t/2τ I0

(√
v2t2 − x2

2vτ

)
,

(35)

Sz(x,t) = �(vt − |x|)
2v

cos ηxe−t/2τ I0

(√
v2t2 − x2

2vτ

)
.

(36)
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τ
τ
τ

τ
τ
τ

FIG. 2. (Color online) Dynamics of Sz (a) and Sx (b) compo-
nents of spin polarization of an initial Gaussian spin-polarization
profile with spin polarization pointing in z direction [S(x,t = 0) =
iexp(−100x2/l2)]. The spin-polarization components are calculated
using Eq. (33). This plot was obtained using the parameter value
ηl = 0.1.

This solution describes a propagation of the initial excitation
of spin polarization in both directions from the excitation point
with well defined fronts. Such a propagation also involves spin
precession and spin relaxation.

Figure 2 shows the dynamics of a Gaussian spin-
polarization profile found using Eq. (33) (assuming zero time
derivative of spin polarization at t = 0). This plot shows
that the initial spin-polarization profile splits into left- and
right-moving packets whose amplitude in the z direction
decreases in time. At the same time, the amplitude of Sx

in moving packets increases because of the spin precession.
It should be emphasized that such moving packets of spin
polarization are not captured by the drift-diffusion schemes of
spin transport.8–10,34,35 In addition, we note that an area with
a flat Sz establishes between the moving packets. This region
of flat distribution of Sz can be considered as a precursor of
diffusive dynamics.

Moreover, the expression for the Green’s function (31) takes
a simpler form at some specific points. For example, if we
consider the position of the moving front, then it is easy to
obtain

SG(x = vt − 0,t) = 1

2v
eiηxe−t/2τ . (37)

This expression basically means that the amplitude of the
moving front exponentially decreases with the time constant
2τ . Another interesting point is x = 0. We find that at x = 0
the Green’s function (31) is a real function of time:

SG(0,t) = 1

2v
e−t/2τ I0

(
t

2τ

)
. (38)

Its asymptotic values at short and long times can be calculated.
In particular, at short times t � τ ,

SG(0,t) = 1

2v

[
1 − 1

2

t

τ
+ 3

16

t2

τ 2
+ O

(
t3

τ 3

)]
, (39)

and at long times t � τ

SG(0,t) = 1

2v

√
τ

πt

[
1 + O

(
τ

t

)]
. (40)

Clearly, Eq. (40) describes the well-known diffusive behavior.

C. Relaxation of homogeneous polarization in finite length wires

Let us consider the problem of spin relaxation in wires of
finite length L, 0 < x < L, when at the initial moment of time
the electron spins are homogeneously polarized along the z

axis,

S(x,0) = iS0,
∂S

∂t

∣∣∣∣
t=0

= 0. (41)

We find the solution of Eq. (19) with the boundary conditions
(20) and initial conditions (41) using the standard method of
separation of variables. A straightforward application of this
method leads to the following expression for the complex spin
polarization:

S(x,t)

S0
= i

sin(ηL/2)

ηL/2
eiη(x−L/2) + 2ηLeiηx−t/(2τ )

×
+∞∑
n=1

1 − (−1)ne−iηL

(ηL)2 − (πn)2

(
cosh κnt + sinh κnt

2τκn

)

× cos
πnx

L
, (42)

where κn =
√

1/(4τ 2) − π2n2v2/L2.
Previously, we investigated the spin relaxation in finite

length wires in the diffusive regime and found that an initially
homogeneous spin polarization in z direction transforms into
a persistent spin helix at long times.30 The same qualitative
result follows from Eq. (42) [note that only the first term in the
right-hand side of Eq. (42) survives at long times]. However,
Eq. (42) by itself is more complex compared to a corresponding
expression reported in Ref. 30 for the case of diffusive spin
transport. This is because Eq. (42) incorporates details of both
diffusive and ballistic spin transport. It can be shown that
Eq. (42) gives the same result30 in the diffusive limit. Indeed,
when � = vτ � L and t � τ it is easy to demonstrate that

lim
τ→0,�→0

e−t/(2τ )

(
cosh κnt + sinh κnt

2τκn

)
= e−π2n2Dt/L2

, (43)

where D = �2/τ . Substituting Eq. (43) into Eq. (42) we obtain
the same expression for S(x,t) as in Ref. 30. The dynamics
of formation of persistent spin helix in the ballistic regime of
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spin transport is depicted in Fig. 3. This figure is obtained by
plotting Eq. (42) at different moments of time. One notices
that the persistent spin helix is almost entirely formed within
a short ∼5τ time interval.

Let us consider the ballistic limit in more details. In this case
assuming � � L, 2κnτ/i ≈ 2πn�/L � 1, the second term in
the big round brackets in Eq. (42) can be omitted [since it
involves a small multiplier 1/(2κnτ )]. Then, we obtain

S(x,t)

S0
= i

sin(ηL/2)

ηL/2
eiη(x−L/2) + ηLeiηx−t/(2τ )

+∞∑
n=1

1 − (−1)ne−iηL

(ηL)2 − (πn)2

(
cos

πn(x + vt)

L
+ cos

πn(x − vt)

L

)
. (44)

We can sum the series in Eq. (44) taking into account the
fact that at the initial moment of time, t = 0, the right-hand
side of Eq. (44) is equal to i. Moreover, since these Fourier
series are even and 2L periodic, we can finally obtain a very
simple expression for the spin polarization in the ballistic
limit:

S(x,t)

S0
= i

sin(ηL/2)

ηL/2
eiη(x−L/2)(1 − e−t/(2τ ))

+ i

2
e−t/(2τ )(eiη(x−|x̃−vt |) + eiη(x−|x̃+vt |)), (45)

where z̃ = z + 2Ln, and n is an integer number selected in
such a way that, for any real z, −L < z̃ � L.

τ τ
τ τ

τ τ

τ τ
τ τ

τ τ

FIG. 3. (Color online) Dynamics of formation of persistent spin
helix in the ballistic regime of spin transport. This plot was obtained
using the parameter values ηl = 2 and L = 2l.

D. Relaxation of inhomogeneous polarization
in finite length wires

Next, we investigate the dynamics of relaxation of an
arbitrary spin-polarization profile in finite length wires. For
this purpose, we obtain an expression for the Green’s function
G(x,t ; ξ ) that allows finding the spin-polarization profile at
any moment of time for given initial conditions. The Green’s
function G(x,t ; ξ ) is calculated by mapping Eq. (23) into
Eq. (24) taking into account the boundary conditions (25) by
an even mapping of the initial condition on an infinite wire. It
is straightforward to show that G(x,t ; ξ ) can be written as

G(x,t ; ξ ) = eiη(x−ξ )−t/(2τ )

2v

+∞∑
n=−∞

[
�(vt − |x − ξ − 2Ln|)

×I0

(√
v2t2 − (x − ξ − 2Ln)2

2vτ

)
+ �(vt − |x

+ ξ − 2Ln|)I0

(√
v2t2 − (x + ξ − 2Ln)2

2vτ

)]
.

(46)

The spin-polarization distribution along the wire at any
moment of time can be calculated using the following
equation:

S(x,t) =
[

∂

∂t
+ 1

τ

] ∫ L

0
dξG(x,t ; ξ )S(ξ,0)

+
∫ L

0
dξG(x,t ; ξ )Ṡ(ξ,0). (47)

As an example of spin dynamics calculation in finite
length wires, let us consider the evolution of a Gaussian
initial spin-polarization profile. The time derivative of spin
polarization at t = 0 is set equal to zero (this is the second
initial condition). Figure 4 shows results of our calculations
based on Eqs. (46) and (47). Specifically, it is clearly seen
that the initial spin-polarization profile splits into two packets
moving in opposite direction similarly to the result shown
in Fig. 2 for the case of infinite wire. The amplitude of
Sz in these packets decreases in time. At t = 2τ the left-
moving packet reaches the wire boundary and is reflected
back changing its direction of motion. We refer to such a
reflected packet of spin polarization as the boundary spin
echo to distinguish it from the spin echo in nuclear magnetic
resonance (NMR).37 The boundary spin echo much closer
resembles the echo of sound waves than the spin echo in NMR.
We also note that at long times any initial spin-polarization
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τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

FIG. 4. The boundary spin echo in a finite length wire. The
evolution of an initially Gaussian spin-polarization profile pointing
in z direction [S(x,t = 0) = iexp(−100x2/l2)] was found using
Eqs. (46) and (47). It is clearly seen that the spin-polarization
packet initially moving in −z direction moves back after the
reflection from the boundary. This plot was obtained using the
parameter values ηl = 0.1, L = 6l. The curves are displaced for
clarity.

profile (including one shown in Fig. 4) shapes into the
persistent spin helix characterized by a certain amplitude and
phase.

IV. SPIN RELAXATION IN 2D CHANNELS

Let us consider a two-dimensional electron gas in the
presence of linear in the wave vector Rashba and Dresselhaus
spin-orbit couplings. The electron Hamiltonian is written as

H = p2

2m
+ α (pyσx − pxσy) + β(pxσx − pyσy), (48)

where α and β are strengths of Rashba and Dresselhauss spin-
orbit couplings correspondingly. In the specific case that we
consider below, namely when α = β, the Hamiltonian (48)
takes the form

H = p2

2m
+ α(σx − σy)(px + py). (49)

Next, consider a rotation about z axis by an angle ϕ =
π/4. Then, x is transformed into x ′ = (x + y)/

√
2 and

y ′ = (y − x)/
√

2. The transformation of the spin part of the
Hamiltonian (49) is performed using the standard unitary
transformation,

U =
(

eiϕ/2 0
0 e−iϕ/2

)
. (50)

In the new basis the Hamiltonian (49) is given by

H ′ = UHU † = p2

2m
− 2αpx ′σ ′

y ′ , (51)

where σ ′
y ′ = σy corresponds to the projection of spin operator

in the rotated basis on y ′. Under the action of the Hamiltonian
H ′, the spin of an electron precesses with an angular velocity
�′

p = −�′ey ′ cos θ , where θ is the angle between the direction
of electron momentum and the x ′ axis and �′ = 4αp/h̄.

Now, let us consider electron spin dynamics in a channel
of width L in the x ′ direction and of infinite length in the
y ′ direction. Our goal is to show that the evolution of spin
polarization (homogeneous in the y ′ direction) in such a
channel is similar to the evolution of spin polarization in finite
length wires considered in Sec. III. Assuming that the spin
polarization in the channel depends only on x ′ and Sy ′ = 0, we
can combine Eqs. (2) and (3) as

∂S(θ )

∂t
+ v cos θ

∂S(θ )

∂x ′

= −�′ cos θey ′ × S(θ ) − 1

τ

[
S(θ ) −

∫ 2π

0

dθ

2π
S(θ )

]
, (52)

where the following shorthand notation is used: S(θ ) =
S(θ,x ′,t). Introducing a complex spin polarization S(θ ) =
Sx ′ (θ ) + iSz(θ ), we arrive at the following integral equation:

∂S(θ )

∂t
+ v cos θ

∂S(θ )

∂x

= i� cos θS(θ ) − 1

τ

[
S(θ ) −

∫ 2π

0

dθ

2π
S(θ )

]
(53)

complimented by the boundary condition

[S(θ ) − S(π − θ )]|� = 0. (54)

We seek the solution of Eq. (53) in the form of Fourier series,

S(θ ) = σ0 +
+∞∑
n=1

(σn cos nθ + σ̄n sin nθ ), (55)

where σn and σ̄n are functions of x ′ and t . In particular, it is
clear that σ0 = ∫ 2π

0 dθS(θ )/(2π ) is proportional to the spin
polarization.

Substituting Eq. (55) into Eq. (53) and using the complete-
ness of the set of function {1, cos nθ, sin nθ} we find infinite
series of interconnected equations. The two first equations in
the series are

∂σ0

∂t
+ 1

2

(
v

∂

∂x ′ − i�′
)

σ1 = 0, (56)

∂σ1

∂t
+

(
v

∂

∂x ′ − i�′
)(

σ0 + σ2

2

)
+ σ1

τ
= 0. (57)

155306-7



VALERIY A. SLIPKO AND YURIY V. PERSHIN PHYSICAL REVIEW B 84, 155306 (2011)

For a weakly anisotropic electron momentum distribution
|σ2| � |σ0| therefore we can truncate the series by setting
σ2 = 0 in Eq. (57). Thus Eq. (57) can be rewritten as

∂σ1

∂t
+

(
v

∂

∂x ′ − i�′
)

σ0 + σ1

τ
= 0. (58)

Excluding σ1 from Eqs. (56) and (58), we obtain the following
equation for the total spin polarization σ0:

∂2σ0

∂t2
+ 1

τ

∂σ0

∂t
−

(
v√
2

∂

∂x ′ − i
�′
√

2

)2

σ0 = 0, (59)

which is of a similar form as Eq. (19). This is the main result
of Sec. IV proving similarity of spin relaxation in finite length
wires and 2D channels.

The boundary condition for spin dynamics in the channel
can be obtained in the following way. Substituting the
approximate solution of Eq. (53),

S(θ ) = σ0 + σ1 cos θ + σ̄1 sin θ, (60)

into the boundary condition Eq. (54), we immediately notice
that the function σ1 on the channel boundary must turn to zero,
namely

σ1|� = 0. (61)

Combining Eq. (61) with Eq. (58), we find the corresponding
boundary condition for the complex spin polarization σ0,(

∂σ0

∂x ′ − i
�′

v
σ0

)∣∣∣∣
�

= 0, (62)

which is similar to the boundary condition in finite length wires
given by Eq. (20).

V. CONCLUSIONS

In this paper, we studied spin relaxation in 1D and 2D
systems with spin-orbit interaction. For this purpose, we used
the spin kinetic equation that takes into account both ballistic
and diffusive spin transport regimes. This formalism was
applied to several interesting problems of spin relaxation that
were solved analytically. In particular, we analyzed dynamics
of homogeneous and inhomogeneous spin polarizations in
infinite and finite length 1D wires. Moreover, it was explicitly
demonstrated that the problem of spin relaxation in appro-
priately oriented 2D channels with Rashba and Dresselhaus
interactions of equal strength can be reduced to the problem of
spin relaxation in 1D wires. This result establishes a solid
foundation for a recently suggested method of creation of
persistent spin helical configurations in semiconductors.30

One of the main results of the paper is a prediction of the
spin echo in the ballistic regime of spin transport. We found that
in finite length wires an initially localized spin-polarization
profile reflects from a sample boundary returning to its initial
position. To distinguish such a spin echo from that in NMR
and emphasize its closer analogy with the spin echo of sound
waves we named such an effect “the boundary spin echo.”
Another interesting result is a discovery of a transformation
that maps the spin kinetic equation into the Klein-Gordon
equation with an imaginary mass. In the relativistic quantum
mechanics, this equation is used to describe tachyons, namely,
hypothetical subatomic particles that moves faster than light.
Therefore we believe that certain predictions of relativistic
quantum mechanics can be laboratory tested. Of course, much
work is to be done in this direction.
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