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Nonequilibrium transport properties of a double quantum dot in the Kondo regime
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We analyze the nonequilibrium transport properties of a parallel double quantum dot in terms of its full counting
statistics (FCS). The parameters of the setup are assumed to be such that both subsystems are driven into the
Kondo regime. After a series of transformations, the Hamiltonian is then mapped onto a Majorana resonant level
model, which effectively describes the Toulouse point of the respective double-impurity two-terminal Kondo
model. Its FCS is then obtained at arbitrary constellation of voltage, temperature, and local magnetic fields. We
identify two different transport processes corresponding to single-electron tunneling as well as an electron pair
process, and we give the respective effective transport coefficients. In the most universal linear-response regime,
the FCS turns out to be of a binomial shape with an effective transmission coefficient. Furthermore, we find a
complete transport suppression (antiresonance) at a certain parameter constellation, which is similar to the one
found in the noninteracting quantum dots. By an explicit expansion around the Toulouse point, we show that the
antiresonance is universal and should be observable in the generic Kondo dot setup. We discuss experimental
implications of our predictions as well as possible routes for generalizations of our approach.
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I. INTRODUCTION

Quantum dot (QD) is an important paradigm in many
research fields. One of the most important application areas
of this concept is the quantum transport. Here the QD
often represents a basic building element of micro- and
nanoelectronic circuitry.1 For the applications it is not only
important to understand the physics of individual devices
but also of more complicated arrangements of QD’s. The
focus of our study is the structure with the next to single
QD complexity level, which is, besides slight modifications
and similar geometries,2–5 a double QD structure in parallel
geometry.6–15

The most widespread modeling strategy for a QD is the
bottom-up approach. The structure is essentially assumed to be
a zero-dimensional object, which is modeled by a single spin-
degenerate fermionic level. This “resonant level” model is then
coupled via particle exchange to source and drain electrodes
as well as electrostatically to a gate electrode that tunes the
resonant level energy, thereby controlling the transmission
coefficient of the structure. However, because of a confined
geometry, one has to include electron interaction terms at
least in the minimal form by introduction of finite energy
cost for the double population of the QD. This leads directly
to the celebrated Anderson impurity model (AIM),16,17 which
was already applied to parallel double-dot structures.18–20 It
exhibits an enormous manifold of very different transport
regimes, for many of which no exact analytical results in
nonequilibrium are available.

Probably one of the most interesting cases is the Kondo
regime when the QD is populated by a single electron and the
energetic costs of double population as well as of emptying
the dot are so high that the transport channel involving only
single-electron tunneling events is blocked.21 Then only virtual
double population is allowed and the remaining transport
channel is the spin-flip tunneling. It has very profound
consequences on the transport characteristics of the systems.
For instance, the nonlinear I (V ) as well as the shot noise
turns out to contain two different transport channels, namely

single-electron tunneling and a pair process,22–24 which can be
seen explicitly in their FCS.25,26 The resulting highly nontrivial
Fano factor 5e/3 has already been verified experimentally.27

Due to the additional degrees of freedom of double QD’s, it
might, at least in principle, be possible for the electrons to
be transferred in groups of not only two but also of three
and even four particles. FCS is most useful in answering such
questions.

Although the low-energy transport characteristics of the
Kondo regime of double QD’s are by now fairly well
understood, the nonlinear response and especially the FCS
of such systems are notoriously difficult to obtain. There is,
however, a parameter constellation, which on the one hand is a
nontrivial one in the sense that it captures most of the relevant
physics of the Kondo limit, and on the other hand allows for
a complete analytical solution with elementary means. These
are referred to as Toulouse point solutions.28–31

A similar calculation for the double QD setup, being an
analytic solution, would yield invaluable information about
the transport properties of the system and would become
an important benchmark for other approaches. To the best
of our knowledge, this kind of calculation has not yet
been attempted. There are several obstacles that need to be
circumvented. The first issue is the validity of the Hamiltonian
in which two different localized spins are simultaneously
locally coupled to two electrodes. This part of the program
was successfully mastered in Ref. 32. The second question
is that of the principal applicability of the sequence of
transformations that are usually used in order to obtain an
essentially quadratic Hamiltonian. As is argued in the next
section one can indeed apply them after a minor adjustment.
The last issue is slightly more technical and concerns the
method for FCS calculation, i.e., how one has to introduce
the counting fields in order to obtain meaningful results. This
is discussed with all necessary details in Sec. II. In Sec. III, we
present the results and discuss the emerging physics. The final
section summarizes our findings and gives directions for future
research.
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II. MODEL AND CALCULATION METHOD

The simplest meaningful starting point is the double-
impurity Anderson model with two electrodes. It is shown in
Ref. 32 that by a dedicated Schrieffer-Wolff transformation,33

the low-energy sector is that of two magnetic impurities
coupled by exchange terms to the spin densities in the
electrodes (as long as only one electron populates the dot).
This situation is shown in Fig. 1, which also serves to explain
the notation conventions. We want to emphasize at this point
that the applied magnetic fields, which are independent on
each of the dots, are aligned parallel to the plane of the
structure and therefore do not create an Aharonov-Bohm
phase. The applied bias voltage V is indicated by the different
chemical potentials on the leads: μL − μR = eV . Then the
corresponding Hamiltonian is given by

H = Hkin + Hint + Hmag, (1)

where the three parts are given by (we use units in which e =
h̄ = vF = 1, where vF is the Fermi velocity in the electrodes)

Hkin = i
∑

α=L,R

∑
σ=↑,↓

∫
ψ†

ασ (x)∂xψασ (x)dx , (2)

Hint =
∑

α,β=L,R

∑
λ=x,y,z

J
αβ

λ sλ
αβ(x = 0)

(
τλ

1 + τλ
2

)
, (3)

Hmag = −μBgimp
(
H1τ

z
1 + H2τ

z
2

) = −
∑
j=1,2

	jτ
z
j . (4)

ψ
†
αδ(x) denotes the fermionic field creation operators in the

electrode α. The bare (without impurity coupling) electron
dispersion in the leads is linearized around the Fermi edge as
we are only interested in the low-energy sector of the system.
The interaction term includes the generalized spin densities
sλ
αβ(x) = 1

2ψ
†
αδ(x)(σ )λδδ′ψβδ′(x). μB is Bohr’s magneton and

gimp is the impurity Landé factor. We restrict our calculations to
the cases in which the coupling constants fulfill the restrictions

J αβ
x = J αβ

y = J
αβ

⊥ , J LR
z = JRL

z = 0,

and JLL
z = JRR

z = Jz (5)

first discussed in Ref. 30. We employ the strategy outlined
there and proceed by performing a number of transformations

FIG. 1. Parallel double quantum dot. The two quantum dots are
coupled symmetrically (under exchange of the dots) to metallic leads.
H1,2 (small arrows) are the in-plane magnetic fields. The dot spins
are represented by larger arrows. The coupling is represented by the
double-headed arrows.

in order to map the Hamiltonian (1) onto that of a noninter-
acting system. First the Hamiltonian is bosonized using the
bosonization identity31,34

ψασ (x) = eiϕασ

√
2πa

e−iφασ , (6)

where a is the lattice constant of the underlying lattice model.
In the next step, we introduce the bosonic fields φc, φs, φf , and
φsf (corresponding to “charge,” “spin,” “flavor,” and “spin-
flavor” channels) as linear combinations of the bosonic fields
appearing in (6):

φc,s,f,sf = 1
2 (φL↑±

±φL↓+
−φR↑±

∓φR↓). (7)

We apply a unitary transformation that is known to change
the scaling dimensions of the coupling, thus enabling its
refermionization.31 In the spirit of Ref. 35, we construct it
as a product of two Emery-Kivelson rotations,29

U = e
i
2 χs (τ z

1 +τ z
2 ), (8)

around the z axes of the spins. Here χs denotes the combination
of the bosonic field with its corresponding Klein factor field
χν = φν(0) − ϕν . One can define new fermionic fields

ψf = eiπ(d†
1+d

†
2 )(d1+d2)

√
2πa

e−i(φf −ϕf ), (9)

ψsf = eiπ(d†
1+d

†
2 )(d1+d2)

√
2πa

e−i(φsf −ϕsf ) , (10)

which allow for a refermionization of the Hamiltonian,
yielding

H′ = Hkin + (2
√

2πa)(−1)

× [J+(ψ†
sf + ψsf )(d†

1 − d1 + d
†
2 − d2)

+ JLR(ψ†
f − ψf )(d†

1 + d1 + d
†
2 + d2)

+ J−(ψ†
sf − ψsf )(d†

1 + d1 + d
†
2 + d2)]

+
∑
j=1,2

[μBgHj − (Jz − 2π ) : ψ†
s (0)ψs(0) :]

× (d†
j dj − 1/2), (11)

where the free-fermion field ψs(x) has to be evaluated at x = 0.
Now we simplify this expression by introducing Majorana
fermions for the dot and lead fermions, which are defined in
the following way:

aj = 1√
2

(d†
j + dj ), ην(x) = 1√

2
[ψ†

ν (x) + ψν(x)],

bj = i√
2

(dj − d
†
j ), ξν(x) = i√

2
[ψν(x) − ψ†

ν (x)] .

For purposes that will become clear later in this work, we
want to define a new parameter γ to be γ := Jz − 2π . In this
new notation, the transformed Hamiltonian reads

H′ = Hkin − i	1a1b1 − i	2a2b2 + iKLRξf (a1 + a2)

+ iK+ηsf (b1 + b2) + iK−ξsf (a1 + a2)

+ γ : ψ†
s (0)ψs(0) :

(
τ z

1 + τ z
2

)
. (12)
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We note that after the transformations, the coupling con-
stants Kj as well as the fermionic fields ψν have the physical
dimension

√
energy. This can be seen in the definitions

J± = 1

2
(JLL

⊥ ± JRR
⊥ ), Kj = J j

√
2πa

, (13)

where a is the constant that corresponds to the lattice spacing
that already appeared in Eq. (6).

In its new form, the Hamiltonian, which does not contain
any approximations or simplifications yet, possesses only one
term that is not quadratic in the fermionic fields. In fact, in
the case γ = 0 or Jz = 2π , it becomes purely quadratic and
thus exactly solvable by elementary means. This particular
point in the parameter space is referred to as the Toulouse
point.31 Despite its relative simplicity, the Toulouse point
solution carries all features of the generic Kondo effect
because Jz = 2π corresponds to rather strong correlations.
The conventional strategy is to solve the γ = 0 case first and
then analyze the robustness of the solution beyond that point
by an expansion around the Toulouse point.26,30,36 We follow
this path in the remainder of the paper.

At this point, we would like to get back to our earlier
restriction of the magnetic fields being aligned to the plane
of the structure to ensure that no Aharonov-Bohm phase (AB
phase) is generated. Now, having performed the bosonization,
rotation, and refermionization procedure, we may ask if it is
possible to include this phase in this formalism. The idea then
is to break the symmetry JLR = JRL and to equip each of the
corresponding terms in the Hamiltonian with an appropriate
phase e±iα/2. The other terms are not affected by the AB
phase. Executing the same steps up to the rotation leads to an
expression that cannot be refermionized in the same manner
as above because of the Klein factors. They lead to extra
factors of τ z

1,2 in the refermionized expression and therefore the
Hamiltonian cannot be mapped onto a noninteracting system.
That is why we restrict ourselves to the in-plane magnetic
fields.

III. FCS OF THE DOUBLE QD SYSTEM

One of the most generic transport properties of QD’s is
the FCS. It is usually obtained in the form of the cumulant
generating function (CGF) ln χ (λ), which, being derived n

times with respect to the counting field λ, yields the nth
cumulant (irreducible moment) of the probability to measure
the transmission of charge Q during a very long measurement
time T ,1,37

〈〈Qn〉〉 = 1

in

∂n

∂λn
ln χ (λ) . (14)

The current through the constriction is then found from
I (V ) = 〈〈Q〉〉/T , the shot noise is related to the second
cumulant at zero temperature, S(V ) = 〈〈Q2〉〉/T , etc. It is
also useful to construct a Fano factor, which is given by the
(in our convention dimensionless) ratio of two lowest-order
cumulants,1,38

F (V ) = S(V )

2I (V )
. (15)

It is related to the eminent Schottky formula, which allows
(at least in principle) a measurement of the charge of current-
carrying excitations; see, e.g., Ref. 27. The main advantage
of the CGF is therefore that all cumulants are accessible via
simple derivation with respect to λ and setting λ = 0 afterward.

There are several methods of CGF calculation. We shall
follow the one presented in Ref. 39. First the counting field λ

is introduced on the Keldysh contour as

λ(t) = θ (t)θ (T − t)

{
λ = λ− , t on forward path

−λ = λ+ , t on backward path.

(16)

The charge-counting operator

Tλ = TReiλ(t)/2 + TLe−iλ(t)/2 (17)

is constructed from TR (TL) parts of the Hamiltonian, which
are responsible for particle transport from the right electrode to
the left one and vice versa. In the present situation, it amounts
to the decoration of tunneling terms ψ

†
LσψRσ ′ (ψ†

RσψLσ ′)
in the starting Hamiltonian (1) by factors e−iλ(t)/2 (eiλ(t)/2),
respectively.

The CGF can then be derived using the formula40,41

χ (λ) = 〈TCe−i
∫
C

Tλ(t)dt 〉 , (18)

where TC is the Keldysh contour ordering operator and the
average is taken with respect to the full H. Although this
average can be calculated directly, the adiabatic potential
method results in a much more compact algebra.39 It turns
out that due to the Feynman-Hellmann theorem42 in the limit
T → ∞, there is an identity ln χ (λ) = −iT U(λ−,λ+), where
the adiabatic potential is defined as

∂

∂λ−
U(λ−,λ+) =

〈
∂Tλ(t)

∂λ−

〉
λ

. (19)

In the Majorana representation, the charge-counting term is
then given by

Tλ(t) = iKLR[sin(λ/2) a+ηf + cos(λ/2) a+ξf ] , (20)

where we introduced the new fields a± = (a1 ± a2)/
√

2.
Because of the normalization of these new fields, a factor of

√
2

has to be absorbed in every coupling constant. Analogously
to the procedure shown in Ref. 43, we express the adiabatic
potential in terms of Green’s functions (GF’s),

U(λ) = −iK2
LR

∫
dω

2π

∫
dλ

[
D−−

a+a+g−−
ξf ηf

+ sin(λ)D−+
a+a+g+−

ηf ηf
− cos(λ)D−+

a+a+g+−
ξf ηf

]
, (21)

where we used λ = (λ− − λ+)/2, and D represents exact GF’s
whereas g represents the GF’s of zeroth order in coupling.
Calculation of the exact GF’s for the essentially quadratic
Hamiltonian (we have set γ = 0 in the whole of this section)
is straightforward but rather lengthy. The final result for the
CGF reads

ln χ (λ) = T
∫ ∞

0

dω

2π
ln{1 + T2(ω)nL(nR − 1)(e2iλ − 1)

+ T1(ω) [nR(nF − 1) + nF (nL − 1)] (e−iλ − 1)
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+ T1(ω) [nL(nF − 1) + nF (nR − 1)] (eiλ − 1)

+ T2(ω)nR(nL − 1)(e−2iλ − 1)}, (22)

where T1(ω) and T2(ω) are effective transmission coefficients
that are given by

T1(ω) = α1

α0
and T2(ω) = α2

α0
with (23)

α0 = 32K2
+
[
K2

LR + K2
−
]
(	1 + 	2)2(ω2 − 	1	2)2 + 16ω2K4

+
(
	2

1 + 	2
2 − 2ω2

)2

+ [
K2

LR + K2
−
]2{

K4
+[(	1 + 	2)2 − 4ω2]2 + 16ω2

(
	2

1 + 	2
2 − 2ω2

)2} + 256
(
	2

1 − ω2
)2(

	2
2 − ω2

)2
,

α1 = 2K2
LR

{
16K2

+(	1 + 	2)2(ω2 − 	1	2)2 + 16K2
−ω2

(
	2

1 + 	2
2 − 2ω2

)2 + K4
+K2

−[(	1 + 	2)2 − 4ω2]2
}
,

α2 = K4
LR

{
K4

+[(	1 + 	2)2 − 4ω2]2 + 16ω2
[
	2

1 + 	2
2 − 2ω2

]2}
.

In Eq. (22), the factors e±iλ and e±2iλ distinguish between two
different types of charge-transfer processes: the first kind of
process transports a single charge across the system while
the second one transports two charges. The “±” indicates
the direction of charge transport, where “+” means “in the
direction of applied voltage” and “−” means “against the
direction of applied voltage.” As expected, one can see that
in the zero-temperature limit, the terms corresponding to the
“−” vanish as the Fermi functions become Heaviside’s step
functions. Unfortunately, at least in the chosen parameter
range, the FCS does not point toward collective processes
involving three or four tunneling electrons. One reason for
that might be the absence of mutual many-particle correlations
between the dots.44,45 An inclusion of such interactions leads
to the Toulouse point breakdown, so we have to postpone
answering this question to a future work.

We also note that in the case of 	1 = 0 = 	2, our CGF,
using the proper convention of notation, coincides with the
result of Ref. 26 in the case of zero magnetic field. This means
that without any magnetic field applied, the double Kondo
impurity behaves just as a single one.

A. Linear-response regime V,T → 0

In this case, we can expand our FCS in the following way:

ln χ (λ) ≈ T
∫ V

0

dω

2π
f (ω)|ω=0 + · · · , (24)

where we write the integrand as a single function f (ω) for
simplicity. Thus the integration over ω becomes trivial if we
limit ourselves to the zeroth expansion term. Then the FCS
reads

ln χ (λ) = T V

2π
ln[1 + T1(ω = 0)(eiλ − 1)

+ T2(ω = 0)(e2iλ − 1)] , (25)

which is equivalent to a manifestly binomial distribution

χ (λ) = ln[ 1 + T1(0)(eiλ − 1) + T2(0)(e2iλ − 1)]
T V
2π

= [ 1 + Te(eiλ − 1)] 2 T V
2π . (26)

(This result is consistent with the binomial theorem put
forward in Ref. 26.) Te = √

T2(ω = 0) is an effective trans-
mission coefficient. In terms of the αi introduced above, the
transmission coefficients reduce to

α0 = [
16	2

1	
2
2 + K2

+(K2
+ + K2

−)(	1 + 	2)
]2

, (27)

α1 = 2(	1 + 	2)2K2
LRK2

+
[
16	2

1	
2
2

+ (	1 + 	2)2K2
−K2

+
]
, (28)

α2 = K4
LRK4

+(	1 + 	2)4. (29)

At this point, we would like to call the reader’s attention
to the fact that for the case 	1 = −	2, both T1 and T2

vanish regardless of the choice of coupling constants. This
means that in this case, the transport through the system is
suppressed and we observe an antiresonance at ω = 0. This
feature can be understood due to the fact that for each electron
that spin-flip tunnels across the system, its corresponding
hole does the same via the other quantum dot. This effect is
very similar to the one found in the noninteracting double
QD’s.46,47 (However, due to its different nature, it cannot
be used for spin filtering, as suggested in Ref. 48. See also
Ref. 49 for other interference effects.) Whether this feature
pertains to the Toulouse point only is easily answered by a
number of different perturbative expansions around this special
point.36 We explicitly performed the lowest-order perturbative
expansion in γ . This is a rather involved calculation, the details
of which we present in the Appendix. In the case of small bias
voltages, the transmission is dominated by the lowest-order
contributions in ω from the respective self-energy. It turns out
that the only constant term is generated by the Toulouse point
terms γ = 0, higher-order γ terms coming with higher powers
of ω. This can be understood as all Toulouse point correction
terms are of inelastic origin kicking in at finite energies. This
is, of course, consistent with the scaling dimensions of the
correction terms.

A very similar picture emerges upon loosening the restric-
tions (5).36 That is why we expect the antiresonance to be
robust and universal beyond the Toulouse point. The only
requirement for its realization is the fine-tuning of the magnetic
fields to opposite values for both dots. We believe that this
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is experimentally feasible by, e.g., applying inhomogeneous
in-plane magnetic fields with a finite spacial gradient in the
setups that were used in Refs. 50 and 51.

B. Finite voltage, zero temperature

Equation (22) allows for the calculation of any cumulant
desired for the given setup. At this point, we would like to
present some experimentally observable quantities and discuss
their specific features. In Fig. 2, the electric current through the
system is shown for four different sets of coupling constants
while the strength of the magnetic field is the same for all plots.
The basic behavior of all four curves is qualitatively identical:
the current exhibits two distinct plateaus as well as two steep
shoulders before it saturates for a sufficiently large voltage. In
any case, the two voltages at which the current increases are
equal to the strength of either of the magnetic fields. The reason
for that kind of behavior is rather simple. Since the primary
transport mechanism is the spin-flip tunneling, it is suppressed
for both dots at voltages smaller than the respective magnetic
field. As soon as V overcomes the smaller of the fields, the
respective transport channel opens and there is a rapid increase
of the current. The second step is then associated with the other
field. The overall saturation of the current is related to the finite
total spectral density of the constriction as required by the sum
rules.

As far as the parameter dependence is concerned (see
Fig. 2), the general trend that can be observed is that the
shoulders of the curves tend to smear out for larger values
of K+ and K− (all couplings are measured in units of KLR;
parameters with the dimension of an energy are measured in
units of K2

LR). Both steplike features are most pronounced
in the case of K± = 0, which is the case of only the spin-flip
tunneling term present in the original Hamiltonian. A finite K±
corresponds to additional transversal coupling of the impurity
spins, which induces spin precession in the free case and is a
source of independent spin-flips in the coupled case. This effect
washes out the steps in the I−V characteristics. Interestingly,

2 4 6 8
V KLR

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

I V G0

FIG. 2. The nonlinear I (V ) for the double QD setup at zero
temperature. The plots show the current for 	1 = 2 and 	2 = 5.
The different graphs correspond to K+ = 0 and K− = 1 (dash-dotted
line), K+ = 2 and K− = 2 (short dashed line), K+ = 1 and K− = 0
(solid line), and K+ = 0 and K− = 0 (long dashed line). All energies
are measured in units of K2

LR.

0 2 4 6 8
V KLR

2

0.2

0.4

0.6

0.8

1.0
F V

FIG. 3. Fano factor for fixed magnetic fields 	1 = 2 and 	2 = 5
as a function of bias voltage. The different graphs correspond to
K+ = 0 = K− (dash-dotted line), K+ = 0.5 = K− (short dashed
line), K+ = 0.5 and K− = 0 (solid line), and K+ = 0 and K− = 0.5
(long dashed line). The solid line F (V ) = 0.5 is only a guide for the
eye.

a situation in which only one of K± is finite seems to cause
a significantly weaker “dephasing” than a situation in which
both of them are nonzero.

The Fano factor F (V ) as defined in Eq. (15) and I (V ) shows
similar features at V = 	1,2; see Fig. 3.

For small voltages and only spin-flip processes present
(K± = 0), the Fano factor approaches unity. For finite transver-
sal coupling (K± = 0), this value becomes nonuniversal.
Interestingly, the effect of finite K+ is much more pronounced
than that of K−. The reason for that is the fact that while finite
K+ indicates the presence of the transversal couplings to the
individual terminals, K− measures its asymmetry.

In contrast, at V → ∞ the Fano factor reaches the universal
asymptotic value 1/2 regardless of the coupling strengths and
temperature. This effect is usually observed in the transport
through constrictions with internal degrees of freedom, e.g.,
it is known to appear in the Fano factor of the resonant level
setup.26

C. Finite-temperature effects

To access the Johnson-Nyquist noise, we set V = 0 and
assume T to be small.52,53 In this case, the FCS reads

ln χ (λ) =
∫ ∞

0

dω

2π
ln[1 + nF (1 − nF )

× [ T2(ω)(e2iλ + e−2iλ − 2)

+ 2T1(ω)(eiλ + e−iλ − 2)]].

Now we use the fact that nF (1 − nF ) = −β−1∂ωnF (β =
1/T is the inverse temperature) and calculate the noise. Partial
integration of the resulting expression gives

S ≈ 4β−1 1
2 [T1(0) + 2T2(0)] = 4β−1Te , (30)

where we identify T1(0) + 2T2(0) with the effective transmis-
sion coefficient from Sec. III A.

In Fig. 4, we show the behavior of the Fano factor as a
function of voltage for different temperatures. As expected,
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2 4 6 8
V KLR

2

0.4

0.5

0.6

0.7

F V

2 4 6 8
V KLR

2
0.1

0.3

0.5

0.7
I V G0

FIG. 4. Fano factor as a function of bias voltage for different
temperatures and fixed magnetic fields 	1 = 2 and 	2 = 5, and T =
0.005 (dash-dotted line), T = 0.05 (solid line), and T = 0.1 (dashed
line). The divergence of the Fano factor for V → 0 can be explained
by expanding noise and current (see text). Inset: Current as a function
of bias voltage at different temperatures: T = 0.005 (dash-dotted
line), T = 0.5 (solid line), and T = 1. (dashed line). The solid line
F (V ) = 0.5 is only a guide for the eye.

the Fano factor grows for increasing temperatures due to
the onset of thermal fluctuations. The temperatures chosen
are much smaller than KLR , which represents the Kondo
temperature, because any T comparable to or even higher
than KLR eliminates all features from the plot, as already can
be seen from the inset. In addition to the features already
discussed in the T = 0 case, the Fano factor rises for V → 0.
This behavior can be explained by the fact that the expansion
of the current in V starts with a second-order term while the
noise starts with a first-order term.

IV. CONCLUSIONS

To conclude, we have discussed the nonlinear transport
properties of a double quantum dot in the Kondo regime. Using
a series of dedicated transformations, we rewrote the original
Hamiltonian in one special region of the parameter space in
terms of a quadratic Majorana resonant level model, which is
conveniently diagonalizable even under nonequilibrium con-
ditions. We have explicitly calculated the generating function
of the full counting statistics and discussed its most prominent
features, which reveal themselves in individual cumulants of
the charge transport. In particular, we find a full suppression of
transport for a special constellation of applied magnetic fields.
We argue that this antiresonance feature is robust and universal
even beyond the Toulouse point by an explicit perturbative
expansion around it. One possible route for further progress
would be an analysis of this phenomenon by numerical and
possibly more advanced analytical methods for the generic
system parameters (e.g., by quantum Monte Carlo methods or
functional renormalization-group approaches).
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APPENDIX

Here we want to summarize the most important details of
the perturbative expansion around the Toulouse point. The
full-fledged calculation of the corresponding I (V ) turns out to
be very complex, so we employ the following approximation
strategy. From the Toulouse point calculation, we know that
(at least at zero temperature) the electric current through the
system is given by an energy integral over the voltage window
of the imaginary part of the QD retarded GF,

DR
a+a+ (t,t ′) = −i�(t − t ′)〈{a+(t),a+(t ′)}〉 , (A1)

which plays the role of the effective transmission coefficient
(of course, this is compatible to the Wingreen-Meir formula54).
So we just need corrections to this GF. It is most conveniently
done in the Keldysh formalism from the following GF’s:

D−−/−+
a+a+ =−i

〈
TC a+(t)a+(t ′) exp

{
−γ

∫
dt1[ : ψ†

s (t1)ψs(t1) :

× [a+(t1)b+(t1) + a−(t1)b−(t1)]]
}〉

, (A2)

which we expand for small γ . The first order vanishes due
to the normal ordering in the free-fermion sector. The second
order we find to be given by

δD−−/−+
a+a+ = − iγ 2

2

∫
dt1dt2〈TCψ

†
1ψ1ψ

†
2ψ2〉〈TCa+(t)a+(t ′)

× [a+1b+1 + a−1b−1][a+2b+2 + a−2b−2]〉,
where the second index is the label of the time argument.
Schematically it corresponds to a simple compound Majorana–
free-fermion loop diagram.36 Next we use Wick’s theorem and
find the first expectation value of the free-fermion operators to
be the product of two GF’s. The Majorana part is a bit more
involved. Since many contributions vanish for 	1 = −	2, one
finds a manageable expression,

−iDa+a+ (t − t1)[Db−a+ (t2 − t ′)Db+a− (t1 − t2) (A3)

−Db+b+ (t1 − t2)Da+a+ (t2 − t ′)] (A4)

+iDa+b− (t − t1)[Db−a+ (t2 − t ′)Da−a− (t1 − t2) (A5)

−Da+a+ (t2 − t ′)Da−b+ (t1 − t2)] , (A6)

where all GF’s are to be understood as matrices in the
Keldysh space. Transformed into Fourier space, we are left
with expressions of the type

D1(ω)
∫

dεD2(ε)
∫

d�Gψ (ω − ε + �)Gψ (�)D3(ω), (A7)

where Gψ are the (local, taken at x = 0) free-fermion GF’s
of ψs fields, which are known; see, e.g., Ref. 26. D1,2 are the
“outer” GF’s from Eq. (A6), which correspond to the one with
the time arguments t − t1 and t2 − t ′ in the time domain, while
D2 represents the “inner” GF with the argument t1 − t2.

155305-6



NONEQUILIBRIUM TRANSPORT PROPERTIES OF A . . . PHYSICAL REVIEW B 84, 155305 (2011)

The calculation of the dot GF’s is somewhat lengthy but
straightforward by writing down the action

S = S[η,ξ ] +
∫

dω

2π

[ ∑
j=±

αT
j d−1

ab (	+,ω)αj

− i	−(a−b+ + a+b−) + iK+ηsf b+ + iKLRξf a+

]
,

(A8)

where we defined 	± = 	1 ± 	2 and the superfield αT
i =

(ai−,ai+,bi−,bi+), and integrating out the lead fermions.
dab(	+,ω) denotes the 4 × 4 matrix GF for the constriction
without couplings to the electrodes. Integrating them out, we
can read off the necessary GF’s from the GF for the superfields,
which has the structure

D =

⎛
⎜⎜⎜⎝

Da+a+ D̂a+b+ D̂a+a− Da+b−

D̂b+a+ Db+b+ Db+a− D̂b+b−

D̂a−a+ Da−b+ Da−a− D̂a−b−

Db−a+ D̂b−b+ D̂b−a− Db−b−

⎞
⎟⎟⎟⎠ , (A9)

where we indicated those components that are zero with a hat.
Next we use the above GF and expand the structures (A7) to the
lowest order in ω. In total, one needs to take care of 16 different
terms of the type (A7) for both −− and ++ component at

ω → 0. All but two terms yield higher-order contributions to
the expansion. The only term in the −− component is the
expression

− i

	2−

∫
dε

∫
d�D−−

a−a−(ε)G−−(� − ε)G−−(�) .

(A10)
Performing the � integration first leaves us with an integral
over D−−

a−a−(ε). This GF is an odd function in ε and has to
be multiplied with a function that includes the bandwidth
but is even in ε. This means that the integral vanishes since
integration and taking the limit for the bandwidth can be
exchanged.

The only term that is nonzero in the lowest order in ω is
given by

iD−−
a+b−D++

b−a+

∫
dεD−+

a−a− (ε)
∫

d�G−+(� − ε)G+−(�)

= K2
LR

	2−

∫ 0

−V

dε ε3

(	2− − ε2)2 + K4
LRε2

= const V 4 + O(V 5). (A11)

That means that this contribution vanishes for small voltages
much faster than the leading-order term and therefore ensures
the existence of the perfect antiresonance in the vicinity of the
Toulouse point.
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