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We present a detailed study of the charge transport, infrared optical reflectivity, and thermal transport
properties of n-type PbSe crystals. A strong scattering, mobility-limiting mechanism was revealed to be at
play at temperatures above 500 K. The mechanism is indicative of complex electron-phonon interactions that
cannot be explained by conventional acoustic phonon scattering alone. We applied the first-order nonparabolicity
approximation to extract the density-of-states effective mass as a function of doping both at room temperature
and at 700 K. The results are compared to those of a parabolic band model and in light of doping-dependent
studies of the infrared optical reflectivity. The thermal conductivity behavior as a function of temperature shows
a strong deviation from the expected Debye-Peierls high-temperature behavior (umklapp dominated) indicating
an additional heat-carrying channel, which we associate with optical phonon excitations. The correlation of
the thermal conductivity observations to the high-temperature carrier mobility behavior is discussed. The
thermoelectric figure of merit exhibits a promising value of ∼ 0.8 at 700 K at ∼1.5 × 1019 cm−3.
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I. INTRODUCTION

The cubic semiconductor PbSe (space group Fm-3m,
a = 6.125 Å) has been attracting scientific attention for more
that seven decades, mainly because of its optical properties. For
example, the infrared behavior of PbSe has been appreciated
since the 1940s,1 and eventually found applications in pho-
todetectors and thermal imaging.2 More recently, the advent
of nanoscience raised interest in photovoltaic applications
based on excitonic effects in PbSe nanocrystals.3–5 Hence, the
compelling majority of published work on the system involves
the study of thin films and other nanostructures mainly at room
temperature and lower.

Lately, however, theoretical and experimental reports have
pointed out the appealing characteristics of PbSe for higher-
temperature thermoelectric applications.6–10 For example,
PbSe melts at a relatively high temperature (1080 ◦C),
is composed of earth-abundant elements, is easy to scale
up, and performs better than PbTe at 900 K, one of the
choice thermoelectric materials in the temperature regime
600–900 K.9–11 It is noteworthy that all of the above reports

(Refs. 6–10) have highlighted the lack of detailed experimental
studies on the charge and thermal transport as well as basic
electronic band-structure parameters of PbSe, with different
dopants and as a function of doping level especially at high
temperatures.

Hirahara et al., for example, studied the mobility of both n-
and p-type PbSe hot pressed samples up to 773 K and doping
levels well below 1019 cm−3 taking into account impurity
scattering.12 Later, Schlichting and Gobrecht repeated the
mobility study up to 800 K on melt grown crystals of n- and
p-type PbSe extending the doping levels up to 3 × 1019 cm−3,
and they concluded that electron-phonon interactions are
dominant.13 Scattering was also studied in the framework
of defect formation through measurements of Hall effect,
electrical conductivity, and thermopower by Gurieva et al.,
but the study was not conclusive as to which type of defects
(e.g., interstitial, Frenkel, etc.) dominate.14 Alekseeva et al.
have studied the high-temperature properties of p-type PbSe
and samples with isovalent Cd and Mn ion substitution,
respectively.15 Finally, limited attention has been given to
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the valence-band structure of PbSe and its effect on the
high-temperature thermoelectric properties.16,17

Given the increasing interest in the high-temperature prop-
erties of PbSe and the aforementioned conflicting conclusions
on the charge-transport properties of PbSe, it becomes clear
that a reliable and consistent experimental body of results
has to be established. Hence, we initiated a study of n-type
samples doped with Cl exhibiting an electron carrier density
in the range 7.5 × 1018 � n � 3.8 × 1019 cm−3. The choice
of Cl as a dopant is justified by its substitutionary action on the
Se sublattice, leaving undisturbed the conduction band of PbSe
that consists primarily of Pb p orbitals.6,7 We report on elec-
trical conductivity, Hall coefficient, thermoelectric power, and
thermal conductivity as a function of doping and temperature.
Furthermore, the infrared optical reflectivity as a function of
doping at room temperature was studied within the framework
of a Kramers-Kronig analysis. We employed both a parabolic
and a nonparabolic (Kane-type) band model to extract basic
parameters such as the effective mass and the Lorenz number
at different temperatures and as a function of the doping
level. Finally, a thorough investigation of the lattice thermal
conductivity is presented in which in addition to acoustic
and three-phonon processes, optical phonon contributions are
required to better account for the observed high-temperature
behavior. We find that the maximum thermoelectric figure of
merit, ZT , achieved at 700 K is ∼0.8 for a carrier density of
∼1.5 × 1019 cm−3.18

II. EXPERIMENTAL DETAILS

The PbSe crystals were grown by the Bridgman tech-
nique inside sealed and evacuated quartz ampules with one
end tapered. The ampules were loaded with high-purity Pb
(99.999%, American Elements), Se (99.999%, 5N Plus), and
PbCl2 (99.9999%, Aldrich). Initially, the load was suspended
in the hot zone of the furnace at 600 ◦C for 72 h. Then the
hot zone was heated to 1150 ◦C and the load was raised
at a higher position outside the hot zone and dipped at a

speed of ∼1.2 mm/h. After growth, the ingots were sliced
to 8-mm-diam disks with a waferizing saw. Subsequently, two
of the disks were processed further with a polisher to form a
bar of typical dimensions ∼7 × 3.5 × 2.5 mm and to a disk
of thickness ∼2 mm. Optical examination of the specimens
revealed a polycrystalline texture consisting of large single
crystals oriented at different directions.

The bar and disk specimens of each growth were examined
separately at room temperature for consistency in doping by
combining the Hall effect and a spatial scanning Seebeck
apparatus. Specimens with large inhomogeneous areas of
thermopower, pertaining to large carrier density variations,
were not considered further. Figure 1 presents a typical exam-
ple of a homogeneous and an inhomogeneous pair of speci-
mens. Generally, we have observed that doping levels above
0.4 % mol, corresponding to an average Hall concentration,
n, higher than 4 × 1019 cm−3, produce such high doping
inhomogeneities. Therefore, the present study was limited
to a set of five samples exhibiting high homogeneity and
an average carrier density not higher than 3.8 × 1019 cm−3;
see Table I. The measured n increases monotonically as a
function of increasing nominal Cl concentration. A one-to-one
correspondence of n versus Cl concentration was observed to
a reasonable degree at n � 1.5 × 1019 cm−3. At high PbCl2
molar concentrations there is a deviation indicating doping
action inability of Cl in the PbSe lattice.

The high-temperature Hall coefficient was measured in
a homemade high-temperature apparatus, which provides
a working range from 300 to 873 K. The samples were
press-mounted and protected with argon gas to avoid possible
oxidization at high temperature. The Hall resistance was
monitored with a Linear Research AC Resistance Bridge
(LR-700), and the data were taken in a field of ± 1 T provided
by an Oxford Superconducting air-bore magnet.

The electrical conductivity, σ , and Seebeck coefficient, S,
were measured simultaneously on the bar-shaped specimens
in a ULVAC-RIKO ZEM-3 system. The specimens were

FIG. 1. (Color online) Scanning Seebeck results on two coins doped with 0.3% mol PbCl2 (a) and 0.5% mol PbCl2 (b). The small
inhomogeneous regions randomly observed in (a), which are acceptable for an ingot material, are extended and create steep gradients with
increasing PbCl2 concentration (b).
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TABLE I. Specimens of the present study tabulated based on
PbCl2 content and corresponding carrier, plasmon frequency, and
mass density.

ID PbCl2 (% mol) n (1019 cm−3) ωP (cm−1) ρ (g/cm3)

A 0.05 0.75 697 7.90
B 0.10 0.88 710 7.98
C 0.20 1.50 729 8.02
D 0.30 3.20 970 7.90
E 0.40 3.80 990 7.99
F < 0.2 8.09

protected in a helium atmosphere (∼0.1 atm) while the furnace
of the instrument was cycled from room temperature to ∼700 K
and back. No thermal hysteresis was observed with thermal
cycling.

The disk-shaped specimens were used to determine the
thermal diffusivity as a function of temperature and doping in
a NETZSCH LFA 457 Microflash instrument. Subsequently,
the thermal conductivity, κ , was estimated by the relation
κ = DT Cpρ, where DT is the thermal diffusivity, Cp is the
heat capacity under constant pressure, and ρ is the mass
density of the specimens. Cp was approximated by the formula
0.171 + (2.65 × 10−5)T .9 The formula is based on a fit of
highly accurate, experimental Cp data of pristine PbSe.9 All
charge and thermal transport measurements were performed
in the same specimen direction.

Room-temperature infrared reflectivity (IR) measurements
were performed on finely polished PbSe samples using a
Bruker 113V FTIR spectrometer. The spectra were collected
in the 100–3000 cm−1 spectral region with a resolution of
2 cm−1 at nearly normal incidence. The reflection coefficient
was determined by a typical sample-in–sample-out method
with a mirror as the reference. The Im(ε) and Im(−1/ε) spectra
(where ε is the complex dielectric function) were derived from
the Kramers-Kronig transformation.19

III. RESULTS AND DISCUSSION

A. Charge-transport measurements

The electrical conductivity, σ , of samples A–E is depicted in
Fig. 2. The values of σ are increasing with increasing doping,
i.e., moving from specimen A to E, at any given temperature.
At room temperature, σ values as high as 3500 S/cm can be
realized for a doping level of 3.8 × 1019 cm−3, indicative of
relatively high mobilities, μ. For all specimens, a monotonic
decrease in σ with increasing temperature is observed. Since
σ ≈ nμe, the functional dependence of σ in temperature may
result from the temperature dependence either of n or from
factors limiting μ.

To elucidate the behavior of σ , we performed temperature-
dependent Hall effect studies. The Hall coefficient, RH , for
samples A, C, and E, is plotted in Fig. 3(a) as a function of
temperature. RH is almost temperature-independent. Consid-
ering RH = 1/ne, it follows that the specimens retain the same
carrier density up to 700 K. A more accurate description of
RH should take into account the nonparabolicity of the bands
and the statistical anisotropy due to scattering. In such a case,
RH = Ar/ne,20 where r is the statistical anisotropy factor that

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 300  400  500  600  700

σ 
(S

/c
m

)

Temperature (K)

A
B
C
D
E

FIG. 2. (Color online) Electrical conductivity as a function of
temperature for samples A–E (see Table I for carrier concentrations).
The conductivity increases with increasing doping at any given
temperature and no irreversible effects are observed with thermal
cycling.

varies from 1 to 3π/8, and A is the energy surface anisotropy
factor that is equal to A = 3K(K + 2)/(2K + 1)2.13 For PbSe,
K = 1.75,21 and therefore the product Ar varies from 0.97 to
1.14 depending on the value of r . For simplicity, we have kept
Ar = 1, since fundamentally the conclusions of our study are
not distorted by such an assumption.

Figure 3(b) presents the Hall mobility, μH ≈ RHσ , as a
function of temperature for specimens A, C, and E. (Specimens
B and D exhibit similar behavior but are not included in the
discussion for clarity.) The room-temperature μH values are
quite high and drop from ∼1200 cm2/V s for specimen A to
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FIG. 3. (Color online) (a) Hall coefficient as a function of
temperature for specimens A, C, and E. Note that the Hall coefficient
is almost temperature-independent. (b) Hall mobilities for specimens
A, C, and E as a function of temperature. Despite the high
room-temperature values, a drastic decrease is observed at high
temperatures.
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FIG. 4. (Color online) (a) logμH − logT plot showing two
regions of linearity, one below 480 K and the other above 520 K.
The high-temperature region is characterized by a much steeper
slope reflecting a strong electronic-scattering mechanism at play.
(b) Mobility as a function of temperature scaled according to Eq. (1);
see text. A linear region is observed that extends from 500 to 700 K.

∼600 cm2/V s for specimen E. This behavior can be explained
in the framework of acoustic phonon scattering (elastic
process) with increasing doping and hence carrier energy. The
high values of μH are not retained at high temperatures. A
rapid decrease is observed that limits μH to ∼100 cm2/V s at
700 K. The rapid decrease of μH is clearer on a logμH − logT

plot where two linear regions show up; see Fig. 4. In the
temperature regime 300 � T � 480 K, the slopes of the curves
are ∼ −2. However, for T � 520 K, the slopes increase to
∼ −3. Table II summarizes the fitting results. With increasing
doping concentration, the slopes assume lower values.

Electronic scattering in semiconductors gives rise to distinct
temperature dependencies of the carrier mobility. Typical
processes considered include (i) electron-phonon scattering
due to thermal vibrations of the lattice, (ii) ionized impurity
scattering, (iii) scattering from high-frequency vibrations of
the lattice (optical phonons), and (iv) scattering by neutral
impurities. On the assumption of parabolic bands, thermal
lattice scattering causes μH to scale as μ−1

H ∼ T 3/2.22 Non-
parabolicity of the bands, as in the case of Si,23 generally
increases the value of the temperature exponent to ∼2–2.5.24

In a similar fashion, the low-temperature exponent in Fig. 4

TABLE II. Characteristic slopes of the logμH − logT for samples
A, C, and E for two different temperature regimes.

300 � T � 480 K 550 � T � 750 K

A C E A C E
−2.2 −2.1 −1.75 −3.2 −3.2 −2.8

can be attributed to acoustic phonon scattering of electrons,
in agreement with previous results on highly doped PbSe
samples.13 The second mechanism, i.e., ionized impurity
scattering, approximated as μH ∼ T 3/2, gives rise to a positive
slope in the temperature dependence of the mobility.25 Ionized
impurity scattering shows up mostly at low temperatures since
the increasing thermal velocity of carriers with increasing
temperature effectively screens the Coulomb potential of
impurities.25 Finally, mechanism (iv) contributes only weakly
to scattering and does not have a significant temperature
dependence.23 Therefore, in order to elucidate the behavior of
the mobility at T > 500 K, we have to consider more complex
processes such as polar optical phonon scattering.

The temperature dependence of the electron mobility due
to scattering by high-frequency optical phonons of the lattice
follows the analysis of Fortini et al.,26 which showed a
temperature dependence of the form

μ ≈ CT 1/2(eη − 1)G(η), (1)

where C is a constant of proportionality that involves the static
and high-frequency dielectric constants and the frequency of
the longitudinal optical phonons, η is the reduced chemical
potential, and G(η) is a function that assumes values from
0.65 to 1.7 depending on the excitation energy of the optical
phonons. We point out that Mott and Gurney reached a
surprisingly similar result, i.e., a formula containing an
activation energy, from a completely different standpoint in
the case of ionic polar crystals:27

μ ∼ (e	/T − 1), (2)

where 	 is a characteristic temperature between 300 and
800 K. In Fig. 4(b), we present high-temperature mobility
data as a function of T 1/2(eT0/T − 1), where we define T0

as a characteristic activation temperature corresponding to an
energy of ∼ 50 meV. The linear region observed in this case
indicates that complicated scattering mechanisms, possibly
involving optical phonons, are at play at high temperatures.

However, the data are not conclusive as to whether an
electron–optical-phonon scattering is taking place. This is
because in PbSe, where the lowest conduction-band minimum
is at the L point of the first Brillouin zone (〈111〉 direction),2

and hence is highly degenerate, phonons may scatter electrons
transferring them from one valley to another.25 This intervalley
scattering mechanism can involve both acoustic and optical
phonons and leads to a temperature dependence with similar
characteristics as in Eqs. (1) and (2).25 However, in this case
many more parameters are involved, such as the intervalley
energy separation, the intervalley deformation potential, etc.,25

and hence a theoretical study is required to reach a definite
conclusion as to the exact nature of the mobility-limiting
mechanism at high temperatures. In any case, the data clearly
point to deviations from simple electron-phonon interactions
at temperatures above 500 K and doping levels n � 7 ×
1018 cm−3. Here we note that Schlichting et al. presented
measurements of highly doped n � 3 × 1018 cm−3 PbSe
specimens only up to 500 K,13 which may have led to the
erroneous conclusion for a simple dominant acoustic phonon
scattering mechanism regardless of the doping level. At lower
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FIG. 5. (Color online) Seebeck coefficient as a function of
temperature for samples A–E.

n and T > 500 K, mobility data are plagued by bipolar
diffusion, which masks other interactions.13

The Seebeck coefficient S for specimens A–E is presented
in Fig. 5 as a function of temperature. For all samples, i.e.,
for any doping level, S is almost linearly decreasing from
300 to 700 K assuming higher absolute values with increasing
temperature. At 300 K, the absolute value of S is decreasing
from sample A to E, consistent with increasing carrier density.
The same behavior is observed at all temperatures.

Assuming parabolic bands and an energy-independent
relaxation time, then at any temperature S(n) is described
by a unique effective-mass value, m∗, and for any n the
S(T ) depends on the temperature dependence of m∗.28,29

The aforementioned assumptions lead to simple formulas
that have been explained in detail elsewhere,28 and can be
used to construct Pisarenko plots, i.e., S(n) diagrams at
different temperatures. Such plots are depicted in Fig. 6 for
three different temperatures—300, 500, and 700 K—and the
corresponding m∗ values 0.28, 0.35, and 0.41 that allowed
fitting of the data (solid lines). The effective-mass value is
increasing as a result of an increasing band gap, Eg , with
increasing temperature,2 consistent with the results of

−→
k · −→p

theory.30 The temperature dependence of m∗ is plotted in
Fig. 7(a) and compared to Eg(T ). For PbSe, Eg(300 K) ≈
0.275 eV (Ref. 9) and ∂Eg/∂T ≈ 4 × 10−4 eV/K.31 It is
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FIG. 6. (Color online) Pisarenko plots at 300, 500, and 700 K.
The solid lines represent fittings of the data points on the assumption
of a parabolic conduction band and an energy-independent scattering
time. The only adjustable parameter in the calculation was m∗. Note
that the higher the temperature, the higher the effective mass.

evident that in the crude approximation of the parabolic band
model m∗ follows very close the rate of the band-gap increase.

As mentioned earlier, the above values are only crude
approximations since the electronic band structure of PbSe
close to the Fermi level is nonparabolic.7 Nonparabolicity
pertains to a nonspherical Fermi surface shape, and hence the
dispersion relation depends on the spatial direction. In general,
a nonparabolic energy band dispersion can be expanded in a
power series:21

k2 = 2m

h̄2

⎛
⎝ε +

∞∑
q=2

λqε
q

⎞
⎠ , (3)

where the coefficients λq are defined from the following
relation:21

λq = h̄2

2m

1

q!

(
dqk2

dεq

)
. (4)

The first-order nonparabolicity approximation ignores all
terms with q � 3 and thus Eq. (1) is greatly simplified to

k2 = 2m

h̄2 ε(1 + λε). (5)

In this approximation, the coefficient λ is usually taken to be
equal to the inverse of the band gap, Eg .32 Consequently, all
galvanomagnetic coefficients can be expressed as functions of
the generalized Fermi integrals iL

j

l defined by the equation21

iL
j

l (η,β) =
∫ ∞

0

(
−∂f0

∂z

)
zi(z + βz2)j (1 + 2βz)ldz, (6)

where f0(η,T ) is the Fermi distribution function, η is the
reduced chemical potential, z = ε/kBT , and β = λkBT =
kBT /Eg .

Here, we are especially concerned with the expression for S.
Fitting S yields η values that can be utilized in the calculation
of other parameters in the same fashion as with assuming a
parabolic band.28 S is defined by21,32

S = kB

e

1L1
−2 − η

(
0L1

−2

)
0L1

−2

. (7)

Using the η values extracted from fitting the S(n) data with
Eq. (7) and in conjunction with the expression for the carrier
density (with a unity Hall factor),21

n = 1

3π2

(
2m∗

dkBT

h̄2

)3/2 (0L
3/2
0

)
, (8)

the density-of-states effective mass, m∗
d , can be calculated at

any given pair of n and T values. The dependence of m∗
d on n is

another substantial difference from the parabolic band model
and is supported experimentally in lead chalcogenides.33–35

The results of the fitting process using Eqs. (7) and (8)
are depicted graphically in Fig. 7(b) for 300 and 700 K. The
extracted values are lower compared to those calculated from
the parabolic band model, see Fig. 7(a), but closer to 0.21,
the textbook value for PbSe.36 Both at 300 and 700 K, m∗

d is
monotonically increasing with increasing doping, as discussed
above.
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FIG. 7. (Color online) (a) Temperature dependence of the ef-
fective mass as calculated from the parabolic band model and a
comparison with the temperature dependence of the band gap. Note
that the results are independent of the carrier density. (b) The effective
mass calculated from Seebeck coefficient data in the first-order
nonparabolic approximation.

B. Infrared optical reflectivity: Independent measurement
of the effective mass

The study of the reflectivity as a function of energy
in the infrared part of the electromagnetic spectrum yields
useful information about basic materials parameters that are
related to the electronic band structure, such as the effective
mass.19 This is because the reflectivity, R, depends on
the contribution of both the bound and the free electrons to
the real part of the complex index of refraction. Therefore,
we have performed infrared reflectivity measurements in our
samples as an independent, yet direct, method of probing the
effective mass and thus compare the results with those of the
transport models as discussed in the preceding section.

The room-temperature infrared optical reflectivity as a
function of incident radiation wavelength is depicted in Fig. 8
for samples A–E. It is readily seen that the minimum,
associated with the plasma frequency, ωP , and hence the
carrier concentration, is steadily increasing from specimen
A to E reflecting the increasing doping. Accordingly, the
Kramers-Kronig transformation yielded blueshifted absorp-
tion peaks in Im(−1/ε), in the region >700 cm−1, that
were used to accurately determine the plasma frequency,
ωP . The transverse-optical–longitudinal-optical splitting in
the reflectivity spectra of PbSe occurs in the 34–114 cm−1

region.37 The latter makes plasmon-phonon effects negligible
in the present study. Therefore, the reflectivity minima in Fig. 8
are mainly determined by the contribution of free carriers.

The plasma frequency is related to basic materials param-
eters, such as the electric susceptibility (or optical) effective

0  1000  2000

R

ω  (cm-1)

A
B
C
D
E

FIG. 8. (Color online) Room-temperature reflectivity spectra as
a function of increasing frequency. Spectra were shifted vertically by
0.4 for clarity. The reflectivity minimum shifts to higher values from
samples A–E as a result of increasing carrier concentration.

mass, m∗
op, through the relation

ω2
P = ne2

ε∞ε0m∗
op

, (9)

where n is the carrier concentration, ε∞ is the high-frequency
dielectric constant (a measure of the bound electron contribu-
tions to the dielectric function), ε0 is the vacuum permeability,
and e is the electron charge. The expression for the dependence
of R on frequency, ω, at nearly normal incidence is

R(ω) =
(√

ε(ω) − 1√
ε(ω) + 1

)2

, (10)

where ε(ω) is the complex dielectric function. Using the
experimental R values at 3000 cm−1 and Eq. (10), we
calculated the value of ε∞ (ε∞ ≈ ε3000 cm−1 ). We have observed
that ε∞ is decreasing from 25 to 17 with increasing n. However,
there is no physical reason for a changing contribution of the
bound electrons with n in PbSe, and thus we have taken ε∞ ∼
25 for all samples.

The values of ωP (see Table I) were derived from the peak
value of Im(−1/ε) obtained by Kramers-Kronig transforma-
tion. Using Eq. (9) with the Hall effect extracted n we have
evaluated m∗

op. The calculated values of m∗
op can be transformed

to m∗
d by using the relation21,35

m∗
d = N2/3

m

1 + 2K

3K3/2
m∗

op, (11)

where Nm is the number of equivalent conduction-band
ellipsoids in the first Brillouin zone and K is the ellipsoid
anisotropy factor, which for PbSe takes the value K = 1.75.21

Our results are plotted in Fig. 9 as the green squares and
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FIG. 9. (Color online) The density-of-states effective mass as a
function of increasing carrier density extracted from thermopower
measurements analyzed with a single parabolic band model (ma-
genta line), thermopower measurements analyzed in the first-order
nonparabolicity approximation (∗ marks), infrared optical reflectivity
measurements with the assumption that ε3000 cm−1 ≈ ε∞ (solid green
squares), and infrared optical reflectivity measurements with a
correction of ε∞ ∼ 25 for all specimens (blue × marks).

compared to the extracted m∗
d values from thermopower data

analysis (∗ marks). We observe that the optical measurements
support a strongly increasing m∗

d with increasing n, in
agreement with the nonparabolic nature of the conduction band
of PbSe. The agreement between the optically extracted and
charge transport extracted m∗

d values is excellent for ε∞ ∼ 25
(blue × marks). Obviously, the divergence of the data at high
n is associated with an underestimation of the ε∞ values with
heavy doping.

C. Thermal transport

The total thermal conductivity (κ = κe + κlat, where κlat

is the lattice part and κe is the free-carrier contribution)
as a function of temperature is presented in Fig. 10. The
room-temperature values start from ∼2.4 W/mK for sample
A and increase with increasing doping to ∼4 W/mK for
sample E. Rising temperature increases the electron-phonon
and phonon-phonon interactions, which causes κ to decrease.
Interestingly, κ remains above 1 W/mK at all temperatures,
despite the strong mobility-reducing mechanism that is in
effect above 500 K and should also limit the heat-carrying
efficiency of carriers. Therefore, we conclude that the latter
may result from an increased lattice contribution at high
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FIG. 10. (Color online) Total thermal conductivity as a function
of temperature.
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FIG. 11. (Color online) (a) Lorenz number for samples A, C,
and E calculated as a function of temperature on the assumption of
a parabolic conduction band, electron–acoustic-phonon interactions
only, and an energy-independent relaxation time. (b) Same as in (a),
but the first-order nonparabolicity approximation is used; see text.

temperatures, i.e., another mechanism contributing to heat
conduction.

κlat is estimated indirectly by use of the Wiedemann-
Franz relation, κe = LσT , where L is the Lorenz number
and subtraction from the total. The temperature dependence
of L is critical in the proper calculation of κe. A good
approximation that yields reasonable results is the assumption
of a parabolic band, electron acoustic phonon interaction only,
and an energy-independent relaxation time.9,28 Figure 9(a)
presents the results of such a calculation for samples A, C,
and E. The calculated Lorenz number values are below the
metallic limit (L0 ≈ 2.45 × 10−8 W�/K2) and decrease with
decreasing doping and increasing temperature.

In the first-order nonparabolic approximation, the Lorenz
number is expressed as21

L =
(

kB

e

)2
(

2L1
−2

0L1
−2 − (

1L1
−2

)2(
0L1

−2

)2

)
, (12)

where iL
j

l are the integrals defined by Eq. (6) and are functions
of η. The temperature dependence of η is extracted by fitting
S(T ) data, see Fig. 5, with Eq. (7). The results are plotted
as a function of temperature in Fig. 11(b). Comparing with
the results of the parabolic model, it is evident that the
first-order nonparabolicity leads to higher Lorenz number
values for the same doping level. At high doping (sample
E), the room-temperature value is slightly larger than that of
the metallic limit, L0 ≈ 2.45 × 10−8 W�/K2. This may be
due to an inadequacy of the nonparabolicity approximation
(λ ∼ E−1

g ) at high doping. Both models, however, exhibit
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FIG. 12. (Color online) (a) Lattice thermal conductivity extracted
using the Lpar temperature dependence (see Fig. 11). Notice that κlat

is doping-independent. (b) Scaling of the lattice thermal conductivity
as ∼T 0.8. The dashed line is a linear fit (sample A), used here as a
guide to the eye.

essentially the same functional dependence with respect to
temperature, and therefore the temperature dependence of κlat

remains the same.
Due to the overestimation of the Lorenz number of

the nonparabolic model at high doping, we have used the
predictions of the parabolic model to extract lattice thermal
conductivity as a function of temperature. The results are
depicted graphically in Fig. 12(a). For clarity, we use the
results for samples A and E only. Curves for samples B–D
have similar values and temperature dependence, leading us
to conclude that κlat is independent of doping, consistent with
the low concentration of PbCl2 used in this study.

Generally, the temperature behavior of κlat when umklapp
processes are dominant is κlat ∼ 1/T . This is the case of
PbTe.38 In the case of PbSe, however, we find that κlat ∼
1/T 1−δ with δ ≈ 0.2–0.23. In Fig. 12(b), κlat is presented
as a function of 1000/T 0.8. The solid line is a linear fit of
the data confirming the scaling behavior. In order to exclude
such a behavior stemming from fitting artifacts (Lorenz
number calculation) or from doping, despite the dilute Cl
concentration, we grew separately a pure, undoped PbSe
single crystal, here referred to as sample F in Table I. (The
same crystal was also used in a previous study.9) The carrier
concentration in the undoped crystal was determined through
Hall measurements to be <2 × 1018 cm−3. In such a case, the
contribution of free carriers is minimized. In confirmation of
the scaling behavior mentioned above, the κlat of specimen F
exhibits a similar temperature dependence with δ ≈ 0.23 and
a room-temperature value of ∼1.9 W/mK.

At this point, we would like to emphasize that deviations
from the scaling law ∼1/T 1−δ toward higher δ values can also
come about from strong phonon-phonon coupling due either

to a significant contribution of defects or a minimum thermal
conductivity. By analogy to PbTe, where it has been shown that
phonon scattering by point defects is controlled presumably by
variations in bond strengths and lengths rather than variations
in the atomic masses,39 and given the fact that the present
samples contain only dilute concentrations of dopants, we may
conclude that most probably defects can be ruled out as the
source of the observed scaling law, T −0.8. In addition, the
minimum thermal conductivity in lead chalcogenides is rather
low (∼0.35 W/K) (Ref. 39) compared to the values observed
here. Therefore, the other physical mechanisms we discuss in
this paper seem most plausible.

Usually a positive δ is attributed to optical phonon exci-
tations that provide an extra heat-carrying path.38,40–42 This
raises the thermal conductivity at high temperatures compared
to the simple δ = 0 behavior. Steigmeier and Kudman used
the well-known result of three-phonon processes at high
temperatures:

κlat ∼
(

kB

h

)3
α4ρθ3

D

γ 2T
(13)

in combination with temperature-dependent κlat accurate data
of several III-V compounds received with the flash-diffusivity–
heat-capacity method.40 They concluded that Eq. (13) (where
kB, h, α, ρ, θD , and γ are the Boltzmann constant, Planck’s
constant, the lattice parameter, the density, the Debye temper-
ature, and the Grüneisen parameter, respectively) is valid only
when γ is temperature-dependent, indicating the presence of
optical phonons contributing to heat conduction. A similar
analysis on our PbSe specimens leads to the same conclusion
on γ . Interestingly, a more simplified model developed by
Dugdale et al.43 with a physical basis similar to the three-
phonon model was previously found to be adequate to describe
the temperature dependence of κlat on the assumption of a
temperature-dependent γ .9

To separate the contribution of acoustic phonons from the
κlat, we have calculated the phonon thermal conductivity by
assuming a phonon-scattering relaxation time τ (x),44

τ (x)1 = τ−1
D + τ−1

P = Aω4 + CT ω2, (14)

where we have considered only contributions from point
defects (D index) and umklapp processes (P index). In the
above, ω is the phonon frequency. Hence the acoustic phonon
contribution to κlat takes the form

κl,ac = kB

2π2υS

(
kBT

h̄

)3 ∫ θD/T

0

x2

Dx2 + E′
ex

(ex − 1)2
dx,

(15)

where υs is the speed of sound, x = h̄ω/kBT is the dimen-
sionless variable of the phononic energy, D is a temperature-
independent constant, and E′ = CT (kBT /h̄)2. Since optical
phonons presumably appear at temperatures above θD , we
have used literature2,45 κlat values at T < θD = 170 K,2 i.e.,
at temperatures where only acoustic phonons dominate, to
extract the constant C and the value of D. This was done
on the basis of a self-consistent, nonlinear method employing
the differential evolution algorithm with appropriate physical
constrictions. Subsequently, E′ and κl,ac were calculated. The
results are depicted in Fig. 13(a) along with κlat of sample F.9
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FIG. 13. (Color online) (a) Temperature dependence of the lattice
thermal conductivity of PbSe (specimen F, Table I, red triangles)
compared to the expected behavior on the assumption of umklapp
processes only (dashed blue line). (b) The contribution of optical
phonons extracted from the difference of the curves in (a) (green
crosses) and also by fitting the measured PbSe lattice data of specimen
F to Eq. (16) (blue × symbols); see text for details. Remarkably, the
dependence of κl,op on temperature is the same regardless of the model
used.

Evidently, there is a considerable deviation that increases with
rising temperature.

Interestingly, Alekseeva et al.38 have previously observed
similar thermal conductivity scalings on the lighter lead
chalcogenides, i.e., PbSe and PbS. The authors formulated
the relationship38

κlat = κl,ac + κl,op = a′

T
+ β

(
e

h̄ω0
kB T − e

h̄ω1
kB T

)
, (16)

where κl,op is the contribution of optical phonons to the
lattice thermal conductivity, a′ and β are fitting constants,
and ω0 and ω1 are the minimum and maximum optical
phonon frequencies. Equation (16) was extracted based on
experimental phonon spectra of lead chalcogenides.38

The temperature dependence of the contribution of optical
phonons can be calculated either by the subtraction κlat − κl,ac,
see Eq. (15), or directly fitting κlat with Alekseeva’s model
[Eq. (16)]. Using data received on sample F, we have employed
both models. Alekseeva’s model resulted in h̄ω0 ∼ 12.4 meV,
h̄ω1 ∼ 89.4 meV, and β ∼ 0.47 W/mK. [Note that T0 in
Fig. 4(b) amounts to ∼ 50 meV, i.e., the average of h̄ω0,
h̄ω1 minimum and maximum optical phonon energies as sug-
gested by Eq. (16)]. The contribution of optical phonons to the
total lattice thermal conductivity as a function of temperature is
graphically depicted in Fig. 13(b). A comparison of the results
gives roughly a 7% disagreement between the values predicted
by the two models at all temperatures, with Alekseeva’s model

lying lower. Nevertheless, a striking similarity in the functional
form of κl,op with respect to temperature is observed, where
a broad peak value appears at ∼ 450 K. It is interesting that
this temperature correlates with the transition temperature of
the electronic Hall mobilities [see Fig. 4(b)] progressing from
a predominant acoustic phonon scattering region (300–450 K)
to a region of stronger, possibly optical phonon, scattering
(T > 520 K). We would like to point out that the peak is not
related to a maximum contribution of optical phonons. Since
the contribution from acoustic phonons is rapidly decreasing
(∼ T −1), the percentage contribution of the optical phonons
to the total thermal conductivity is constantly increasing with
increasing temperature, giving rise to the T 1−δ dependence.

The physical origin of the optical phonon contributions
identified here is currently unknown but it may be associated
with the increasing displacement of Pb atoms from the octa-
hedron center in the rock salt structure discovered recently in
PbQ (Q = S, Se, Te).46 Interestingly, even in the heaviest lead
chalcogenide, i.e., PbTe, anharmonic contributions are present
in both the charge and the thermal transport properties. Feit
et al.47 identified significant polar optical phonon contributions
in n-type PbTe, and more recently Delaire et al.48 identified
a strong coupling of the transverse optic mode with the
acoustic longitudinal mode, which is believed to keep the
overall thermal conductivity low.48 However, in contrast to PbS
and PbSe, the lattice thermal conductivity of PbTe exhibits a
1/T behavior at high temperatures, i.e., δ = 0.38 The above
emphasizes that despite their striking structural similarity and
simplicity, lead chalcogenides present challenging electronic-
structure complexity that varies from Te to Se and likely S.
In any case, despite the increasing experimental evidence
for significant participation of interactions involving high-
frequency out-of-phase, i.e., anharmonic, phonons in the
heat conduction process in a wide and diverse variety of
compounds10,38,41,42,48,49 leading to either an increase or a
decrease of κlat, there is still no adequate theoretical treatment.

The ZT (Ref. 18) is depicted as a function of temperature
in Fig. 14. The maximum value (0.8 at 700 K) is assumed for
sample C (n ∼ 1.5 × 1019 cm−3). Given the high-temperature
mobility reducing mechanism, the ZT values reached here
emphasize that PbSe is a promising thermoelectric material.
We note that chemical substitutions on the Se sublattice with
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FIG. 14. (Color online) The thermoelectric figure of merit as a
function of temperature for all samples. The maximum ZT at 700 K
is observed at ∼ 1.5 × 1019 cm−3 (inset).
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inexpensive and highly abundant S have led to ZT ’s as high
as 1.3 at 900 K.10

IV. CONCLUDING REMARKS

We have performed a detailed study of the charge transport
and thermal transport properties of n-type, Cl-doped PbSe. A
strong mobility-limiting mechanism, most probably related to
polar optical phonon scattering of free carriers, was shown
to be in operation at high temperatures. Thermal conductivity
analysis identified an extra heat-carrying path in PbSe in the
form of polar optical phonon excitations related to the above
mobility-reducing mechanism. The application of a single
parabolic band model with an energy-independent relaxation
time results in oversimplifications and therefore should be
applied with caution. The first-order nonparabolic model, for
carrier concentrations <1 × 1019 cm−3 and approximating the
nonlinear coefficient with the inverse of a linearly increasing
band gap, was shown to describe satisfactorily basic electronic-
structure parameters of PbSe such as the density-of-states
effective mass. The latter was independently extracted by
infrared optical reflectivity measurements and found to be
in good agreement with the charge-transport results. At high
temperatures and higher carrier densities, a better nonparabolic
approximation of the conduction band is necessary. Finally, our

results indicate a great potential of PbSe for applications as a
thermoelectric material at high temperatures. The involvement
of optical phonons in conducting heat at high temperatures
implies that in PbSe, the lattice thermal conductivity at
700–900 K is higher in relative terms than in PbTe, where
optical phonons are less important. Therefore, strategies for
reducing thermal conductivity to raise ZT should take these
findings into account and be aimed at creating optical phonon
scattering mechanisms.
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