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Dielectric function of the semiconductor hole liquid: Full frequency and wave-vector dependence
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We study the dielectric function of the homogeneous semiconductor hole liquid of p-doped bulk III-V
zinc-blende semiconductors within random-phase approximation. The single-particle physics of the hole system is
modeled by Luttinger’s four-band Hamiltonian in its spherical approximation. Regarding the Coulomb-interacting
hole liquid, the full dependence of the zero-temperature dielectric function on wave vector and frequency is
explored. The imaginary part of the dielectric function is analytically obtained in terms of complicated but fully
elementary expressions, while in the result for the real part nonelementary one-dimensional integrations remain
to be performed. The correctness of these two independent calculations is checked via Kramers-Kronig relations.
The mass difference between heavy and light holes, along with variations in the background dielectric constant,
leads to dramatic alternations in the plasmon excitation pattern, and, generically, two plasmon branches can be
identified. These findings are the result of the evaluation of the full dielectric function and are not accessible via
a high-frequency expansion. In the static limit a beating of Friedel oscillations between the Fermi wave numbers
of heavy and light holes occurs.
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I. INTRODUCTION

The interacting electron gas, combined with a homoge-
neous neutralizing background, is one of the paradigmatic
systems of many-body physics.1–3 Albeit the result of drastic
approximations, its predictions provide a good description of
important properties of three-dimensional bulk metals and, in
the regime of lower carrier densities, n-doped semiconductors
where the electrons reside in the s-type conduction band.

On the other hand, in a p-doped zinc-blende III-V semi-
conductor such as GaAs, the defect electrons or holes occupy
the p-type valence band whose more complex band structure
can be expected to significantly modify the electronic prop-
erties. Moreover, the most intensively studied ferromagnetic
semiconductors such as Mn-doped GaAs are in fact p doped
with the holes playing the key role in the occurrence of
carrier-mediated ferromagnetism among the localized Mn
magnetic moments.4 Thus, such p-doped bulk semiconductor
systems lie at the very heart of the still growing field of
spintronics,5 and therefore it appears highly desirable to gain
a deeper understanding of their many-body physics.

Ab-initio-type approaches to the description of ferromag-
netic semiconductors constitute an important subfield of
this endeavor, and there is a lively discussion on strengths
and weaknesses of the pertaining concepts and numerical
techniques.6 In the present paper we will follow a somewhat
different route by developing an analytical theory of the
most prominent class of host materials given by p-doped
bulk III-V zinc-blende systems such as GaAs. Specifically,
we investigate the dielectric function of the interacting hole
liquid within random-phase approximation (RPA)1–3 where
the noninteracting hole system in the valence band is described
by Luttinger’s Hamiltonian in the spherical approximation.7

We evaluate the zero-temperature dielectric function in the
entire range of wave vectors and frequencies, building upon a
recent study where the problem was analyzed in the static limit
and in the case of large frequencies.8 Another previous work
investigated, among other issues, properties of Hartree-Fock
solutions of the two-component carrier system consisting of

heavy and light holes.9 Moreover, very recently Kyrychenko
and Ullrich have put forward a study of holes in magnetically
doped III-V systems10 by modeling the band structure by an
8 × 8 �k · �p Hamiltonian (similar to the present work) while
disorder effects and interaction among the carriers are treated
by a combination of equations-of-motion techniques and
time-dependent density-functional theory.10,11 Further below
we will compare our fairly analytical results with the ones of
Ref. 11 which rely more heavily on numerical evaluations.

Finally we mention a series of related recent studies of the
dielectric properties of two-dimensional fermionic systems
(instead of three-dimensional bulk semiconductors) whose
single-particle states carry a nontrivial spinor structure. These
include n-doped quantum wells with spin-orbit coupling12–15

and two-dimensional hole systems.16 Other recent investiga-
tions have dealt with planar graphene sheets where an effective
spin is incorporated by the sublattice degree of freedom.17–19

The plan of the paper is as follows. In Sec. II we give
an overview on elementary properties of the single-particle
Hamiltonian, describing the band structure around the �

point, and on the many-body formalism leading to the RPA
result for the dielectric function. In Sec. III we present
explicit analytical expressions for the free polarizability; the
corresponding derivations are deferred to the appendices.
Section IV discusses physical properties of the dielectric
function and its full dependence on wave vector and frequency.
Special attention is paid to the static limit and to the limit of
large frequencies. We close with conclusions and an outlook
in Sec. V.

II. PRELIMINARIES: HAMILTONIAN, EIGENSYSTEM,
AND MANY-BODY FORMALISM

Luttinger’s Hamiltonian describing heavy and light hole
states around the � point in III-V zinc-blende semiconductors
reads in its spherical approximation7

H = 1

2m0

[(
γ1 + 5

2
γ2

)
�p2 − 2γ2( �p · �S)2

]
. (1)
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Here m0 is the bare electron mass, �p is the hole lattice
momentum, and �S are spin-3/2 operators, resulting from
adding the l = 1 orbital angular momentum to the s = 1/2
electron spin. The dimensionless Luttinger parameters γ1 and
γ2 describe the valence band of the specific material, with
effects of spin-orbit coupling being included in γ2. We note
that, while the present work is mostly motivated by III-V
semiconductors, the above model for the �8 valence band
also applies to other systems with zinc-blende or diamond
structure including elemental semiconductors like Si and
Ge but also zero-gap semiconductors such as HgSe and
HgTe.

The above Hamiltonian is rotationally invariant and com-
mutes with the helicity operator λ = (�k · �S)/k, where �k = �p/h̄

is the hole wave vector. The heavy (light) holes correspond to
λ = ±3/2 (λ = ±1/2) with the energy dispersions

εh/l(�k) = h̄2k2

2mh/l

(2)

and heavy (h) and light (l) hole masses mh/l = m0/(γ1 ∓ 2γ2).
The corresponding eigenstates are given by

〈�r|�k,λ〉 = ei�k�r
√

V
|χλ(�k)〉, (3)

where V is the volume of the system. Using the conventional
basis of eigenstates of Sz and introducing polar coordinates
�k = k(cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ), the eigenspinors |χλ(�k)〉
of the helicity operator read explicitly9

∣∣χ 3
2
(�k)
〉 =

⎛
⎜⎜⎜⎜⎝

cos3 ϑ
2 e− 3i

2 ϕ

√
3 cos2 ϑ

2 sin ϑ
2 e− i

2 ϕ

√
3 cos ϑ

2 sin2 ϑ
2 e+ i

2 ϕ

sin3 ϑ
2 e+ 3i

2 ϕ

⎞
⎟⎟⎟⎟⎠ , (4)

∣∣χ 1
2
(�k)
〉 =

⎛
⎜⎜⎜⎜⎝

−√
3 cos2 ϑ

2 sin ϑ
2 e− 3i

2 ϕ

cos ϑ
2

(
cos2 ϑ

2 − 2 sin2 ϑ
2

)
e− i

2 ϕ

sin ϑ
2

(
2 cos2 ϑ

2 − sin2 ϑ
2

)
e+ i

2 ϕ

√
3 cos ϑ

2 sin2 ϑ
2 e+ 3i

2 ϕ

⎞
⎟⎟⎟⎟⎠ , (5)

and the remaining eigenspinors |χ−3/2(�k)〉 and |χ−1/2(�k)〉 can
be obtained from the above ones by spatial inversion ϑ �→ π −
ϑ , ϕ �→ ϕ + π . In what follows, mutual overlaps squared9

between spinors will be of key importance:

∣∣〈χ 3
2
(�k1)
∣∣χ 3

2
(�k2)
〉∣∣2 =

[
1

2

(
1 +

�k1�k2

k1k2

)]3

, (6)

∣∣〈χ 1
2
(�k1)
∣∣χ 1

2
(�k2)
〉∣∣2 = 1

8

(
1 +

�k1�k2

k1k2

)(
3

�k1�k2

k1k2
− 1

)2

, (7)

∣∣〈χ 3
2
(�k1)
∣∣χ 1

2
(�k2)
〉∣∣2 = 3

8

(
1 +

�k1�k2

k1k2

)2 (
1 −

�k1�k2

k1k2

)
. (8)

Combining the above single-particle Hamiltonian with
Coulomb repulsion among holes and a neutralizing

background, the dielectric function within RPA at wave vector
�q and frequency ω is given by1–3

εRPA(�q,ω) = 1 − V (�q)χ0(�q,ω). (9)

Here V (�q) is the Fourier transform of the interaction potential,
and the free polarizability reads

χ0(�q,ω) = 1

(2π )3

∑
λ1,λ2

∫
d3k

[
|〈χλ1 (�k)|χλ2 (�k + �q)〉|2

· f (�k,λ1) − f (�k + �q,λ2)

h̄ω + i0 − [ελ2 (�k + �q) − ελ1 (�k)
]], (10)

with f (�k,λ) being Fermi functions. In what follows we will
concentrate on the case of zero temperature and Coulomb
repulsion, V (�q) = e2/(εrε0q

2), where εr is a background
dielectric constant taking into account screening by deeper
bands.

III. FREE POLARIZABILITY

We now present our analytical results for the real and
imaginary part of the free polarizability. Details of the
derivations can be found in the Appendix. A discussion of the
physical properties of the corresponding dielectric function
follows further below in Sec. IV. Defining

χhh(�q,ω) = 1

(2π )3

∫
k�kh

d3k

(
1

2
+ 3

2

(�k · (�k + �q))2

k2(�k + �q)2

)

×
[

1

h̄(ω + i0) − (εh(�k + �q) − εh(�k))

− 1

h̄(ω + i0) + (εh(�k + �q) − εh(�k))

]
, (11)

χhl(�q,ω) = 1

(2π )3

∫
k�kh

d3k

(
3

2
− 3

2

(�k · (�k + �q))2

k2(�k + �q)2

)

×
[

1

h̄(ω + i0) − (εl(�k + �q) − εh(�k))

− 1

h̄(ω + i0) + (εl(�k + �q) − εh(�k))

]
, (12)

one can formulate the polarizability [Eq. (10)] as follows:

χ0(�q,ω) =
∑

α,β∈{h,l}
χαβ(�q,ω), (13)

where the remaining quantities χll(�q,ω) and χlh(�q,ω) are given
by Eqs. (11) and (12) via the replacement h ↔ l, and kh (kl) is
the Fermi wave number for heavy (light) holes corresponding
to the common Fermi energy εf .20 Introducing the obvious
decomposition χαβ(�q,ω) = Rαβ(�q,ω) + iIαβ (�q,ω) with real
functions Rαβ(�q,ω) and Iαβ(�q,ω) (α,β ∈ {h,l}), we will now
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analyze the real and imaginary part of the free polarizability of
the hole gas. The respective expressions to be presented below
are the result of independent calculations and perfectly fulfill
Kramers-Kronig relations.1–3

A. Real part of the free polarizability

Following the steps detailed in Appendix, the real part of
the free polarizability can be obtained as

Rhh(�q,ω) + Rhl(�q,ω) = −mh

(2πh̄)2

[
2kh + q

4

1

[εh(q)]2

(
(4εf εh(q) − [εh(q) + h̄ω]2) ln

∣∣∣∣εh(q) + h̄ω + h̄2qkh/mh

εh(q) + h̄ω − h̄2qkh/mh

∣∣∣∣
+ (4εf εh(q) − [εh(q) − h̄ω]2 ) ln

∣∣∣∣εh(q) − h̄ω + h̄2qkh/mh

εh(q) − h̄ω − h̄2qkh/mh

∣∣∣∣
)]

− 3

(2πh̄)2
(mh − ml) kh

+ 3

(2πh̄)2

mhq

32

(
1 − mh

ml

)2 [∫ 2kh/q

0
dyy ln

∣∣∣∣1 − h̄ω/εl(q) + y + (1 − ml/mh)y2/4

1 − h̄ω/εl(q) − y + (1 − ml/mh)y2/4

∣∣∣∣+ (ω �→ −ω)

]

+ 3

(2πh̄)2

mhq

8

[
εh(q)

h̄ω

(
1 + h̄ω

εh(q)

)2

P
∫ 2kh/q

0
dy

y

y2 + 4h̄ω/εh(q)

(
ln

∣∣∣∣1 − h̄ω/εh(q) + y

1 − h̄ω/εh(q) − y

∣∣∣∣
− ln

∣∣∣∣1 − h̄ω/εl(q) + y + (1 − ml/mh)y2/4

1 − h̄ω/εl(q) − y + (1 − ml/mh)y2/4

∣∣∣∣
)

+ (ω �→ −ω)

]
− 3

(2πh̄)2

mhq

8

×
[

εh(q)

h̄ω

(
1 − h̄ω

εh(q)

)2 ∫ 2kh/q

0
dy

1

y
ln

∣∣∣∣1 − h̄ω/εh(q) + y

1 − h̄ω/εh(q) − y

∣∣∣∣+ (ω �→ −ω)

]
+ 3

(2πh̄)2

mhq

8

×
[

εh(q)

h̄ω

(
1 − h̄ω

εl(q)

)2 ∫ 2kh/q

0
dy

1

y
ln

∣∣∣∣1 − h̄ω/εl(q) + y + (1 − ml/mh)y2/4

1 − h̄ω/εl(q) − y + (1 − ml/mh)y2/4

∣∣∣∣+ (ω �→ −ω)

]
,

(14)

where (ω �→ −ω) denotes terms with the sign of the frequency
changed compared to the preceding expression, and the
remaining contribution Rll(�q,ω) + Rlh(�q,ω) follows via h ↔
l. In the limit mh = ml the first two lines in Eq. (14) express
the result for the standard textbook case of a fermion gas
without spin-orbit coupling,1–3 while all other terms vanish
in this limit and represent corrections arising from mh �= ml .
The contribution in the third line of Eq. (14) is constant,
i.e., independent of �q and ω. However, in the limit of large
frequencies this term cancels against the terms in the last
two lines of the above equation such that limω→∞ χ0(�q,ω) =
0. The integral occurring in the fourth line of Eq. (14)
is elementary but lengthy (cf. Appendix), while all other
integrals cannot be cast into elementary expressions. Note
that in the fifth line of the above expression a proper Cauchy

principal value (denoted by P) occurs. This mathematical
detail arises from the Dirac identity, and the corresponding
integral does for negative frequency ω < 0 not converge in
the general sense. The occurrence of such nontrivial principal
values is also a technical difference to the standard jellium
model.

B. Imaginary part of the free polarizability

As the free polarizability χ0(�r,t) is a real quantity, let us
concentrate on nonnegative frequencies ω � 0. The regions
of nonzero contribution Ihh(�q,ω) in the q-ω plane are given
explicitly in Table I and are depicted for typical system
parameters in Fig. 1(a). In regions I and II Ihh(�q,ω) is given
by

I : Ihh(�q,ω) = −1

4πq

m2
h

h̄4 h̄ω

[
2 − 3

8

(
1 + εh(q)

h̄ω

)2

ln

∣∣∣∣1 + h̄ω

εf

∣∣∣∣− 3

8

(
1 − εh(q)

h̄ω

)2

ln

∣∣∣∣1 − h̄ω

εf

∣∣∣∣
]

, (15)

II : Ihh(�q,ω) = −1

4πq

m2
h

h̄4 h̄ω

[
2εf

h̄ω
−
(

1 − εh(q)

h̄ω

)2(
h̄ω

2εh(q)
− 3

4
ln

∣∣∣∣ h̄2qkh/mh

εh(q) − h̄ω

∣∣∣∣
)

− 3

8

(
1 + εh(q)

h̄ω

)2

ln
4εh(q)(εf + h̄ω)

[εh(q) + h̄ω]2

]
,

(16)
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respectively, and is zero for all other values of q and ω. The
region boundaries given in Table I are completely analogous to
the ones found for a standard jellium gas of spinless particles
with mass mh and Fermi momentum kh; for more details see
Appendix. The contributions to the imaginary part occurring in
these regions are, however, clearly different from the standard
case. The regions of nonvanishing contributions of and the
corresponding expressions for Ill(�q,ω) can be obtained directly
via the replacement h �→ l.

The cases of the remaining expressions Ihl(�q,ω) and
Ilh(�q,ω) are substantially more complicated. It is useful to
distinguish two separate terms:

Ihl(�q,ω) = I+
hl (�q,ω) − I−

hl (�q,ω), (17)

and likewise for Ilh(�q,ω). The corresponding regions of
nonzero contribution to I±

hl (�q,ω) and I±
lh(�q,ω) are given in

Tables II and III, respectively, and plotted in Figs. 1(c) and
1(d) for typical parameters. Now defining

G±(q,ω; k1,k2; m1,m2) = 3

8πq

m1

h̄2

[
±
(

q2

2
± m2ω

h̄

)2
h̄

2m1ω

(
ln

k1

k2
− 1

2
ln

∣∣∣∣k2
1 ∓ 2m1ω/h̄

k2
2 ∓ 2m1ω/h̄

∣∣∣∣
)

+
[
q2 −

(
1 − m2

m1

)(
q2

2
± m2ω

h̄

)]
1

2
ln

∣∣∣∣k2
1 ∓ 2m1ω/h̄

k2
2 ∓ 2m1ω/h̄

∣∣∣∣
− 1

4

(
1 − m2

m1

)2 (1

2

(
k2

1 − k2
2

)± m1ω

h̄
ln

∣∣∣∣k2
1 ∓ 2m1ω/h̄

k2
2 ∓ 2m1ω/h̄

∣∣∣∣
)]

, (18)

I+
hl (�q,ω) in regions I and II can be expressed as

I : I+
hl (�q,ω) = G+(q,ω; kh,k

+
h ; mh,ml), (19)

II : I+
hl (�q,ω) = G+(q,ω; k

+
h ,k+

h ; mh,ml), (20)

respectively, where

k±
h = q

1 − ml

mh

∣∣∣∣∣1 −
√

1 −
(

1 − ml

mh

)(
1 ± h̄ω

εl

)∣∣∣∣∣ , (21)

k
±
h = q

1 − ml

mh

(
1 +

√
1 −

(
1 − ml

mh

)(
1 ± h̄ω

εl

))
. (22)

FIG. 1. Regions of nonvanishing contributions to (a) Ihh(�q,ω),
(b) Ill(�q,ω), (c) I+

hl (�q,ω) (solid lines) and I−
hl (�q,ω) (dashed lines), and

(d) I+
lh (�q,ω) (solid lines) and I−

lh (�q,ω) (dashed lines); cf. Tables I–III.
We have chosen the mass parameters of GaAs, mh = 0.5m0, ml =
0.08m0, and a hole density of n = 0.01 nm−3.

The nonzero contributions to I−
hl (�q,ω) in regions III and IV of

Table II are given by

III : I−
hl (�q,ω) = G−(q,ω; kh,k

−
h ; mh,ml), (23)

IV : I−
hl (�q,ω) = G−(q,ω; k

−
h ,k−

h ; mh,ml). (24)

The nonvanishing contributions to I±
lh(�q,ω) can be ex-

pressed in a similar manner. For I+
lh(�q,ω) in regions I and

II of Table III one finds

I : I+
lh(�q,ω) = G+(q,ω; kl,k

+
l ; ml,mh), (25)

II : I+
lh(�q,ω) = G+(q,ω; k

+
l ,k+

l ; ml,mh), (26)

with

k±
l = q

mh

ml
− 1

∣∣∣∣∣1 −
√

1 +
(

mh

ml

− 1

)(
1 ± h̄ω

εh

)∣∣∣∣∣ , (27)

k
±
l = q

mh

ml
− 1

(
1 +

√
1 +

(
mh

ml

− 1

)(
1 ± h̄ω

εh

))
. (28)

TABLE I. Boundaries of regions of nonzero imaginary contri-
bution Ihh(�q,ω). The boundaries for Ill(�q,ω) are obtained via the
replacement h �→ l.

Region Boundary

I q � 2kh ∧ h̄ω � h̄2qkh/mh − εh(q)

II [q � 2kh ∧ h̄2qkh/mh − εh(q) � h̄ω

� h̄2qkh/mh + εh(q)]

∨ [q � 2kh ∧ −h̄2qkh/mh + εh(q) � h̄ω

� h̄2qkh/mh + εh(q)]
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TABLE II. Boundaries of regions of nonzero contributions to
I+
hl (�q,ω) (regions I and II) and I−

hl (�q,ω) (regions III and IV).

Region Boundary

I (1 − √
ml/mh)kh � q � (1 + √

ml/mh)kh

∧ h̄ω � h̄2qkh/ml − εl(q) − (mh/ml − 1)εf

II [q � (1 − ml/mh)kh

∧ h̄2qkh/ml − εl(q) − (mh/ml − 1)εf � h̄ω

� εh(q)/(1 − ml/mh)]

III [q � (1 − √
ml/mh)kh

∧ − h̄2qkh/ml + εl(q) + (mh/ml − 1)εf � h̄ω

� h̄2qkh/ml + εl(q) + (mh/ml − 1)εf ]
∨ [(1 − √

ml/mh)kh � q � (1 + √
ml/mh)kh

∧ h̄ω � h̄2qkh/ml + εl(q) + (mh/ml − 1)εf ]
∨ [q � (1 + √

ml/mh)kh

∧ − h̄2qkh/ml + εl(q) + (mh/ml − 1)εf � h̄ω

� h̄2qkh/ml + εl(q) + (mh/ml − 1)εf ]

IV q � (1 − √
ml/mh)kh

∧ h̄ω � −h̄2qkh/ml + εl(q) + (mh/ml − 1)εf

Likewise, the contributions to I−
lh(�q,ω) in regions I and II are

given by

III : I−
lh(�q,ω) = G−(q,ω; k l,k

−
l ; ml,mh), (29)

IV : I−
lh(�q,ω) = G−(q,ω; k

−
l ,k−

l ; ml,mh). (30)

IV. DIELECTRIC FUNCTION

Let us now analyze the RPA dielectric function resulting
from the above free polarizability. We first concentrate on the
effect of the mass difference between heavy and light holes.
To this end we eliminate effects of the dielectric background
by putting εr = 1, and we fix the total density n = nh + nl ,
nh/l = k3

h/l/3π2, to n = 0.01nm−3. Figures 2 and 3 show
the real23 and imaginary part of the dielectric function as

TABLE III. Boundaries of regions of nonzero contributions to
I+
lh (�q,ω) (regions I and II) and I−

lh (�q,ω) (regions III and IV).

Region Boundary

I [q � (
√

mh/ml + 1)kl

∧ − h̄2qkl/mh − εh(q) − (ml/mh − 1)εf � h̄ω

� h̄2qkl/mh − εh(q) − (ml/mh − 1)εf ]

II q � (
√

mh/ml − 1)kl

∧ h̄ω � −h̄2qkl/mh − εh(q) − (ml/mh − 1)εf

III [(
√

mh/ml − 1)kl � q � (
√

mh/ml + 1)kl

∧ h̄ω � h̄2qkl/mh + εh(q) + (ml/mh − 1)εf ]
∨ [q � (

√
mh/ml + 1)kl

∧ − h̄2qkl/mh + εh(q) + (ml/mh − 1)εf � h̄ω

� h̄2qkl/mh + εh(q) + (ml/mh − 1)εf ]

IV [q � (mh/ml − 1)kl

∧ h̄2qkl/mh + εh(q) + (ml/mh − 1)εf � h̄ω

� εl(q)/(mh/ml − 1)]

FIG. 2. (Color online) The modulus |Re[εRPA(�q,ω)]| of the real
part of the RPA dielectric function as a function of wave number q

and energy h̄ω for a model system with εr = 1. The ratio of heavy
and light mass is varied at constant mH + ml = m0, and the total hole
density is n = 0.01 nm−3.

a function of wave number and frequency in a color-coded
density plot, whereas in Fig. 4 the modulus of εRPA(�q,ω) is
shown. The top left panel in each figure illustrates the textbook
case1–3 of equal masses mH = ml = m0/2 with its well-known

FIG. 3. (Color online) The imaginary part Im[εRPA(�q,ω)] of the
the RPA dielectric function as a function of wave number q and
energy h̄ω for a model system with εr = 1. The ratio of heavy and
light mass is varied at constant mH + ml = m0, and the total hole
density is n = 0.01 nm−3.
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FIG. 4. (Color online) The modulus |εRPA(�q,ω)| of the RPA
dielectric function as a function of wave number q and energy
h̄ω for a model system with εr = 1. The ratio of heavy and light
mass is varied at constant mH + ml = m0, and the total hole density
is n = 0.01 nm−3. The dark areas indicate zeros of the dielectric
function corresponding to plasmon excitations.

plasmon dispersion ω(q) determined by εRPA[�q,ω(q)] = 0.
With increasing mass difference between heavy and light
holes a more complex structure arises and the plasmon
dispersion splits into two branches, as seen in the bottom
panels of Fig. 4: a branch with comparatively high energies
at small wave numbers is accompanied by a branch at lower
energies and large wave vectors. It is an interesting speculation
whether one can interpret these two plasmon branches in
analogy to phonons: on one branch both heavy and light holes
possibly perform (speaking in classical terms) joint collective
oscillations of charge density (analogous to acoustic phonons),
while on the other branch they oscillate opposite to each other
(similar to optical phonons). We leave this particular issue to
future investigations.

Finally, Figs. 5 and 6 show the free polarizability as a
function of frequency at different wave vectors for the same
choice of heavy and light hole masses as in the previous
figures.

Let us now discuss our results for the dielectric function
with respect to concrete III-V semiconductors. In order to make
contact to typical ferromagnetic semiconductor systems,4

and to compare with results of Ref. 11, we choose here a
higher carrier density of n = 0.35 nm−3. We consider four
typical III-V systems, whose relevant parameters21 are given
in Table IV. Note that now also the background dielectric
constant εr plays a nontrivial role. In Figs. 7–9 we have plotted
the real23 and imaginary part and the modulus, respectively,
of the dielectric function as a function of wave number and
frequency. As seen from Fig. 9, the zeros of the dielectric

FIG. 5. (Color online) The real part of the free polarizability
χ0(�q,ω) as a function of frequency at different wave vectors for the
same choice of heavy and light hole masses as in the previous figures.

function εRPA(�q,ω) defining the plasmon excitations form a
clearly more complex pattern than in the standard jellium
liquid, and, as in the previous case, two dispersion branches can
be identified. In particular, the plasmon excitation in GaAs at
small wave vector occurs slightly below 0.3 eV, which agrees
very well with Fig. 4 of Ref. 11, where a more complex model
for the band structure was used. However, differently from
the findings there, we can identify two plasmon dispersion
branches with small damping. Moreover, In Fig. 10 we show
the free polarizability χ0(�q,ω) as a function of frequency at
different wave vectors for the same semiconductor systems.
Again, the imaginary part for GaAs agrees nicely with data
given in Fig. 2 of Ref. 11. In this regime the imaginary part
of the free polarizability is dominated by transitions between
heavy-hole states; i.e., the main contribution is Ihh(�q,ω), in
accordance with Ref. 11.

FIG. 6. (Color online) The imaginary part of the free polarizabil-
ity χ0(�q,ω) as a function of frequency at different wave vectors for
the same choice of heavy and light hole masses as in the previous
figures.
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TABLE IV. Heavy and light hole masses along with background
dielectric constants for various III-V semiconductors.21

Semiconductor mh/m0 ml/m0 εr

AlAs 0.47 0.18 10.0
GaAs 0.5 0.08 12.8
InAs 0.5 0.026 14.5
InSb 0.2 0.015 18.0

A. Static limit

In the static limit ω = 0, the rather complex contributions
of Eq. (14) to the free polarizability of the hole system simplify
considerably to8,22

χ0(�q,0) = − mh

π2h̄2 kh

(
1 + 3

(
q

2kh

)2
)

L

(
q

2kh

)

− ml

π2h̄2 kl

(
1 + 3

(
q

2kl

)2
)

L

(
q

2kl

)

+ 3(
√

mh + √
ml)2

4π2h̄2

q2

kh + kl

L

(
q

kh + kl

)

− 3 (mh − ml)

4π2h̄2 (kh − kl)

[
1 − L

(
q

kh + kl

)]

+ 3mh

2π2h̄2 qH

(
q

2kh

)
+ 3ml

2π2h̄2 qH

(
q

2kl

)

− 3 (mh + ml)

2π2h̄2 qH

(
q

kh + kl

)
, (31)

FIG. 7. (Color online) The modulus |Re[(εRPA(�q,ω)]| of the real
part of the RPA dielectric function as a function of wave number
q and energy h̄ω for various semiconductor systems at a total hole
density of n = 0.35 nm−3.

FIG. 8. (Color online) The imaginary part Im[εRPA(�q,ω)] of the
the RPA dielectric function as a function of wave number q and
energy h̄ω for various semiconductor systems at a total hole density
of n = 0.35 nm−3.

where L(x) is the so-called Lindhard correction:

L(x) = 1

2
+ 1 − x2

4x
ln

∣∣∣∣1 + x

1 − x

∣∣∣∣ , (32)

FIG. 9. (Color online) The modulus |εRPA(�q,ω)| of the RPA
dielectric function as a function of wave number q and energy
h̄ω for various semiconductor systems at a total hole density of
n = 0.35 nm−3. The dark areas indicate zeros of the dielectric
function corresponding to plasmon excitations.

155201-7



JOHN SCHLIEMANN PHYSICAL REVIEW B 84, 155201 (2011)

FIG. 10. (Color online) The real (top panels) and imaginary
(bottom panels) part of the free polarizability χ0(�q,ω) as a function
of frequency at different wave vectors for the same semiconductor
systems as before (cf. Table IV).

and the function H is defined as

H (x) = 1

2

∫ 1/x

0
dy

1

y
ln

∣∣∣∣1 + y

1 − y

∣∣∣∣
=
⎧⎨
⎩

π2

4 −∑∞
n=0

x2n+1

(2n+1)2 |x| � 1∑∞
n=0

( 1
x )2n+1

(2n+1)2 |x| � 1
. (33)

Details of the derivation of the above result can be found in
Appendix 1a. Note that the static polarizability can entirely
be expressed in terms of the arguments k/2kh, k/2kl , and
k/kh + kl , with the latter one being the harmonic mean of
the two former. In the case mh = ml (i.e., kh = kl =: kF )
one obtains the usual result χ0(�q,0) = −D(εF )L(q/2kF ) for
charge carriers without spin-orbit coupling where D(ε) is
the density of states.24 For mh �= ml , however, the static
polarizability (31) has a clearly more complicated structure.
Fig. 11 displays the static-free polarizability and dielectric
function for the systems discussed above. In particular, the
data in the left panel at fixed mh + ml = m0 show that the
static polarizability develops richer features with increasing
difference in heavy and light hole mass.

Moreover, in the long-wave approximation χ0(�q,0) ≈
χ0(0,0), one recovers the usual Thomas-Fermi screening:

εRPA(�q,0) ≈ 1 − q2
TF/q

2, (34)

with a Thomas-Fermi wave number q2
TF = (e2/εrε0)3n/(2εf ).

As discussed in Ref. 8, the full screened potential of a
pointlike probe charge Q,


(�r) = 1

(2π )3

∫
d3q

Q

εrε0q2

εRPA(�q)
ei �q�r , (35)

can conveniently be approximated using Lighthill’s theorem25

as


(r) ≈ mh

m0
φ∞(2kh,r) + ml

m0
φ∞(2kl,r), (36)

FIG. 11. (Color online) (Left panel) The static free polarizability
χ0(�q,0) for the same choice of parameters as in Figs. 2–6. (Right
panels) χ0(�q,0) and εRPA(�q,0), the same III-V semiconductor systems
as in Figs. 7–10 (cf. Table IV).

where

φ∞(q,r) = Q

4πε0a0

2

π

1

[εrεRPA(q)]2

cos(qr)

(qr)3
, (37)

and a0 = 4πε0h̄
2/(m0e

2) being the usual Bohr radius. As a
result, a beating of Friedel oscillations between the two wave
numbers 2kh/l [but not k = (kh + kl)/2] takes place.8 This
beating is a peculiarity of the holes residing in the p-type
valence band and should be observable via similar scanning
tunneling microscopy techniques as used in metals26 and
n-doped semiconductors.27 Moreover, as theoretical studies
have revealed, such oscillations can have a profound impact
on the magnetic properties of ferromagnetic semiconductors
by giving way to the possibility of noncollinear magnetic
ordering.28,29

B. Limit of large frequencies

In the regime of large frequencies and small-wave vectors,
one can expand the denominators in Eq. (10) assuming h̄ω �
εh/l(�q) and h̄ω � (h̄kh/l/mh/l)h̄q. The result within the two
leading orders reads8,30

εRPA(�q,ω) = 1 − 1

ω2

e2

εrε0

1

6π2

(
1

mh

+ 1

ml

) (
k3
h + k3

l

)

− 1

ω4

e2h̄2

εrε0π2

1

2

(
1

m3
h

+ 1

m3
l

)

×
[

1

5
q2 (k5

h + k5
l

)+ 1

12
q4 (k3

h + k3
l

)]

− 1

ω4

e2h̄2

εrε0π2

[
− 1

56

(
1

mh

− 1

ml

)3 (
k7
h − k7

l

)

+ 21

200
q2

(
1

m3
h

− 1

m3
l

) (
k5
h − k5

l

)

− 3

40
q2

(
1

mh

− 1

ml

)(
k5
h

m2
l

− k5
l

m2
h

)]
. (38)
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For mh = ml the first three lines of the above expression
reproduce again the standard textbook result2 while all other
terms vanish in this limit. On the other hand, if mh �= ml ,
contributions in the order 1/ω4 occur that are independent
of the wave vector�q. Such terms are absent in the case of
the standard electron gas where the contributions of the order
1/ω2n are at least of the order q2n−2 in the wave vector.2 The
technical reason why such contributions are present for the
hole gas is that the expression ελ2 (�k + �q) − ελ1 (�k) in Eq. (10)
contains for |λ1| �= |λ2| an additive term which is independent
of k (and vanishes for mh = ml). As a consequence, although
the result in Eq. (38) is the valid high-frequency expansion
of the dielectric function, it is not possible to obtain from
it a reliable expression for the plasmon dispersion ω(q)
defined by εRPA[�q,ω(q)] = 0. This statement holds even for
the long-wavelength plasma frequency ω(q = 0) and is due
to the fact that in any order in (1/ω2) the prefactor in the
expansion contains contributions being of low order (including
the zeroth order) in q. As an example, relying on the expansion
(38) being of up to the quartic order in 1/ω, the condition
εRPA[�q,ω(q)] = 0 translates to8,30

ω2(q) = (ω(0)
p

)2[1

2
+ 1

2

{
1 + 4

[
u(n1/3a0)

+ (v + w)
(qa0)2

n1/3a0

]}1/2]
+ O(q4). (39)

Here we have defined(
ω(0)

p

)2 = e2

εrε0

n

2

(
1

mh

+ 1

ml

)
, (40)

and the density-independent coefficients u, v, and w are given
by

u = −Q(mh,ml)

(3π2)1/3
(
m

3/2
h + m

3/2
l

)2/3

× 3

14

(
1

mh

− 1

ml

)3 (
m

7/2
h − m

7/2
l

)
, (41)

v = 2Q(mh,ml)

5π2

(
1

m3
h

+ 1

m3
l

) (
m

5/2
h + m

5/2
l

)
, (42)

w = 3Q (mh,ml)

10π2

[
7

5

(
1

m3
h

− 1

m3
l

) (
m

5/2
h − m

5/2
l

)

−
(

1

mh

− 1

ml

)(
m

5/2
h

m2
l

− m
5/2
l

m2
h

)]
, (43)

with the common prefactor

Q (mh,ml) =
εr

4π
m0(

1
mh

+ 1
ml

)2 (3π2)5/3(
m

3/2
h + m

3/2
l

)5/3
. (44)

Clearly, the coefficients u and w vanish for mh = ml while
from v one recovers the usual textbook result for an electron
gas without spin-orbit coupling.2 However, if mh and ml differ
substantially, the neglected contributions occurring in the
higher order in the inverse frequency but being independent of
or of low order in the wave vector can substantially modify the
plasmon excitations. This can even affect the plasma frequency

ω(q = 0) at the zero wave vector: e.g., for the parameters of
GaAs (cf. Table IV) and a total hole density of n = 0.35 nm−3

one obtains from Eq. (39) h̄ω(q = 0) ≈ 0.8 eV, in contrast
to the value of slightly less than 0.3eV found from a full
evaluation of the dielectric function (cf. Fig. 9 top right
panel) which is also in accordance with Ref. 11. In summary,
although the expansion (38) is the correct description of the
dielectric function in the limit of large frequencies, it does
not lead to reliable expressions for the plasmon dispersion.
This is due to peculiarities of the expansion occurring for
mh �= ml . On the other hand, as seen from, e.g., Fig. 9, the
interplay between the hole mass difference and the background
dielectric constant leads to plasmon excitations patterns which
differ dramatically from the textbook case of the jellium model.
These alternations, however, are not accurately described by
expressions of the type of Eq. (39), in contrast to an earlier
approach where results for the full wave vector and frequency
dependence of the dielectric function were not available
yet.8

V. CONCLUSIONS AND OUTLOOK

We have investigated the RPA dielectric function of
the homogeneous semiconductor hole liquid in p-doped
bulk III-V zinc-blende semiconductors. The single-particle
physics of the hole system is modeled by Luttinger’s four-
band Hamiltonian in its spherical approximation. Regarding
the Coulomb-interacting hole liquid, the full dependence
of the zero-temperature dielectric function on wave vector
and frequency has been explored. The imaginary part of
the dielectric function is analytically obtained in terms of
complicated but fully elementary expressions, while in the
result for the real part nonelementary one-dimensional inte-
grations remain to be performed. The correctness of these
two independent calculations is checked via Kramers-Kronig
relations.

The mass difference between heavy and light holes, along
with variations in the background dielectric constant, leads
to dramatic alternations in the plasmon excitation pattern,
and, generically, two plasmon branches can be identified.
These findings are the result of the evaluation of the full
dielectric function and are not accessible via a high-frequency
expansion. In the static limit a beating of Friedel oscillations
between the Fermi wave numbers of heavy and light holes
occurs.

Regarding future developments, possible extensions of the
present work could include the implementation of more gen-
eral single-particle Hamiltonians modeling the band structure.
For instance, one could drop the spherical approximation to
the Luttinger Hamiltonian and consider parameters γ2 �= γ3.
However, such a reduction of the full rotational invariance
to tetrahedral symmetry might prohibit analytical progress
as achieved here. However, we do not expect drastic effects
from such a generalization, in particular because for the
generic material GaAs γ2 and γ3 are very close to each
other.21 Moreover, our results obtained here for the spherically
symmetric 4 × 4 valence-band Hamiltonian agree, where
overlapping, very reasonably with findings in Ref. 11 where a
more complicated 8 × 8 band structure model was evaluated
numerically.
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Having in mind ferromagnetic semiconductors such as Mn-
doped GaAs, another obvious extension would be a coupling to
the hole spins by a homogeneous Zeeman-type field mimicking
the magnetization of the Mn ions. A technical difficulty here
lies in the fact that the resulting single-particle Hamiltonian
cannot be diagonalized any more in a convenient analytical
fashion. However, analytical progress might still be possible if
the Zeeman coupling is treated as a perturbation. This strategy
leads us of course to also consider the spin susceptibility, i.e.,
spin-spin response function. For a standard jellium systems of
spin-1/2 fermions without spin-orbit coupling, this quantity
is, up to constant prefactors, identical to the free electrical
polarization.1 For the 4 × 4 hole system studied here, however,
this simple relation is rendered invalid by the larger spin length
and, more importantly, the presence of manifest spin-orbit
coupling. Thus, a study of the spin susceptibility in a similarly
analytical fashion as done here for the electric polarizability
and the dielectric function appears also to be useful.

Finally, from the point of view of general many-particle
physics, the inclusion of so-called local many-body field

factors would be an important step toward correlations beyond
RPA.1 The practical treatment of such local-field factors in the
presence of strong spin-orbit coupling, however, is still in its
infancy.
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APPENDIX: CALCULATION OF FREE POLARIZABILITY

1. Real part

With the help of the Dirac identity

1

x + i0
= P 1

x
− iπδ(x), (A1)

the contributions to the real part of the free polarizability of
the hole gas read

Rhh(�q,ω) = −1

(2πh̄)2

mh

q2
P
∫ kh

0
dkk2

∫ 1

−1
dx

(
1 + 3

k2 + 2kqx + q2x2

k2 + 2kqx + q2

)[
1

1 + (2k/q)x − 2mhω/(h̄q2)
+ (ω �→ −ω)

]
,

(A2)

Rhl(�q,ω) = −1

(2πh̄)2

ml

q2
P
∫ kh

0
dkk2

∫ 1

−1
dx

(
3 − 3

k2 + 2kqx + q2x2

k2 + 2kqx + q2

)

×
[

1

1 + (2k/q)x + (1 − ml/mh)k2/q2 − 2mlω/(h̄q2)
+ (ω �→ −ω)

]
. (A3)

The integration over the polar variable x can be performed by applying the identity

k2 + 2kqx + q2x2

k2 + 2kqx + q2

1

1 + (2k/q)x + α
=
(

q

2k

)2

− q/(8k)

1 − (q/k)2α

(
1 − q2

k2

)
1

x + q/(2k) + k/(2q)

+ q/(2k)

1 − (q/k)2α

(
1 − q2

2k2
(1 + α)

)2
1

x + q(1 + α)/(2k)
, (A4)

for α = −2mhω/(h̄q2) and α = (1 − ml/mh)k2/q2 − 2mlω/(h̄q2). Adding both contributions and introducing a dimensionless
radial integration variable y = 2k/q, the result can be formulated as

Rhh(�q,ω) + Rhl(�q,ω) = −1

(2πh̄)2

q

4
P
∫ 2kh/q

0
dyy2

[
mh

2

1

y
ln

∣∣∣∣1 − 2mhω/(h̄q2) + y

1 − 2mhω/(h̄q2) − y

∣∣∣∣+ 3

y2
(mh − ml)

+ 3ml

2

1

y
ln

∣∣∣∣1 − 2mlω/(h̄q2) + y + (1 − ml/mh)y2/4

1 − 2mlω/(h̄q2) − y + (1 − ml/mh)y2/4

∣∣∣∣
+ 3mh

2

y

y2 + 8mhω/(h̄q2)

[
1 − 2

y2

(
1 − 2mhω

h̄q2

)]2

ln

∣∣∣∣1 − 2mhω/(h̄q2) + y

1 − 2mhω/(h̄q2) − y

∣∣∣∣
− 3mh

2

y

y2 + 8mhω/(h̄q2)

[
1

2

(
1 + ml

mh

)
− 2

y2

(
1 − 2mlω

h̄q2

)]2

× ln

∣∣∣∣1 − 2mlω/(h̄q2) + y + (1 − ml/mh)y2/4

1 − 2mlω/(h̄q2) − y + (1 − ml/mh)y2/4

∣∣∣∣+ (ω �→ −ω)

]
. (A5)
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Now, by rearranging the terms in the integrand and performing elementary integrations, one obtains the result in Eq. (14). We
note that also the integral in the third line of Eq. (14) is elementary but lengthy:∫ x

0
dy y ln

∣∣∣∣ay2 + by + c

ay2 − by + c

∣∣∣∣ = 1

2

(
x2 − b2

2a2
+ c

a

)
ln

∣∣∣∣ay2 + by + c

ay2 − by + c

∣∣∣∣+ b

a
x

−

⎧⎪⎨
⎪⎩

b
a

√
b2

4a2 − c
a

[
tanh−1

(
x+b/(2a)√
b2/(4a2)−c/a

)+ tanh−1
(

x−b/(2a)√
b2/(4a2)−c/a

)]
b2

4a2 − c
a

� 0

b
a

√
c
a

− b2

4a2

[
tan−1

(
x+b/(2a)√
c/a−b2/(4a2)

)+ tan−1
(

x−b/(2a)√
c/a−b2/(4a2)

)]
b2

4a2 − c
a

� 0
,

whereas all other integrals in Eq. (14) cannot be expressed via elementary functions.

a. Static limit

In the static limit ω → 0 one obtains from Eq. (14) [or, alternatively, Eq. (A5)]

Rhh(�q,0) + Rhl(�q,0) = −mh

(2πh̄)2

(
2kh + q/2

εh(q)
[εf − εh(q)] ln

∣∣∣∣εh(q) + h̄2qkh/mh

εh(q) − h̄2qkh/mh

∣∣∣∣
)

− 3

(2πh̄)2
(mh − ml) kh

+ 3

(2πh̄)2

mhq

16

(
1 − mh

ml

)2 ∑
μ=±

y2
μ

∫ 2kh/(qyμ)

0
dyy ln

∣∣∣∣1 + y

1 − y

∣∣∣∣
+ 3

(2πh̄)2
mhq

∫ 2kh/q

0
dy

1

y
ln

∣∣∣∣1 + y

1 − y

∣∣∣∣− 3/2

(2πh̄)2
(mh + ml)

∑
μ=±

∫ 2kh/(qyμ)

0
dy

1

y
ln

∣∣∣∣1 + y

1 − y

∣∣∣∣
− 3

(2πh̄)2
mhq

∫ 2kh/q

0
dy

1

y3

(
ln

∣∣∣∣1 + y

1 − y

∣∣∣∣− ln

∣∣∣∣1 + y/y+
1 − y/y+

∣∣∣∣− ln

∣∣∣∣1 + y/y−
1 − y/y−

∣∣∣∣
)

, (A6)

where we have split a part of the logarithmic terms in the integrand by introducing y± := 2/(1 ± √
ml/mh). In order to simplify

the above expression we first note that the first term of the right-hand side can be written as −mhL(q/(2kh))/(πh̄)2 using the
Lindhard correction (32). Regarding the terms in the second and third line involving a summation over μ = ±, the interchange
h ↔ l leads to y± ↔ ȳ± := 2/(1 ± √

mh/ml), fulfilling 2kl/(qȳ±) = ±2kh/(qy±) and mhȳ
2
± = mly

2
±. From these observations

it is easy to see that the terms with μ = − cancel against corresponding expressions in Rll(�q,0) + Rlh(�q,0), and only the terms
with μ = + (being invariant under h ↔ l) contribute to χ0(�q,0). The first of these contributions [the second line in Eq. (A6)] can
be expressed again via the Lindhard correction, while the integrals in the third line involve the function H (x) defined in Eq. (33).
Finally, the last line of Eq. (A6) can be evaluated as

mh

∫ 2kh/q

0
dy

1

y3

(
ln

∣∣∣∣1 + y

1 − y

∣∣∣∣− ln

∣∣∣∣1 + y/y+
1 − y/y+

∣∣∣∣− ln

∣∣∣∣1 + y/y−
1 − y/y−

∣∣∣∣
)

= 2mh

q

2kh

L

(
q

2kh

)
− (

√
mh + √

ml )2

2

q

kh + kl

L

(
q

kh + kl

)
− (

√
mh − √

ml )2

2

q

kh − kl

L

(
q

kh − kl

)
, (A7)

where the last term on the right-hand side is odd under h ↔ l and cancels against an analogous contribution in Rll(�q,0) + Rlh(�q,0).
Now summing all expressions one ends up with the result in Eq. (31) for the free polarizability χ0(�q,0).

2. Imaginary part

a. Ihh(�q,ω) and Ill (�q,ω)

Using the Dirac identity [Eq. (A1)] and performing the angular integrations, Ihh(�q,ω) can be expressed as

Ihh(�q,ω) = −1

4πq

mh

h̄2

∫ kh

0
dk

[(
2k + 3

2k

(q2/2 + mhω/h̄)2 − q2k2

k2 − 2mhω/h̄

)
�

(
k −

∣∣∣∣q2 + mhω

h̄q

∣∣∣∣
)

−
(

2k + 3

2k

(q2/2 − mhω/h̄)2 − q2k2

k2 + 2mhω/h̄

)
�

(
k −

∣∣∣∣q2 − mhω

h̄q

∣∣∣∣
)]

, (A8)

where �(x) denotes the Heaviside step function. Obviously,
the step functions occurring in the above expression define
the lower integration bound, and the pertaining discussion
parallels the arguments appropriate for the standard textbook

case of a spinless Jellium model.1–3 However, for the sake of
completeness, and in order to point out important differences
regarding the remaining quantities Ihl(�q,ω) and Ilh(�q,ω), to
be analyzed below, let us briefly go into some details. Since
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Ihh(�q, − ω) = −Ihh(�q,ω) it is sufficient to concentrate on
ω � 0. Then, if the first step function in Eq. (A8) leads to
a nonzero contribution (i.e., has a positive argument for some
k ∈ [0,kh]), this holds also for the second step function. Thus,
a necessary and sufficient condition for both step functions to
contribute is kh − |q/2 + mhω/(h̄q)| � 0, which is equivalent
to

h̄q
h̄kh

mh

− εh(q) � h̄ω (A9)

and can for nonnegative frequencies only be fulfilled for q �
2kh. The last two inequalities define region I in Table I, and
the corresponding expression (15) is obtained by elementary
integration.

Let us now turn to the case where only the second step
function contributes, i.e., kh − |q/2 − mhω/(h̄q)| � 0, while
inequality (A9) is violated. Assuming h̄ω � εh(q) we arrive at
the condition

h̄q
h̄kh

mh

+ εh(q) � h̄ω � h̄q
h̄kh

mh

− εh(q), (A10)

while the opposite assumption, h̄ω � εh(q), leads to

h̄ω � −h̄q
h̄kh

mh

+ εh(q). (A11)

The latter inequality is only a nontrivial condition if its
right-hand side is nonnegative, which is equivalent to q � 2kh.
In summary, the second step function in expression (A8)
contributes while the first one yields zero if, and only if, (i)
q � 2kh and inequality (A10) is fulfilled or (ii) q � 2kh and

h̄q
h̄kh

mh

+ εh(q) � h̄ω � −h̄q
h̄kh

mh

+ εh(q). (A12)

The above conditions define region II in Table I, and and the
corresponding expression (16) follows again from elementary
integration.

The remaining quantity Ill(�q,ω) is obtained from the above
results via the replacement h �→ l.

b. Ihl (�q,ω)

After performing the angular integrations, Ihl(�q,ω) can be
formulated in the form of Eq. (17) with

I±
hl (�q,ω) = 3

8πq

mh

h̄2

∫ kh

0
dk

[
1/k

k2 ∓ 2mhω/h̄

(
−
(

q2

2
± mlω

h̄

)2

+ k2

[
q2 −

(
1 − ml

mh

)(
q2

2
± mlω

h̄

)]

−k4

4

(
1 − ml

mh

)2
)

�

(
k −

∣∣∣∣q2 +
(

1 − ml

mh

)
k2

2q
± mlω

h̄q

∣∣∣∣
)]

. (A13)

We now have to discuss under which circumstances the step
functions in the above expression lead to nonzero contribu-
tions. This is more complicated than in the previous case since
the arguments of the step functions depend quadratically (and
not only linearly) on the integration variable k. The condition

�

[
k −

∣∣∣∣q2 +
(

1 − ml

mh

)
k2

2q
± mlω

h̄q

∣∣∣∣
]

= 1 (A14)

is equivalent to

(k + a)2 � b± ∧ (k − a)2 � b±, (A15)

where we have defined

a = q

1 − ml/mh

, (A16)

b± = a2 − 2q

1 − ml/mh

(
q

2
± mlω

h̄q

)

= (ml/mh)q2

(1 − ml/mh)2
∓ 2mlω/h̄

1 − ml/mh

. (A17)

Here, and in what follows, the upper (lower) sign refers always
to I+

hl (�q,ω) [I−
hl (�q,ω)]. Note that the step function in I+

hl (�q,ω)
can, for nonnegative frequencies, only be nonzero if this is
also the case for I−

hl (�q,ω).

Since ml < mh we clearly have a � 0, and the second
inequality in Eq. (A15) requires b± � 0, which leads for the
upper sign to the condition

h̄ω � 1

1 − ml/mh

εh(q). (A18)

Moreover, an elementary discussion of the inequalities (A15)
yields the following lower and upper boundaries for the
integral (A13) after resolving the step function:

l± = min{|a −
√

b±|,kh}, (A19)

l± = min{a +
√

b±,kh}, (A20)

with 0 � l± � l± � kh. Nonzero contributions occur only for
l± < kh. For the upper sign, the condition l± � kh implies

h̄q
h̄kh

ml

− εl(q) −
(

mh

ml

− 1

)
εf � h̄ω, (A21)

which is, for nonnegative ω, a nontrivial statement only if

(1 −
√

ml/mh)kh � q � (1 +
√

ml/mh)kh. (A22)

Conversely, inequality (A21) implies l± � kh only for a � kh,
while in the case a � kh, i.e.,

q � (1 − ml/mh)kh, (A23)

it follows kh � a + √
b+, and the inequality (A18) limits the

region of nonzero I+
hl (�q,ω). The inequalities (A23), (A21), and
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(A18) define region II in Table II with the integration bounds
being l+ = |a − √

b+| =: k+
h and l+ = a + √

b+ =: k
+
h as

defined in Eqs. (21) and (22). On the other hand, inequality
(A22), along with the negation of Eq. (A21),

h̄q
h̄kh

ml

− εl(q) −
(

mh

ml

− 1

)
εf � h̄ω, (A24)

define region I in Table II. Here again l+ = k+
h , and inequality

(A24) further implies l+ = kh. Note that the condition (A18)
is always fulfilled if Eq. (A21) is valid, since

h̄q
h̄kh

ml

− εl(q) −
(

mh

ml

− 1

)
εf � εh(q)

1 − ml/mh

⇔ 0 � h̄2

2ml

[(
1 − ml

mh

)
kh − q

]2

.

Moreover, the upper and the lower boundary of region II inter-
sect each other in the q-ω plane at q = (1 − ml/mh)kh with
an identical tangent. Finally, the corresponding contributions
to I+

hl (�q,ω) in regions I and II are obtained by elementary
integration of Eq. (A13) and given in Eqs. (19) and (20).

Let us now turn to the lower sign case I−
hl (�q,ω). The

condition l− � kh implies for b− � a2 [⇔ h̄ω � εl(q)]

h̄q
h̄kh

ml

+ εl(q) +
(

mh

ml

− 1

)
εf � h̄ω. (A25)

In the opposite case b− � a2 [⇔ h̄ω � εl(q)] the inequality
l− � kh does not lead to any further restriction on the
frequency for kh � a [⇔ (1 − ml/mh)kh � q], while for kh �
a one finds

h̄ω � −h̄q
h̄kh

ml

+ εl(q) +
(

mh

ml

− 1

)
εf . (A26)

The latter statement is a nontrivial requirement only if

q � (1 +
√

ml/mh)kh, (A27)

which also ensures (1 − ml/mh)kh � q (⇔ kh � a). The
inequalities (A25) and (A26) are necessary and sufficient
conditions for I−

hl (�q,ω) in Eq. (A13) to be nonzero. In this
case the lower integration bound is l− = |a − √

b−| =: k−
h

and again given explicitly in Eq. (21).
Moreover, straightforward inspection shows that the upper

integration boundary is l− = kh provided inequality (A26) [but
not necessarily Eq. (A27)] is fulfilled, while otherwise [requir-
ing q � (1 − √

ml/mh)kh] we have l− = a + √
b− =: k

−
h as

given in Eq. (22). The corresponding contributions G−(· · ·) in
Eqs. (23) and (24) follow again from elementary integration.
The different regions in the q-ω plane are summarized in
Table II and illustrated in Fig. 1.

c. Ilh(�q,ω)

The contribution Ilh(�q,ω) can formally be expressed by
Eq. (A13) via the replacement h ↔ l. Thus one needs to
discuss the condition

�

[
k −

∣∣∣∣q2 +
(

1 − mh

ml

)
k2

2q
± mhω

h̄q

∣∣∣∣
]

= 1, (A28)

or, equivalently,

(k + c)2 � d± ∧ (k − c)2 � d±, (A29)

with

c = q

mh/ml − 1
, (A30)

d± = c2 + 2q

mh/ml − 1

(
q

2
± mhω

h̄q

)

= (mh/ml)q2

(mh/ml − 1)2
± 2mhω/h̄

mh/ml − 1
. (A31)

Note that, differently from the previous cases, I+
lh(�q,ω) is not

necessarily zero if I−
lh(�q,ω) vanishes, because 1 − mh/ml < 0.

On the other hand, this inequality ensures c � 0, and from the
condition d± � 0 we find for the lower case

h̄ω � 1

mh/ml − 1
εl(q). (A32)

Similarly to the previous case, the inequalities (A29) lead to
the following lower and upper boundaries within the interval
[0,kl]:

l± = min{|c −
√

d±|,kl}, (A33)

l± = min{c +
√

d±,kl}, (A34)

with nonzero contributions being possible only for l± � kl .
For the upper sign case this condition is equivalent to

h̄q
h̄kl

mh

− εh(q) −
(

ml

mh

− 1

)
εf � h̄ω, (A35)

which can only be fulfilled if

q � (1 +
√

mh/ml)kl. (A36)

Thus, in the above case, the lower integration bound is l+ =
|c − √

d+| =: k+
l and given explicitly in Eq. (27). Moreover,

an again straightforward discussion shows that the upper inte-
gration bound is given by l+ = c + √

d+ =: k
+
l [cf. Eq. (28)]

provided

h̄ω � −h̄q
h̄kl

mh

− εh(q) −
(

ml

mh

− 1

)
εf , (A37)

which is only possible for

q � (−1 +
√

mh/ml)kl. (A38)

The above inequalities (A37) and (A38) define region II in
Table III and Fig. 1, while region I is defined by Eqs. (A35)
and (A36) and the negation of Eq. (A37). Here the upper
integration bound is l+ = kl . The corresponding expressions
for I+

lh(�q,ω) in regions I and II are given in Eqs. (25) and (26),
respectively.

Regarding I−
lh(�q,ω), considerations analogous to the ones

for I+
hl (�q,ω) show that the condition l− � kl is for c � kl (⇔

q � (mh/ml − 1)kl) equivalent to

h̄q
h̄kl

mh

+ εh(q) +
(

ml

mh

− 1

)
εf � h̄ω (A39)
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and

h̄ω � −h̄q
h̄kl

mh

+ εh(q) +
(

ml

mh

− 1

)
εf , (A40)

where the latter inequality poses a nontrivial requirement only
if

q � (1 +
√

mh/ml)kh. (A41)

The inequalities (A39)–(A41) define region III in Table III.
Here the lower integration bound is l− = |c − √

d−| =: k−
l

[cf. Eq. (27)], and the upper integration bound turns out to be
always l− = kl .

For c � kl , i.e.,

q � (mh/ml − 1) kl, (A42)

however, there is, similar to the case of I+
hl (�q,ω), another way

of fulfilling the condition l− � kl . The corresponding region

IV is defined by the inequalities (A32), (A42), and

h̄ω � h̄q
h̄kl

mh

+ εh(q) +
(

ml

mh

− 1

)
εf , (A43)

and the integration bounds are l− = k−
l , l− = c + √

d− =: k
−
l .

We note that the inequality (A39) generally implies the
fulfillment of Eq. (A32), since

h̄q
h̄kl

mh

+ εh(q) +
(

ml

mh

− 1

)
εf � εl(q)

mh/ml − 1

⇔ 0 � h̄2

2mh

[(
mh

ml

− 1

)
kl − q

]2

.

Moreover, similarly as in the case of I+
hl (�q,ω), the upper and

the lower boundary of region IV intersect each other at q =
(mh/ml − 1)kl with an identical tangent.
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