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Dynamical mean-field theory versus second-order perturbation theory for the trapped
two-dimensional Hubbard antiferromagnet
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In recent literature on trapped ultracold atomic gases, calculations for two-dimensional (2D) systems are often
done within the dynamical mean-field theory (DMFT) approximation. In this paper, we compare DMFT to a fully
2D, self-consistent second-order perturbation theory for weak interactions in a repulsive Fermi-Hubbard model.
We investigate the role of quantum and of spatial fluctuations when the system is in the antiferromagnetic phase,
and find that, while quantum fluctuations decrease drastically the order parameter and critical temperatures, spatial
fluctuations only play a noticeable role when the system undergoes a phase transition, or at phase boundaries in
the trap. We conclude from this that DMFT is a good approximation for the antiferromagnetic Fermi-Hubbard
model for experimentally relevant system sizes.
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I. INTRODUCTION

The study of ultracold, trapped atomic gases on a lattice as
an emulation of tight-binding Hamiltonians has been an active
field of research for the past 15 years. After the realization
of Bose-Einstein condensates (BECs) of alkali atoms in
1995,1,2 many theoretically predicted quantum phenomena,
such as the bosonic superfluid-Mott insulator transition3 and
superexchange,4 have been observed experimentally. The
recent achievement of a fermionic Mott insulator in a Hubbard
Hamiltonian5,6 has steered the focus toward understanding the
fermionic Hubbard model and its phase diagram, which may
have a relevance for high-temperature superconductivity.7,8 An
important challenge is to reach the Néel temperature in order
to realize antiferromagnetic phases.

It is common practice, when doing calculations on two-
dimensional trapped atomic gases, to use the dynamical
mean-field theory (DMFT),9 which includes only spatially
local fluctuations. While DMFT is known to be a good
approximation in three-dimensional problems10–12 or infinite-
dimensional problems,13 it is expected to perform much more
poorly in two dimensions, since nonlocal fluctuations gain
importance.14,15

We have therefore implemented a self-consistent second-
order perturbation theory for the Fermi-Hubbard Hamiltonian.
The self-energy expansion, which is described further on, in-
cludes local as well as nonlocal fluctuations of the system. This
gives us the tools to compare the effects of quantum and spatial
fluctuations for the model, up to second order in the interaction.

A two-pseudospin-species Fermi mixture in a magneto-
optical trap realizes a Hubbard model with broken lattice
symmetry,

H = −t
∑
(ij),σ

ĉ†iσ ĉjσ + U
∑

i

n̂i↑n̂i↓

+
∑

iσ

(V i2 − μσ )n̂iσ , (1)

where (ij) denotes the sum over next neighbors, ĉ
†
iσ and ĉiσ

are the creation and annihilation operators for the respective
lattice point and spin, and n̂iσ = ĉ

†
iσ ĉiσ is the number operator.

Also, t is the next-neighbor hopping amplitude, and U the

on-site interaction, which is chosen to be repulsive, U > 0,
in this paper. The term V i2 describes the harmonical trapping
potential which breaks the lattice translational symmetry, and
the spin-dependent chemical potential is μσ . The energy scale
for this work is the hopping amplitude t (t ≡ 1).

It is necessary to use approximative schemes to solve this
Hamiltonian. In this paper, three different approximations
are compared, namely, Hartree-Fock theory, DMFT, and
self-consistent perturbation theory up to second order in the
interactions. It is known from Hartree-Fock theory16 that, for
the case of an imbalance μ↑ �= μ↓, the ground state is a canted
antiferromagnet, with a U (1) symmetry for all rotations around
the z axis. For the case of balanced spin species μ↑ = μ↓, the
system is symmetric under all rotations of SU(2). While the
code used can easily reproduce both balanced and imbalanced
cases, this paper will be constrained to balanced systems, for
simplicity. These are sufficient for an identification of key
effects of second-order diagrams.

This paper is organized as follows. First, we will give a
short introduction to the approximation schemes used here.
Then, we will discuss results for the trapped system, focusing
on the differences of the approaches. The role of nonlocal
diagrams is then investigated further, and finally a short survey
of finite-size effects, which are noticeable in our calculations,
is presented.

FIG. 1. First- and second-order SE diagrams. (a) Hartree-term,
(b) Fock term, (c) density-density term, and (d) exchange term.
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(a) density distribution,  Hartree−Fock, U=3.5, V=0.056
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(b) magnetization, Hartree−Fock, U=2.5, V=0.056
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(c) density distribution,  DMFT, U=3.5, V=0.056
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(d) magnetization,  DMFT, U=3.5, V=0.056
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(e) density distribution,  2OPT, U=3.5, V=0.056
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(f) magnetization,  2OPT, U=3.5, V=0.056
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(g) density distribution, β=50, U=2.5, V=0.0017
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(h) magnetization, β=50, U=2.5, V=0.0034

FIG. 2. (Color online) Cuts through the lattice for different approximations, displaying the occupation and the staggered z magnetization.
(a)–(f) show almost the entire occupied region, with trap potential V = 0.56, while (g) and (h) show the center of a system, with V = 0.0017.
The HF results show significantly higher critical temperatures and higher ground-state staggered magnetizations, as well as sharper phase
transitions, than the other two approximations 2OPT and DMFT, which differ only slightly, although consistently, from another.

II. THE DIFFERENT APPROXIMATIVE SCHEMES

In Hartree-Fock theory (HF), quantum fluctuations are com-
pletely neglected. This is expressed through the transformation

n̂i↑n̂i↓ → 2〈n̂i 〉n̂i − 2〈Ŝi 〉 · Ŝi − 〈n̂i 〉2 + 〈Ŝi 〉2. (2)

This is equivalent to a self-consistent perturbation scheme of
first order [cf. Figs. 1(a) and 1(b)], with a local and frequency-
independent self-energy (SE), which is therefore diagonal in
real-space representations:

�iσ,jκ (ω) = �HF
iσ,jκδij . (3)
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The neglect of quantum fluctuations leads to a systematical
exaggeration of both critical temperature and ground-state
staggered magnetization in all dimensions.

Dynamical mean-field theory (DMFT) tries to correct for
this shortcoming by including some quantum fluctuations,
namely, all local ones. The resulting self-energy continues to
be diagonal in real space, but now has a frequency dependence:

�iσ,jκ (ω) = [
�HF

iσ,jκ + �DMFT
iσ,jκ (ω)

]
δij . (4)

DMFT is usually viewed as the limit of infinite dimensions,
and as such is a useful method for high (d � 3) dimensions. It
is generally expected, however, that in lower dimensions the
usefulness of DMFT is strongly reduced, because nonlocal
processes gain in weight. DMFT is a priori a nonperturbative
expansion: The SE includes diagrams of all orders of
perturbation. For the sake of our comparison, we have only
included contributions to the local SE up to second order. We
expect this to deviate only slightly from the full DMFT, for the
same reasons given below for full second-order calculations. In
the diagrammatic language, this corresponds to an inclusion of
Figs. 1(a)–1(d), but only those whose Green’s functions’
lattice indices are equal, Giσ,iκ for all Green’s functions in the
diagram.

Finally, the self-consistent second-order perturbation the-
ory (2OPT) includes local and nonlocal diagrams. The SE is
now nondiagonal in real space,

�ij (ω) = �HF
iσ,jκδij + �2OPT

iσ,jκ (ω). (5)

The numerical effort grows exponentially with every order of
interactions in the perturbative series, making it numerically
difficult to include more than second-order diagrams. Because
we stay in the weak interaction regime, and higher orders
of interactions are suppressed by at least U 3/W 2—where
W = 4t is the typical half-bandwidth of the two-dimensional
Hubbard model—second-order calculations should include all
dominant quantum fluctuations and, therefore return quantita-
tively correct results. The second-order contributions used in
DMFT and in 2OPT may be written as (for the case of a z
antiferromagnet)

�2,ij (ω) = U 2
∫

dω
ρijσσ ′(ω1) ρjiσ̄ ′σ̄ (ω2)ρijσ̄ σ̄ ′(ω3)

ω − ω1 + ω2 − ω3 + iδ

× [fβ(ω1)fβ(−ω2)fβ(ω3)

+ fβ (−ω1)fβ(ω2)fβ(−ω3)], (6)

where in DMFT diagrams with i �= j are neglected.

III. THE INHOMOGENEOUS SYSTEM

For the Fermi-Hubbard model on a square lattice, the
additional trapping potential leads to a coexistence of different
phases in the system, depending on the local density: For local
densities lower and significantly higher than half filling, a
paramagnetic phase is present. In regions close to half filling,
a Néel state is present. While at high temperatures the Néel
state adapts to the filling as given by the trap potential, when
temperatures are lowered the Néel phase enforces half filling
over a broad range, reminiscent of the occurrence of phase
separation in a doped homogeneous system.17 Unlike the Mott
plateau, which is a fluctuation effect not reproducible in HF

calculations,18 the Néel plateau can be seen even at the HF
level.

A domain wall boundary appears as soon as the system
crosses into the Néel-plateau region.16 At the new boundary,
the antiferromagnetic order parameter (−)imz(i) changes its
sign. The boundary can also be seen in the occupation number
as a ring of higher occupation extending from the region
of half filling [Figs. 2(g) and 2(h)]. Notice that the higher
occupation is suppressed again toward half filling by the
second antiferromagnetic domain, working in opposition to
the trapping potential. This different Néel domain requires
the occupied part of the lattice to extend to a radius of at
least 15–20 lattice points around the trap center, otherwise the
lattice resolution is too small for the new domain to exist.

Our calculations show that quantum fluctuations increase
the inverse Néel temperature βN while decreasing the Néel
order parameter—cf. Fig. 2. In HF, βHF

N (U = 3.5) is 1.5,
while βDMFT

N (U = 3.5) and β2OPT
N (U = 3.5) are 3. The (ef-

fectively) ground-state staggered magnetization at U = 7 is
reduced from 	HF(β = 30) = 0.319 to 	DMFT(30) = 0.235
and 	2OPT(30) = 0.226, by 30%. The progression from low
to high temperatures can be seen in Figs. 2(a)–2(f). In HF,
the magnetization remains sizable up to comparatively high
temperatures, and the crossover to the low-T Néel state occurs
at βHF

c = 4 [cf. Fig. 2(a), where the plateau disappears for
high-T calculations]. In Figs. 2(c)–2(f), the results for DMFT
and 2OPT are shown. The crossover behavior is smeared out
over a wide range of temperatures, starting to set in at β = 8
and being fully developed only at approximately β = 18.

IV. THE ROLE OF NONLOCAL DIAGRAMS

In this section, we want to concentrate further on the
conformance of 2OPT and DMFT results. To this end, we take
a look at finite systems with periodic boundary conditions,
leaving out the trapping potential V = 0 for translational
invariance. This gives access to the effects of local and
nonlocal diagrams without parallel effects from trap curvature
or boundary potentials.

Figure 3 offers a typical progression of 2OPT corrections to
the systems: At very weak interactions, no order is visible. The
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FIG. 3. (Color online) Comparison of HF to 2OPT and DMFT
calculations on the U axis. The system is a 16 × 16 lattice, with
periodic boundaries at half filling and low temperatures (β = 50).
2OPT and DMFT differ only marginally.
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FIG. 4. (Color online) Ratio of local to all (local + nonlocal) elements in the self-energy field. (a) shows the ratio for two different
temperatures T1 = 0.02, which is strongly antiferromagnetic, and T2 = 0.11, which is only very weakly magnetized. The weight of nonlocal
elements never exceeds ∼20%, and sinks to ∼5% in an area around the Fermi energy. (b) shows a selection of the weight of different shells in
real space around purely local elements: Shell 1 thus means local and next-neighbor self-energy elements, and shell 5 means all elements with
exchange between the lattice site up to five jumps (Manhattan metric) from the original site.

critical interaction UHF
N (β) is reached in HF before UDMFT

N (β)
is reached in DMFT, which in turn is closely followed by
U 2OPT

N (β). In medium-low interaction ranges, the suppression
reaches a maximum, usually at approximately 2 < U < 3, and
then slowly weakens at higher interactions. This last piece of
information must, however, be treated with caution, as our
method is of limited validity at higher interactions.

Again in Fig. 3, the close proximity of 2OPT and DMFT
results when sampling systems with different interaction
strength U at constant temperature and filling can be seen.
While DMFT is slightly above 2OPT for the entire graph, the
difference is only 1–4% at interactions from U = 1.25 onward.
The only clear deviation is near the critical interaction UN ,
where 2OPT shifts the critical interaction further from UHF

N (β)
than DMFT.

The close agreement of the data can also be seen in the
self energy. To ascertain which role is played by nonlocal
fluctuations, we compared the weight of local and nonlocal
self-energy diagrams in a 2OPT calculation. The calculation
was done by adding the moduli of all local self-energy
matrix elements, and normalizing to the summed moduli
of all self-energy diagrams for each frequency. The result,
shown in Fig. 4, is that off-diagonal elements contribute only
weakly to the antiferromagnet. Especially around the Fermi

frequency, the local diagrams make up 95% of the self-energy’s
weight. The picture is essentially the same for high and low
temperatures, and for different relevant interaction strengths.

We conclude from these graphs that, for antiferromagnetic
systems, the influence of nonlocal fluctuations is weaker
than generally expected, and that DMFT is a valid approx-
imation in the trapped weak-coupling two-dimensional (2D)
antiferromagnet. The only notable divergences are near phase
boundaries, both spatial boundaries, as in Figs. 2(g) and 2(h),
or in parameter space, as in Fig. 3.

We were able to investigate lattice sizes of up to 18 × 18
atoms. Since this is smaller than common experimental
extents, we include an investigation on finite-size effects on the
system in this paper. For these runs, we again chose periodic
boundary conditions and no harmonic potential in order to
investigate only effects coming from the increasing number
of nonlocal diagrams and lattice points, and eliminate effects
stemming from different curvatures of the trapping potential
in the discretized lattice, and from the constant boundary
condition of the experimental setup.

The effect of finite system sizes is pronounced, as can be
seen in Fig. 5(a): The critical interaction UN (β) is shifted
by 2OPT; the larger is the system, the stronger is the shift.
The amplitude of the suppression also increases with the
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FIG. 5. (Color online) (a) The relative suppression of the antiferromagnetic phase through second-order diagrams as compared to HF
results. The labels refer to the system size, and all calculations are done at β = 50 and half filling in a periodic system. The larger is the system,
the stronger is the suppression. (b) The deviation of DMFT and 2OPT results for exemplary system sizes. Shown are the regions where both
approximations have appreciable staggered magnetization. For all system sizes investigated, no noticeable trend can be made out.
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system size, so that larger systems reduce antiferromagnetic
order, as expected from the Mermin-Wagner theorem. As a
direct consequence of this, we expect experimental results to
show a stronger reduction of antiferromagnetic order, and thus
a lower critical temperature, than what we have calculated
here.

In Fig. 5(b), we show the relative deviation of DMFT to
2OPT runs for different system sizes. No trend in lattice
extents can be made out. We deduce that the spatial fluctuations
converge quickly for increasing shells around the local
approximation, and do not change appreciably for system sizes
of more than 10 × 10. All finite-size effects in Fig. 5(a) thus
stem from local fluctuations.

V. CONCLUSIONS

In summary, we have investigated the antiferromagnetic
phase of ultracold atoms trapped on a lattice in second-order

self-consistent perturbation theory, and compared these results
to HF and DMFT approaches.

We find that the inclusion of quantum fluctuations to
HF calculations strongly shifts critical temperatures and
order parameters to lower values, as expected. Inclusion of
nonlocal parts to the self-energy changes little over a large
range of values. Only near critical points and boundaries
do noticeable variations appear between second-order per-
turbation theory and dynamical mean-field theory. This is
reflected in the small weight of nonlocal elements in the
self-energy.

We then looked at the progression of the suppression
with increasing lattice size. The suppression through quan-
tum fluctuations increases monotonically with the size,
showing pronounced finite-size effects. Spatial fluctuations,
on the other hand, quickly converge at small system
sizes, and are fully represented in the systems we investi-
gate.
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