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Coupling parameters of many-body interactions for the Al(100) surface state: A high-resolution
angle-resolved photoemission spectroscopy study
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We examined the dimensionless coupling parameters of many-body interactions for a free-electron-like
surface-derived state in Al(100) by means of high-resolution angle-resolved photoemission spectroscopy. A
kink structure was found to exist in the energy-band dispersion near the Fermi level (EF ), which was attributed to
the electron-phonon interaction. At 50 K, the coupling parameters of the electron-phonon and electron-electron
interactions were estimated as λep = 0.67 ± 0.05 and λee ∼ 0.003, respectively, indicating that the effective mass
enhancement was mainly derived from the electron-phonon interaction. The temperature dependence of the kink
structure, as measured by λep(T ), was consistent with a theoretical calculation based on the Eliashberg function. A
quasiparticle peak with a width of 15–20 meV was found near EF , which was explained well by the simulated spec-
tral function incorporating the self-energy evaluated in this study. We found that the electrons at the surface were
strongly scattered by the defects at the surface and that the linewidth was significantly broadened (�0 = 0.238 ±
0.006 eV).
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I. INTRODUCTION

Recently, the energy and momentum resolutions of angle-
resolved photoemission spectroscopy (ARPES) have been
drastically improved,1–4 and it is now possible to examine
fine electronic structures, such as a kink structure in the
energy-band dispersion or a sudden reduction of the Fermi
velocity near the Fermi level (EF ) in detail.1–4 By means of
quantitative analyses of high-resolution ARPES line shapes,
one can evaluate the dimensionless coupling parameters of
the electron-phonon interaction (λep) and electron-electron
interaction (λee) at a given point on Fermi surfaces.1–4 These
parameters are important since the effective mass is given
by m∗ = (1 + λep + λee)mb, where mb is the band mass.
Furthermore, the superconducting transition temperature can
be approximately given by Tc = �D

1.45 exp[− 1.04(1+λep)
λep−μ∗(1+0.62λep) ],

5

where �D is the Debye temperature and μ∗ is the empirical
value for the Coulomb coupling constant.

Aluminum (Al) is a typical trivalent metal and a supercon-
ductor with a transition temperature of 1.18 K.6,7 The bulk-
derived Fermi surface was studied by de Haas–van Alphen
effect measurements,8 and the energy-band dispersions were
clarified in detail by ARPES.9 The bulk-derived electronic
states of Al are well understood based on the trivalent nearly-
free-electron model.7 The superconductivity of Al is most
successfully explained by BCS theory,10 in which the s-wave
Cooper pair is formed by the electron-phonon interaction.

On the Al(100) surface, there exists a free-electron-like
surface-derived state centered at the � point of the surface
Brillouin zone (SBZ).9,11–16 Similar surface states have been
observed in many other systems, such as the (111) surface
of noble metals,17,18 Ni(111),19–21 and Be(0001).22,23 The
energy distribution curves (EDCs) of the Al(100) surface state
have been quantitatively examined using a one-step-model
calculation.24–26

In this study, we determine λep and λee for the
Al(100) surface state by means of high-resolution

temperature-dependent ARPES. Many high-Tc superconduc-
tors have a low-dimensional electronic structure.27 We believe
that a detailed quantitative examination of the many-body
interactions in an ideal two-dimensional Fermi liquid like the
Al(100) surface state should provide a good reference for un-
derstanding the unusual physical properties of novel materials.

There are two methods of evaluating λep based on the
ARPES spectra.28 The most widely used method is based
on the temperature dependence of the ARPES linewidth,
assuming the following formula:29

�ep(ω = 0,T ) = 2πλepkBT (T � �D), (1)

where �ep(ω = 0,T ) is the ARPES linewidth at EF (ω = 0)
and �D is the Debye temperature. The coupling parameter can
be obtained by the gradient of the ARPES linewidth, λep =
∂�ep/∂T . Note that the lifetime broadening is related to the
imaginary part of the self-energy due to the electron-phonon
interaction as �ep(ω = 0,T ) = 2|Im�ep(ω = 0,T )|. By mea-
suring the ARPES linewidth for a wide temperature range,
one can evaluate λep based on Eq. (1). However, temperature-
induced defects may significantly enhance the linewidth,
leading to an overestimated coupling parameter.30–34

The other method is to measure the kink structure in
the energy-band dispersion derived from the electron-phonon
interaction. The coupling parameter is evaluated by29

λep(T ) = −∂Re�ep(ω,T )

∂ω

∣∣∣∣
ω=0

, (2)

where Re�ep(ω,T ) is the real part of the self-energy. The
real part of the self-energy is obtained from the energy shift
from the noninteracting band (ω0

k): Re�ep(ω,T ) = ω − ω0
k .

Note that, due to the temperature dependence of Re�ep(ω,T ),
the magnitude of the kink structure as measured by λep(T ) is
also temperature dependent.29 The temperature dependence of
λep(T ), however, has not been experimentally elucidated so
far to the best of our knowledge.
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In the case of the Shockely state in Cu(111), λep ∼ 0.14
(Refs. 35 and 36) and 0.16 (Ref. 37) have been obtained based
on Eq. (1), which have reasonable agreement with λep ∼ 0.14
(Ref. 38) evaluated based on Eq. (2). For the Al(100) surface
state at the � point, by contrast, the λep value obtained from
Eq. (1) is as high as ∼1.8.30 It has been claimed that the
temperature-induced lattice defects should cause additional
linewidth broadening at elevated temperatures, giving a much
higher λep.30,32

Therefore, high-resolution ARPES is needed to observe
the kink structure and evaluate λep based on Eq. (2). We have
conducted a high-resolution ARPES study on this surface state
and have evaluated the electron-phonon coupling parameter
based on the kink structure at low temperature using the
photon energy of hν = 43 eV.39 Our preliminary evaluation
gave λep = 0.67 at 30 K,39 which was enhanced by 50% from
the bulk value λep = 0.43.6 However, it was much smaller
than the λep ∼ 1.8 (Ref. 30) evaluated from the temperature
dependence of the linewidth.

In this study, we have extensively performed high-
resolution temperature-dependent ARPES measurements and
examined the many-body interactions in the Al(100) surface
state in more detail. We described the experimental self-energy,
the temperature dependence of the kink structure, and the
observed narrow peak in the EDCs near EF using theoretical
Eliashberg functions.40,41

II. EXPERIMENT

Single-crystal Al(100) (purity 99.9999%) was cleaned
by repeated cycles of Ar+ sputtering and annealing in an
ultrahigh-vacuum chamber. To remove the thick oxide layers,
the first Ar+ sputtering (at 4.5 keV) lasted for more than
10 h, followed by subsequent annealing at 400 ◦C for 30 min.
During the experiments, a clean sample surface was prepared
every 12 h by 2-h Ar+ sputtering (4 keV) and annealing at
400 ◦C for 10 min. The level of impurities, such as C, O, and S,
on the surface was below the detection limit of Auger electron
spectroscopy. Sharp 1 × 1 low-energy electron-diffraction
spots exhibited long-range order and an atomically clean
sample surface. We also verified the absence of contaminants
on the surface by angle-integrated photoemission spectra in a
wide binding energy range taken at hν = 330 eV before and
after the ARPES measurements.

High-resolution ARPES experiments were performed on
the linear undulator beamline (BL-1) of a compact electron-
storage ring (HiSOR) at Hiroshima University.42 The present
data were obtained using an angular mode of the hemispherical
electron-energy analyzer (R4000, VG-Scienta, Japan). The
total energy resolution was set at 
E = 15 meV for high-
resolution measurements at hν = 46 eV and at 25 meV for the
Fermi surface mapping at hν = 76 eV. The angular resolution
was 
θ = 0.3◦, giving momentum resolutions of 
k‖ =
0.017 Å

−1
at hν = 46 eV and 0.023 Å

−1
at hν = 76 eV.

We assumed an inner potential of V0 = 11.2 eV.16 Although
the electronic states localized at the surface do not have k⊥
dispersion, the inner potential is useful to estimate the position
of the bulk-derived electronic states. Note that the Al(100)
surface state enters the bulk-band projection near EF and
becomes a resonance state.41 To measure the surface state at its

maximum intensity and away from the bulk-derived spectral
features, we optimized the photon energy. We found that the
photon energy hν = 46 eV was most suitable for the detailed
ARPES line shape analyses.

The sample was mounted on a liquid-He-flow-type five-axis
goniometer (i-GONIO LT, R-dec Co., Japan43) installed in the
ARPES measurement chamber. By changing the azimuth and
polar angles of the goniometer, we performed two-dimensional
Fermi surface mapping. The sample temperatures were set at
T = 10,50,100,150,300 K.

The pressure of the measurement chamber was below 6 ×
10−9 Pa during the measurements.

III. SELF-ENERGY ANALYSIS

The ARPES spectral features are given by the single-
particle spectral function A(k,ω). As we are examining
an isotropic two-dimensional electron system near EF , we
assume that the k dependence of the self-energy can be
neglected, namely, �(k,ω) ∼ �(ω). In this case, the spectral
function is given by

A(k,ω) = − 1

π

Im�(ω)[
ω − ω0

k − Re�(ω)
]2 + [Im�(ω)]2

, (3)

where ω0
k represents the energy of the noninteracting

band.3,4,23,44

In the case that the electron-scattering processes derived
from the electron-phonon and electron-electron interactions
can be regarded as independent, the lifetime broadening
of a quasiparticle is given by � = 2|Im�| = �0 + �ep +
�ee, where �ep and �ee are the lifetime broadening due
to the electron-phonon and electron-electron interactions,
respectively. The �ep + �ee term gives the energy-dependent
linewidth broadening. The �0 term, on the other hand, is
an energy-independent term that should be derived from the
electron-defect interaction in the case of the Al(100) surface
state, as described below.

If Im�(ω) is given, Re�(ω) can be calculated using the
Kramers-Kronig transform,

Re�(ω) = 1

π
P

∫ +∞

−∞

Im�(ω′)
ω′ − ω

dω′. (4)

To experimentally determine the self-energy in this study,
we analyzed the line shape of the momentum distribution curve
(MDC). The MDC width (δk) is related to Im�(ω) by � =
2|Im�(ω)| = δω = (∂ω/∂k)δk, where (∂ω/∂k) is the gradient
of the energy band. The MDC peak position at a given ω gives
an energy-band dispersion. To evaluate Re�ep, we assumed
the noninteracting band to be ω0

k = −ω∗
0 + (ω∗

0/k2
F )k2

‖ , which
was determined by the fit of observed band points in a wide
energy range.

IV. RESULTS AND DISCUSSION

A. Fermi surface mapping and band dispersion

Figure 1 shows the observed Fermi surface of the Al(100)
surface state taken at hν = 76 eV and T = 10 K. The dashed
lines indicate the boundary of the SBZ of the fcc (100)
surface.44 A circular surface-derived Fermi surface centered at
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FIG. 1. (Color online) The observed Fermi surface of the Al(100)
surface state, taken at hν = 76 eV and 10 K. The dashed lines indicate
the SBZ of the fcc (100) surface.

the � point of the first SBZ can clearly be seen. The observed
Fermi surfaces taken at hν = 76 and 143 eV (not shown) were
identical to that in our previous study taken at hν = 167 eV,39

which was consistent with the two-dimensional nature of the
surface state.

Figure 2(a) shows the ARPES intensity plot of the Al(100)
surface state along the �M direction measured at hν = 46
eV and T = 10 K, exhibiting a parabolic dispersion. By
fitting the MDC and EDC to a Lorentzian on a linear
background, we evaluated the peak positions in Fig. 2 (b).
Using the evaluated band points, we determined the parabolic
dispersion ωk = −ω∗

0 + (ω∗
0/k2

F )k2
‖ , where ω∗

0 = 2.81 ± 0.03

eV and the Fermi wave number (kF ) = 0.907 ± 0.005 Å
−1

.
The obtained band-bottom energy agrees reasonably well
with the various theoretical calculations [ω0 = 2.62 (Ref. 26),
2.65 (Ref. 45), and 2.86 eV (Ref. 41)]. The band mass of
the surface state was estimated to be mb = h̄2/(∂2ω0

k/∂k2) =
(1.02 ± 0.02) × 10−30 kg = (1.12 ± 0.02)me, where me is the
electron mass. It is consistent with the previously determined
values mb = 1.18me (Ref. 9) and 1.27me (Ref. 39). The

FIG. 2. (Color online) (a) The ARPES intensity plot of the
Al(100) surface state in a wide energy range, taken at hν = 46 eV
and 10 K. (b) The band points obtained by the MDC and EDC line
shape analyses. The dashed line shows a fit to a parabolic function.

FIG. 3. (Color online) (a) The ARPES intensity plot of the
Al(100) surface state near EF , taken at hν = 46 eV and 50 K. (b)
The MDC at EF . (c) The EDCs along the dashed lines 1,2,3 in (a).

surface carrier density n is given by n = k2
F /2π = (1.3 ±

0.1) × 1015 electrons/cm2. The density of states at EF for the
unit volume was calculated as ρ0 = mb/πh̄2 = (4.7 ± 0.1) ×
10−2 states/(eV Å

2
).

Figure 3(a) shows the high-resolution ARPES intensity plot
of the Al(100) surface state near EF taken at hν = 46 eV and at
T = 50 K along the �X. To quantitatively analyze the spectral
shape, we used a Lorentzian on a linear background to fit the
MDCs, as shown in Fig. 3(b).46 We obtained the peak position
and MDC linewidth (δk) as functions of ω.

Figure 3(c) shows three EDCs (1,2,3) obtained from cuts
along the broken lines in Fig. 3(a). Figure 3(c) shows that the
spectral width becomes narrower as the peak approaches EF .
In cut 1, a narrow peak near EF and a hump structure can be
recognized. We will examine the EDC spectral feature in more
detail in Sec. IV E.

B. Linewidth and relaxation time due to the
electron-defect interaction

By fitting the observed MDC at EF and at hν = 46 eV
to a Lorentzian [Solid line in Fig. 3(b)], the width was
determined to be (0.042 ± 0.001) Å

−1
. By subtracting the

contribution from the angular resolution (
k = 0.017 Å
−1

),
we estimated the intrinsic linewidth broadening at EF to be
δk = 0.038 Å

−1
. Note that the linewidth broadening due to the

final-state broadening is negligible for the surface states,14,47,48

and the lifetime broadening due to the electron-phonon and
electron-electron interactions is ∼0 at low temperature at
EF . As we have carefully checked the cleanliness of the
sample surface, impurities, such as adsorbed molecules or
extrinsic elements in Al, were unlikely to have been the
main source of the energy-independent term. Therefore, the
lifetime broadening at low temperature at EF should have
derived from the electron-defect interactions, �0 = 2|Im�ed |.
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The full width at half maximum (FWHM) of the linewidth
(2η = 2|Im�ed |) was calculated from

2η = 2ω∗
0

[(
1 + δk

2kF

)2

− 1

]
(5)

(see Appendix A). Using ω∗
0 = 2.81 eV, kF = 0.907 Å

−1
, and

δk = 0.038 Å
−1

, the linewidth at EF is calculated as �0 =
2η = (0.238 ± 0.006) eV, indicating η = |Im�0| = (0.119 ±
0.003) eV. The measured EDC linewidth at the � point at 10 K
was �tot = 0.284 eV. The contribution from �ep + �ee is given
by �tot − �0 = 0.046 eV (46 meV).

Although the linewidth at � is comparable to the narrowest
one reported to date, we could not improve the linewidth by
repeated cycles of annealing and sputtering. It suggests that
a complete removal of these defects by conventional cleaning
methods may not be simple. The electrons at the surface are
strongly scattered by surface defects.

The mean distance l between defects may be evaluated
by the inverse of the MDC width, l = 1/δk = (26 ± 1) Å.
Therefore, the density of the lattice defects is estimated by

ni = 1/l
2 = (1.5 ± 0.1) × 1013 /cm2.

We also attempted to evaluate some of the parameters that
characterize the transport properties of the surface electronic
state. We can evaluate the relaxation time via τ = h̄

2|Im�0| =
(2.8 ± 0.1) × 10−15 s at low temperature. The mobility
can be calculated as μ = eτ/mb = (4.4 ± 0.2) cm2/(V s),
and the sheet conductivity is σ = ne2τ/mb = (9.1 ± 0.3) ×
10−4 S/�. The mobility is much smaller than that of the
high-mobility two-dimensional electron gas, which is mainly
due to the high density of defects at the surface.

The potential energy of the defect can be evaluated using
h̄
τ

= 2|Im�0| = 2πniρ0U
2
0 ,51 where U0 is the Fourier compo-

nent of the potential energy with q = 0. Using the parameters

we evaluated, we obtained U0 =
√

|Im�0|
πniρ0

= (23 ± 2) eV Å
2
.

The magnitude of the potential energy of the defect, therefore,

was evaluated as Vd ∼ U0/l
2 = (0.034 ± 0.003) eV. Since the

magnitude of the potential is much smaller than the Fermi
energy, Vd/ω

∗
0 ∼ 0.01, it is reasonable to assume that the

electron-defect scattering at EF is elastic.

C. Evaluation of the electron-phonon and electron-electron
coupling parameters

Figure 4 clearly shows a kink structure in the energy-band
dispersion at ∼−40 meV. Note that the surface and bulk Debye
temperatures of Al are 573 K (kB�D = 49 meV) (Ref. 30) and
426 K (kB�D = 37 meV) (Ref. 49), respectively. Because
the energy of the kink agrees well with the energy scale of
the Debye temperature of Al, it is reasonable to assume that
the kink at ∼−40 meV is derived from the electron-phonon
interaction.1,3

Recently, Sklyadneva et al. have reported an ab initio study
of the electron-phonon interaction in the Al(100) surface state
that was based on density-functional theory and that used a
linear response approach for the plane-wave pseudopoten-
tial representation.41 The calculated electron-phonon spectral
function, or the Eliashberg function [α2F (ω)], has a cutoff
energy of ∼43 meV, which is consistent with the kink energy
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FIG. 4. (Color online) The circles represent the band points near
EF , as determined by the MDC analysis. The dashed line indicates
the parabolic function determined in Fig. 2(b), which was assumed
to be the noninteracting band for the evaluation of Re�ep . The solid
line indicates the MDC peak positions of the simulated A(k,ω).

in Fig. 4. Because the theoretical Eliashberg function depends
on the k position,40,41 the Eliashberg function at EF should
be used for quantitative analyses. Although Eiguren et al.
(Ref. 40) calculated the Eliashberg function averaged over the
Fermi level, this approach may be limited.31,41 We therefore
used the more recent theoretical calculation of α2F at the �

point described by Sklyadneva et al.41 As described in Sec.
IV D, the magnitude of the theoretical α2F (solid line in the
inset of Fig. 6 below) seems to be slightly smaller. Therefore,
we multiplied by a factor of 1.15 to obtain the theoretical
self-energies (dashed line in the inset of Fig. 6).

The lifetime broadening due to the electron-phonon inter-
action is given by

�ep(ω,T ) = 2|Im�ep(ω,T )|
= 2π

∫ ∞

0
α2F (ν)[2n(ν,T )

+ f (ν + ω,T ) + f (ν − ω,T )]dν, (6)

where n(ν,T ) and f (ν,T ) are the Bose-Einstein and Fermi-
Dirac distribution functions, respectively.20 Based on the
Kramers-Kronig transform, as given by Eq. (4), we calculated
the theoretical Re�ep using the theoretical Im�ep.

Figures 5(a1) and 5(b1) show the experimentally evaluated
Re�ep at 10 K and 50 K, respectively. The dashed lines in
Figs. 5(a1) and 5(b1) show the gradient of the experimental
Re�ep at EF , giving the electron-phonon coupling parameter
λep. Using the gradient of the observed Re�ep at EF [dashed
line in Fig. 5(b1)], the parameter was determined to be
λep = 0.67 ± 0.05 at 50 K. The solid lines in Figs. 5(a1)
and 5(b1) indicate that the theoretical Re�ep agrees with
the experimental Re�ep. These results confirm that the kink
structure originates from the electron-phonon interaction.

Figures 5(a2) and 5(b2) show the experimentally evaluated
2|Im�| − �0 at 10 and 50 K, respectively. Here �0 represents
the lifetime broadening due to the electron-defect interaction.
The solid lines in Figs. 5(a2) and 5(b2) show the theoretical
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FIG. 5. (Color online) (a1) and (b1) indicate the experimentally
obtained Re�ep (the filled circles) at 10 and 50 K, respectively. The
dashed lines indicate the gradient at EF . The solid lines represent the
theoretical Re�ep . (a2) and (b2) indicate the experimentally obtained
2|Im�| − �0 (the filled circles) at 10 and 50 K, respectively. The
solid lines represent the theoretical 2|Im�ep|.

�ep = 2|Im�ep|, which explains the decrease in the observed
linewidth above ∼40 meV.

The linewidth due to the electron-phonon interaction at
10–50 K is �ep ∼ 0.036 eV for ω < −kB�D . Therefore, the
linewidth broadening due to the electron-electron interaction
should be �ee = �tot − �0 − �ep ∼ 0.010 eV at ω∗

0 = −2.81
eV. For the two-dimensional Fermi liquid, the lifetime broad-
ening due to the electron-electron interaction is given by
2|Im�ee(ω)| = 2βω2[1/4 + ln2 − (1/2)ln|ω/ω0|].50 At the
bottom of the energy band, we assumed that 2|Im�ee(ω∗

0)| =
2β∗ω∗2

0 [1/4 + ln2] ∼ 0.010 eV. The β∗ coefficient was de-
termined to be 0.0007 eV−1, which is much smaller than
that obtained for the strongly correlated Ni(111) surface state
(β∗ ∼ 1.5 eV−1).20 Based on the relation λee = β∗ω∗

0ζ (ζ ∼
1.5) (Appendix B), the coupling parameter due to the electron-
electron interaction was estimated to be λee ∼ 0.003, which is
much smaller than λep = 0.67. Thus the renormalization due
to the electron-electron interaction is negligible for the Al(100)
surface state.

The effective mass enhancement of the Al(100) surface
state at EF can be evaluated as m∗/mb = 1 + λep + λee ∼ 1.7.
The effective mass enhancement is mainly derived from the
electron-phonon interaction.

D. Evaluation of λep(T )

Because the Fermi-Dirac and Bose-Einstein functions in
Eq. (6) are temperature dependent, the linewidth (2|Im�ep|)
is also temperature dependent. As Re�ep is related to Im�ep

via the Kramers-Kronig transform, λep(T ) [as determined by
Eq. (2)] should be temperature dependent. The magnitude of

FIG. 6. (Color online) The temperature dependence of the exper-
imental λep compared to the theoretical calculations.

λep(T ) should give a measure of the temperature dependence
of the kink structure due to the electron-phonon interaction.
Figure 6 shows λep(T ) determined at T = 10,50,100,150,

300 K. With increasing temperature, the λep(T ) is at first
slightly enhanced. It reaches its maximum at approximately
50 K, λep = 0.67, and then decreases rapidly above 100 K.
It indicates that the kink structure vanishes rapidly at elevated
temperatures.

According to the analytical calculation, the temperature
dependence of the electron-phonon coupling parameter is
described by

λep(T ) = − ∂Re�ep(ω,T )

∂ω

∣∣∣∣
ω=0

= 2
∫ h̄ωmax

0

α2F (ν)

ν
G

(
ν

kBT

)
dν, (7)

where

G(1/t) = 4

(
1

πt

)2 ∞∑
n=0

2n + 1[
(2n + 1)2 + (

1
πt

)2]2 (8)

and t = kBT
ν

.29 Assuming that the Eliashberg function α2F is
not temperature dependent, λep(T ) can be calculated based on
Eqs. (7) and (8).

Using the Eliashberg function as given by Sklyadneva
et al.,41 we calculated the coupling parameter at T = 0 K and
obtained λep = 0.526, which agrees well with the 0.51 ± 0.01
explicitly given in Ref. 41. The experimentally evaluated
λep value at 10 K was 0.61, which is slightly larger than
the theoretical one. The theoretical λep has been reported to
increase from � toward EF .40,41 Since we used the Eliashberg
function at the � point in this study, the coupling strength
may have been underestimated. We therefore multiplied the
theoretical Eliashberg function by a factor of 1.15 (the dashed
line in the inset of Fig. 6) to reproduce the experimental value
(the dashed line in Fig. 6), and this explained λep(T ) reasonably
well for the entire temperature range.

It should be noted that temperature-induced defects do
not affect the magnitude of the electron-phonon coupling
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parameter. Because �0(T ) = 2|Im�0(T )| is assumed to be en-
ergy independent, the Kramers-Kronig transform of Im�0(T )
should give Re�0(T ) = 0, and the temperature-induced de-
fects should not affect the magnitude of the kink structure. This
independence explains why the coupling parameter, λep, given
by Eq. (2) is not affected by the temperature-induced defects.

E. Quasiparticle peak near EF

Although a narrow EDC peak structure near EF can be
discerned, the quasiparticle intensity is not significant, and
the spectral feature is further obscured by the Fermi cutoff.
For the detailed analyses, we normalized and symmetrized the
spectral intensities at 50 K to remove the Fermi cutoff effect.
The symmetrized EDCs in Fig. 7 clearly show the quasiparticle
peak near EF . The observed spectral features are similar to
those for the Be(0001) surface state22,23 in that the electron-
phonon interaction yields a peak-hump structure in the EDCs.

To further confirm the origin of the quasiparticle peak,
we simulated the spectral function A(k,ω), including the
self-energy due to the electron-defect and electron-phonon
interactions obtained in this study. We assumed the self-energy
to be Re� = Re�ep, Im� = Im�ep + Im�0, and Im�0 =
−0.119 eV. The contribution from the electron-electron inter-
action was negligible in this energy range. Figure 7 shows the
simulated EDCs (solid lines), which reproduce the observed
EDCs. They confirm that the narrow peak originates from the
electron-phonon interaction.

Figure 8 shows the EDC peak positions obtained from
experiments and those given by the simulated spectral
function. The experimental EDC peaks were determined
by the fit of the experimental EDC to the two Lorentzians.
The theoretical peak positions were determined by searching
for the minima in the second derivatives of the calculated
EDCs. Note that the EDCs are split into two peaks due
to the self-energy correction within the Debye energy
(|ω| < kB�D). Peak A in the EDC crosses EF and becomes
less dispersive as the peak gets closer to −25 meV, where
the theoretical Eliashberg function has a peak. By contrast,

In
te

ns
it

y 
(a

rb
. u

ni
ts

)

-200 0 200

E-EF (meV)

B A hν=46 eV
50 K

k - kF

0.0150 A
-1

0.0084 A
-1

FIG. 7. (Color online) The symmetrized experimental EDCs (the
filled circles) compared to the calculated EDCs (the solid lines).
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assumed to be the noninteracting band in the evaluation of Re�ep .

the EDC peak B does not cross EF and agrees with the
noninteracting band dispersion for the lower-energy region.

The dispersional width of peak A is rather narrow,
∼25 meV, which explains the narrower EDC linewidth
compared to the dispersive peak B. The width of peak A is
probably limited by the energy resolution (
E = 15 meV).

The MDC peak positions of the simulated A(k,ω) also cor-
respond well to the experimental MDC peak positions in Fig. 4.

V. CONCLUSIONS

We performed a high-resolution ARPES study of the
surface-derived state of Al(100) to evaluate the coupling
parameters of many-body interactions. We were able to fit the
observed band dispersion of the surface state using a parabolic
function with a Fermi energy of ω∗

0 = 2.81 ± 0.03 eV and a

Fermi wave vector of kF = 0.907 ± 0.005 Å
−1

. Based on the
MDC linewidth at EF , we found a significant contribution
from the electron-defect interaction (�0 = 0.238 eV). A kink
structure derived from the electron-phonon interaction existed
in the energy-band dispersion at ∼−40 meV. The electron-
phonon and electron-electron coupling parameters at 50 K
were determined to be λep = 0.67 ± 0.05 and λee ∼ 0.003,
respectively. The effective mass enhancement of the Al(100)
surface state was mainly derived from the electron-phonon
interaction. The electron-phonon coupling parameter at the
surface was 50% larger than the bulk value. We studied the
temperature dependence of the kink structure, as measured
by λep(T ), and found it to be explained well by a theoretical
calculation based on the Eliashberg function. A quasiparticle
peak with a narrow linewidth (15–20 meV) was observed near
EF , and the EDC spectra were quantitatively explained by
the simulated spectral function incorporating the self-energy
evaluated in this study.

We showed that the electron-phonon coupling parameter
for the surface state is approximately 50% larger than that
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for the bulk state [λep = 0.43 (Ref. 6)]. The band-structure
calculation for Al thin films suggests that the electron-phonon
coupling parameter can be larger than the bulk value and can
oscillate depending on the thickness of the film.52 In a future
study, it would be interesting to see the layer dependence of
the coupling parameter as it relates to the superconducting
transition temperature. As the ARPES technique is making
rapid progress, we believe we will be able to observe the
superconducting transition in Al by high-resolution ARPES
in the future.
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APPENDIX A

We describe here the linewidth due to the electron-impurity
interaction. Note that this description is also applicable to
the electron-defect interaction. The single-particle Green’s
function due to the electron-impurity interaction is given by51

G(k,ω) = 1

ω − ωk + iη
, (A1)

where η = −Im�ei(ω) = h̄/τ > 0 is the half width at half
maximum of the peak and τ is the relaxation time. The spectral
function is given by

A(k,ω) = − 1

π
ImG(k,ω) = 1

π

η

(ω − ωk)2 + η2
. (A2)

At the fixed point k, plotting A(k,ω) as a function of ω creates
an EDC curve, which is a Lorentzian with a linewidth of
2η = 2|Im�ei |.

To determine the MDC line shape, we assume that the
noninteracting band is parabolic of the form ωk = −ω0 +
(ω0/k2

F )k2. The spectral function is calculated by

A(k,ω) = 1

π

k2
F

ω0

k2
F η

ω0[
k2 − k2

F

(
1 + ω

ω0

)]2 + ( k2
F η

ω0

)2
. (A3)

Fixing the energy (ω = const), A(k,ω) as a function of k

gives the MDC line shape. Note that this expression is not a
Lorentzian. Solution of the equation A(kmax,ω) = 1

2A(kmax +
δk/2,ω), where kmax is the wave number giving the maximum
intensity at a given ω and δk is the FWHM of the MDC
linewidth, yields

δk = 2kF

(√
1 + η

ω0
+ ω

ω0
−

√
1 + ω

ω0

)
. (A4)

Based on Eq. (A4), the MDC width at ω = 0 (EF ) is given by

δk = 2kF

(√
1 + η

ω0
− 1

)
.

Therefore, the linewidth (FWHM) due to the electron-defect

interaction is

2η = 2ω0

[(
1 + δk

2kF

)2

− 1

]
. (A5)

Near EF (k ∼ kF and ω ∼ 0), we have the approximation[
k2 − k2

F

(
1 + ω

ω0

)]2

=
(

k − kF

√
1 + ω

ω0

)2 (
k + kF

√
1 + ω

ω0

)2

∼
(

k − kF − kF ω

2ω0

)2

(2kF )2.

Note that this approximation is essentially the same as that
involving adopting a linear function as a noninteracting band
near EF .4 The MDC line shape near EF is then approximated
by

A(k,ω) ∼ 1

π

kF

2ω0

kF η

2ω0(
k − kF − kF ω

2ω0

)2 + (
kF η

2ω0

)2 , (A6)

which is a Lorentzian with a width of kF η

ω0
.

In the case of η/ω0 
 1 and at ω ∼ 0, Eq. (A4) also gives
the MDC width as

δk ∼ 2kF

[(
1 + η

2ω0
+ ω

2ω0

)
−

(
1 + ω

2ω0

)]
= kF η

ω0
. (A7)

APPENDIX B

Here we develop an expression for the two-dimensional
Fermi liquid, λee = β∗ω∗

0ζ , where λee is the coupling parame-
ter due to the electron-electron interaction, β∗ is the coefficient
in the observed 2|Im�ee(ω)|, and −ω∗

0 is the lowest energy for
the observed parabolic band.

The imaginary part of the self-energy for the two-
dimensional Fermi liquid was estimated to be 2|Im�ee(ω)| =
2βω2[1/4 + ln2 − (1/2)ln|ω/ω0|] for |ω| < ω0, where −ω0

is the lowest energy of the noninteracting band.50 Be-
cause 2|Im�ee(ω)| is divergent for ω → ±∞, we assumed
2|Im�ee(ω)| = 2|Im�ee(ω0)| for |ω| > ω0 and electron-hole
symmetry for the analytical calculation.

Based on the Kramers-Kronig transform, the coupling
parameter is given by

λee = −∂Re�ee

∂ω

∣∣∣∣
ω=0

= − 1

π
P

∫ +∞

−∞

Im�ee(ω′)
ω′2 dω′

= − 1

π
P

∫ −ω0

−∞

Im�ee(ω0)

ω′2 dω′ − 1

π
P

∫ +ω0

−ω0

Im�ee(ω)

ω′2 dω′

− 1

π
P

∫ +∞

+ω0

Im�ee(ω0)

ω′2 dω′

= βω0
2

π

[
3

4
+ ln2

]
+ βω2

0

π

[
1

4
+ ln2

]
× 2

∫ +∞

+ω0

1

ω′2 dω′

= βω0 × 4

π

[
1

2
+ ln2

]
= βω0ζ,

ζ ≡ 4

π

[
1

2
+ ln2

]
≈ 1.519. (B1)
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The observed β∗ and ω∗
0 are related to β and ω0 by β∗ =

β(1 + λee) and ω∗
0 = ω0/(1 + λee).4 Therefore, the product

βω0 is conserved: βω0 = β∗ω∗
0. Finally we have the relation

λee = β∗ω∗
0ζ .
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S. Hüfner, Lecture Notes in Physics Vol. 715 (Springer-Verlag,
Berlin, 2007).

3M. Higashiguchi, K. Shimada, K. Nishiura, X. Y. Cui,
H. Namatame, and M. Taniguchi, Phys. Rev. B 72, 214438 (2005).

4X. Y. Cui, K. Shimada, Y. Sakisaka, H. Kato, M. Hoesch, T. Oguchi,
Y. Aiura, H. Namatame, and M. Taniguchi, Phys. Rev. B 82, 195132
(2010).

5W. L. McMillan, Phys. Rev. 167, 331 (1968).
6J. P. Carbotte, Rev. Mod. Phys. 62, 1027 (1990).
7W. A. Harrison, Phys. Rev. 116, 555 (1959).
8C. O. Larson and W. L. Gordon, Phys. Rev. 156, 703
(1967).

9H. J. Levinson, F. Greuter, and E. W. Plummer, Phys. Rev. B 27,
727 (1983).

10J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175
(1957).

11E. Caruthers, L. Kleinman, and G. P. Alldredge, Phys. Rev. B 8,
4570 (1973).

12G. V. Hansson and S. A. Flodström, Phys. Rev. B 18, 1562 (1978).
13M. Seel, Phys. Rev. B 28, 778 (1983).
14S. D. Kevan, N. G. Stoffel, and N. V. Smith, Phys. Rev. B 31, 1788

(1985).
15W. Hummel and H. Bross, Phys. Rev. B 58, 1620 (1998).
16Ph. Hofmann, Ch. Sondergaard, S. Agergaard, S. V. Hoffmann,

J. E. Gayone, G. Zampieri, S. Lizzit, and A. Baraldi, Phys. Rev. B
66, 245422 (2002).

17G. Nicolay, F. Reinert, S. Schmidt, D. Ehm, P. Steiner, and
S. Hüfner, Phys. Rev. B 62, 1631 (2000).

18F. Reinert, G. Nicolay, S. Schmidt, D. Ehm, and S. Hüfner, Phys.
Rev. B 63, 115415 (2001).

19J. Kutzner, R. Paucksch, C. Jabs, H. Zacharias, and J. Braun, Phys.
Rev. B 56, 16003 (1997).

20M. Higashiguchi, K. Shimada, M. Arita, Y. Miura, N. Tobita,
X. Y. Cui, Y. Aiura, H. Namatame, and M. Taniguchi, Surf. Sci.
601, 4005 (2007).

21Y. Nishimura, M. Kakeya, M. Higashiguchi, A. Kimura,
M. Taniguchi, H. Narita, Y. Cui, M. Nakatake, K. Shimada, and
H. Namatame, Phys. Rev. B 79, 245402 (2009).

22M. Hengsberger, R. Frésard, D. Purdie, P. Segovia, and Y. Baer,
Phys. Rev. B 60, 10796 (1999).

23S. LaShell, E. Jensen, and T. Balasubramanian, Phys. Rev. B 61,
2371 (2000).

24A. Ishii and T. Aisaka, Surf. Sci. 242, 250 (1991).
25S. K. Ma and Kenneth W.-K. Shung, Phys. Rev. B 49, 10617

(1994).
26E. E. Krasovskii and W. Schattke, Phys. Rev. Lett. 93, 027601

(2004).
27A. Damascelli, Z. Hussain, and Z. X. Shen, Rev. Mod. Phys. 75,

473 (2003).
28J. E. Gayone, C. Kirkegaard, J. W. Wells, S. V. Hoffmann, Z. Li,

and P. Hofmann, Appl. Phys. A 80, 943 (2005).

29G. Grimvall, The Electron-Phonon Interaction in Metals (North-
Holland, Amsterdam, 1981).

30M. Fuglsang Jensen, T. K. Kim, S. Bengió, I. Yu. Sklyadneva,
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Krasovska, V. N. Antonov, A. P. Shpak, and I. Bartoš, Phys. Rev. B
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