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Parameterization of tight-binding models from density functional theory calculations
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We present a rigorous bottom-up approach for the derivation of the electronic structure part of tight-binding
(TB) models from density functional theory (DFT) calculations. The approach is based on a simultaneous
optimization and projection of atomic-like orbitals on self-consistent DFT wave functions and is universally
applicable to elements and compounds in arbitrary structural arrangements. The quality and transferability of the
derived TB bond and overlap integrals are demonstrated for the examples of a covalent semiconductor (carbon),
a transition metal (titanium), and a binary compound with mixed metallic-covalent bonding (TiC). The method
can serve as a transparent and physically justified coarse-graining scheme for the construction of nonorthogonal
and orthogonal TB total-energy models as well as the closely related bond-order potentials.
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I. INTRODUCTION

Density functional theory (DFT) has become a widely
established tool for first-principles total-energy calculations
of extended atomic ensembles.1 The main advantage of DFT
is its universal applicability to most elements in the periodic
table and various bonding environments, ranging from atoms,
molecules, and small clusters to condensed solid and liquid
phases. DFT calculations are, however, computationally very
demanding and therefore limited to rather small system
sizes, short simulation times, and moderate configurational
sampling. Many interesting phenomena occurring in complex
structural arrangements (e.g., in amorphous phases, extended
crystal defects, or flexible molecular assemblies) usually need
to be studied by faster and more approximate simulation
methods.

In many cases empirical interatomic potentials,2–5

parameterized to reproduce a set of experimental or first-
principles data, are able to provide valuable insight into
the physical and chemical properties of complex systems.
Unfortunately, such potentials often suffer from a poor
transferability and their use is thus limited to structures and
bonding environments similar to those explicitly included in
the fitting procedure.

A convenient compromise between the accurate but de-
manding first-principles DFT approach and the fast but less
reliable empirical interatomic potentials are approximate,
semi-empirical quantum-mechanical techniques, such as the
tight-binding (TB) method.6 In TB, the electronic structure
problem is, in principle, approached equivalently as in DFT
by constructing a Hamiltonian of the system and solving for
its eigenvalues and eigenfunctions. However, unlike solving
the variational problem in a self-consistent manner using
a large number of basis functions, TB assumes only a
minimal local basis of atomic orbitals, and in its usual form
it is non-self-consistent. The TB Hamiltonian is simplified
and composed of parameterized distance-dependent bond
(Slater-Koster) integrals7 that represent interactions between
the atomic s, p, and d orbitals centered on the atoms.

By maintaining the quantum-mechanical description of the
chemical bond, and thereby including the proper physics of
interatomic interactions, the TB method provides an improved
transferability compared to empirical interatomic potentials.
At the same time, the approximations made (e.g., the use of
a minimal atomic basis, non-self-consistency) enable faster
computation times and to treat larger systems than in DFT
methods.

The crucial quantities of all TB models—the bond and over-
lap integrals—are usually determined by fitting to reproduce
either selected sets of experimental data (empirical TB) or
calculated band structures and total energies from higher-level
electronic structure methods (semi-empirical TB).8–11 This
fitting procedure of a rather large parameter set is an elaborate
and tedious task, in particular in cases where more chemical
elements have to be considered simultaneously. Since the
success of a TB model in terms of accuracy and transferability
is determined by its parameterization, more straightforward
approaches that avoid or at least reduce the arbitrariness of
fitting are highly desirable.

In principle, the bond and overlap integrals as a function
of interatomic distance can be obtained directly from DFT
calculations by utilizing a minimal basis of atomic orbitals. The
crucial problem is, however, which minimal basis and which
Hamiltonian to use. In the past, different approaches following
such a route have been proposed, for instance, the density-
functional tight-binding (DFTB) method,12–15 or schemes
based either on linear muffin-tin orbitals (LMTOs)16–19 or
quasi-atomic minimal-basis orbitals (QUAMBOs).20–25

In the DFTB method, the s, p, and d orbitals of a
self-consistent DFT calculation for free, isolated atoms in
a specifically chosen quadratic confinement potential are
taken as the minimal basis of atomic orbitals.12 With this
fixed basis the bond and overlap integrals are derived from
non-self-consistent dimer calculations, using a superposition
of the atomic potentials as the dimer potential. This procedure
yields two-center bond and overlap integrals, but it neglects
the effect of three-center contributions and the crystal field
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splitting in the on-site matrix elements that are both present
in structures containing more than two atoms. The obtained
bond and overlap integrals are only distance dependent and
correspond to a dimer bonding environment.

With LMTOs or QUAMBOs chosen as a minimal basis,
other atomic arrangements than dimers may be used to
derive TB parameters. This allows to take into account the
three-center contributions and environment dependencies of
bond and overlap integrals. However, DFT calculations with
a minimal LMTO basis are mostly limited to the so-called
atomic sphere approximation (ASA), which restricts the ref-
erence configurations for calculating TB parameters to rather
close-packed crystal structures. The QUAMBOs present the
most flexible basis as they are derived in a post-processing step
from the wave functions of self-consistent DFT calculation
for arbitrary configuration. They are constructed to reproduce
exactly the electronic structure information below a chosen
energy threshold (typically the Fermi level). The QUAMBOs
resemble regular atomic s, p, and d orbitals, but due to the
requirement of exact reproducibility of the electronic structure
(occupied subspace) they are not pure eigenfunctions of the
angular momentum operator. Therefore, the Slater-Koster
rules7 for rotating the bond and overlap integrals are no longer
applicable, and the QUAMBOs together with the resulting
bond and overlap integrals have to be recalculated for each
new local atomic environment which leads to a much higher
numerical effort.24

In the present paper we present an alternative approach
which allows to derive bond and overlap integrals for TB
models directly from DFT calculations in a rigorous and
well-defined way. Our new approach combines the advantages
of the three earlier schemes. The method is based on a
projection formalism26,27 and a constrained search for a
minimal basis of optimized atomic orbital functions. The
atomic orbitals retain their s, p, or d character (as in the DFTB
approach), so that the Slater-Koster rules still apply. However,
the atomic orbitals are not kept fixed, but their radial functions
are adjusted to give the best possible representation of the
wave functions from the self-consistent DFT calculations
for selected reference configurations. Since we retain our
basis functions to be angular-momentum eigenfunctions, this
representation is not exact (unlike in the QUAMBO approach),
but only approximate (see “spillage” below). By allowing
the atomic orbitals to adjust to different environments and
by rotating the atomic orbitals, we include the information
about the three-center contributions to the bond integrals in an
averaged manner. Furthermore, crystal field splittings are also
determined in our projection scheme and included in our TB
models.

The major advantages of our new approach are that the
bond and overlap integrals can be derived from any arbitrary
(atomic, molecular, or crystalline) configuration, and that it
is universally applicable to both elements and compounds.
This enables us to test the transferability of TB parameters
not only between different structural configurations but also in
different chemical environments. In addition, our approach can
be used as a convenient coarse-graining scheme that provides
a well defined and physically transparent route from DFT
via TB to interatomic potentials and atomistic linear-scaling
(order-N ) simulations.28–30 Advanced interatomic potentials,

such as bond-order potentials,31–33 can be constructed with
only a little effort provided that a reliable orthogonal TB
parameterization exists. The simple and transparent approach
is crucial, in particular for multicomponent systems since for
both conventional TB methods and interatomic potentials, the
number of model parameters explodes and the fitting becomes
very tedious and ambiguous.

The paper is organized as follows. In Sec. II we briefly
outline the TB method to establish our notation. Section III
describes how nonorthogonal TB Hamiltonians are derived
from DFT calculations. Procedures associated with the trans-
formations between nonorthogonal and orthogonal TB Hamil-
tonians are discussed in Sec. IV. The summary and conclusions
are given in Sec. V.

II. TIGHT-BINDING METHOD AND SLATER-KOSTER
INTEGRALS

The formal relationship between the TB method and
first-principles DFT has been established more than 20 years
ago.6,16,34–36 The total energy ETB

tot of an ensemble of atoms
(for a nonmagnetic material) is approximated in TB as the
sum of two contributions: a bonding many-body term and a
sum of short-ranged repulsive pair potentials �αβ

ETB
tot =

occ∑
i

εi +
∑
α �=β

�αβ(Rαβ). (1)

Rαβ is the distance between two atoms α and β at the
positions Rα and Rβ . The pair potentials account for the
Coulomb repulsion between the ionic cores of the atoms and
the double-counting corrections to the bond energy part for
the electron-electron interaction and the exchange-correlation
contribution to the total energy. The bonding many-body term
is given as the sum of the energy eigenvalues εi of all occupied
eigenstates ψi from a single-particle Schrödinger equation

Ĥ ψi(r) = εi ψi(r), Ĥ = T̂ + V KS
eff (r). (2)

For the derivation of TB parameterizations using our projection
scheme, the effective potential V KS

eff in the single-particle
Hamiltonian Ĥ is taken from the corresponding self-consistent
DFT calculation. In TB, the single-particle Schrödinger equa-
tion is formally solved by expanding the wave functions ψi in
terms of a minimal basis of atomic orbitals {φμ}

ψi(r) =
∑

μ

ci
μ φμ(r − Rα), μ = (α,l,m). (3)

With the single index μ we label all atomic orbitals centered
at different atomic sites α and with orbital angular-momentum
and magnetic quantum numbers l and m. This basis set
expansion transforms the single-particle Schrödinger equation
into a generalized matrix eigenvalue problem∑

ν

Hμν ci
ν = εi

∑
ν

Sμν ci
ν, (4)

with the Hamilton and overlap matrix elements

Hμν = 〈φμ|Ĥ |φν〉, Sμν = 〈φμ|φν〉. (5)

In TB calculations, the elements of the Hamilton and overlap
matrices are not calculated explicitly, but they are provided
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in a parameterized form, typically as simple (analytical or
numerical) one-dimensional functions of the distance between
two atoms. With the submatrix for an atom pair being rotated
into a bond-oriented coordinate system, the resulting integrals
are usually termed ssσ , spσ , ppσ , ppπ , and so on, in the
classical notation of Slater and Koster.7

TB models are further distinguished into nonorthogonal
(NOTB) schemes, which contain an overlap matrix as in
Eq. (4), and orthogonal (OTB) schemes, whose overlap matrix
is the unity matrix. Nonorthogonal TB parameterizations can
always be transformed into orthogonal ones by a suitable
transformation, for instance, Löwdin’s well-known symmetric
orthogonalization37

H̃ = S−1/2 H S−1/2. (6)

OTB models are generally more appealing than NOTB models
since they have less terms to parameterize and their eigenvalue
problem can be solved more efficiently. In addition, they
present a starting point for linear scaling algorithms such as
the recursion methods31–33 that approximate the exact solution
of the electronic structure eigenvalue problem by truncating
the density matrix in real space.

III. FROM DFT TO NOTB HAMILTONIANS

A. Projection scheme

Our scheme for deriving bond and overlap integrals for
TB models starts from self-consistent plane-wave-based DFT
calculations of total energies and electronic structures for a
large set of atomic configurations (small molecules, simple
crystalline phases) which represent various geometrical ar-
rangements and bonding environments, for instance, sp, sp2,
and sp3 hybridizations in the case of carbon. Additionally,
by varying the bond lengths of molecules or atomic densities
of bulk phases we calculate the distance dependence of the
interatomic interactions. For each configuration we obtain a set
of eigenvalues {εi} and eigenfunctions {ψi} for the occupied
states i. Plane-wave DFT calculations have the advantage
that all results for the eigenvalues and eigenfunctions can be
converged easily with respect to basis set size and that no basis
set superposition error is present. This is essential for binary
and multicomponent systems.

In the next step we choose a minimal basis of atomic orbitals
(AOs) whose shape and range can be varied. The AOs are
written as the product of a radial function fαl(r) and a spherical
harmonic function Ylm (̂r) of angular momentum l and m

φμ(r) = fαl(r) Ylm(̂r), μ = (α,l,m). (7)

For the parameterized form of the radial AO functions we have
tested four different schemes (see next section for a detailed
description). The parameterized radial functions of the AOs
are optimized to obtain the best AO representation of the DFT
wave functions {ψi} from the plane-wave calculation. This is
done by a projection of the {ψi} onto the minimal AO basis
and a minimization of the so-called “spillage” function, which
is the amount of electrons lost due to the projection.26,27

Since our minimal AO basis is nonorthogonal, it is
convenient to introduce first the so-called dual or adjunct basis
functions

〈φ+
μ | =

∑
ν

S−1
μν 〈φν | (8)

that are orthogonal to the minimal AO basis

〈φ+
μ |φν〉 = 〈φμ|φ+

ν 〉 = δμν. (9)

With the adjunct basis functions we define the projection
operator

P̂ =
∑

μ

|φμ〉〈φ+
μ |. (10)

Applying P̂ on {ψi} gives a measure of how well the DFT wave
functions are represented by our minimal AO basis {φμ}. Or, in
other words, (̂1 − P̂ )|ψi〉 describes the part of the DFT wave
functions that is lost in the projection. Adding up the norm of
the part of the DFT wave functions that is not represented by
the minimal AO basis, normalized to the number of electrons
Ne in the atomic configuration, gives the electron spillage
function26,27

Sspill = 1

Ne

occ∑
i

〈ψi |̂1 − P̂ |ψi〉. (11)

Alternatively, it is also possible to measure how well the band
energy is reproduced by the minimal AO basis

Espill =
occ∑
i

(εi − 〈ψi |P̂ Ĥ P̂ |ψi〉). (12)

Such a projection and optimization scheme has been used
previously for reducing multiple-ζ AO basis sets in LCAO
calculations38,39 and for obtaining suitable minimal AO basis
set representations of wave functions that allow an analysis
of plane-wave DFT calculations in terms of local atomic
quantities, such as Mulliken or Löwdin charges, crystal orbital
overlap populations, and covalent bond energies.26,27,40–42

In the final step, the Hamilton and overlap matrix elements
for a given pair of atoms are calculated by using the
optimized minimal AO basis together with the self-consistent
Hamiltonian of the plane-wave DFT calculation. The fun-
damental Slater-Koster bond and overlap integrals are then
extracted simply by rotating the matrices into a bond-oriented
coordinate system. Since the full self-consistent Hamiltonian
of the reference configuration is applied, the Hamilton matrix
elements contain contributions from three-center integrals.
Consequently, the derived π and δ bond integrals vary with
the orientation of the atomic orbitals perpendicular to the
bond axis, and all bond integrals depend on the choice of
the reference configuration (though both dependencies are
weak, as will be shown in the next sections). To arrive
at unique two-center Slater-Koster bond integrals that only
depend on interatomic distance, we compute the π and δ

bond integrals by taking rotational averages, and the final
Slater-Koster bond integrals are determined by averaging the
results from our representative set of reference configurations.
With this procedure the ambiguity due to the three-center terms
is removed, while at the same time their effect is included “on
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average” in the Slater-Koster integrals. In addition, with our
projection scheme also the dependence of the on-site matrix
elements on the local atomic environment is automatically
extracted.

The whole projection procedure has been implemented
in our mixed-basis pseudopotential DFT code.43,44 All ex-
pressions are calculated in reciprocal space using Fourier
transformations26,27 so that the radial functions of the atomic
orbitals may have arbitrary shapes and ranges. A suite of scripts
allows to derive the complete set of distance-dependent bond
and overlap integrals for an element or a binary compound
within a short period of time (typically a few hours) and in a
fully automated manner.

B. Optimization of the minimal basis

For the optimization of the minimal atomic orbital basis
we tested four different parameterized forms of the radial AO
functions fαl(r). In all four cases self-consistent solutions of
the DFT equations for isolated, spherical atoms serve as the
starting point for the construction of flexible parameterized
representations of the fαl(r) functions. The DFT equations are
solved on a radial grid with or without using a confinement
potential. Specifically, the four implemented choices for the
radial AO functions fαl(r) are as follows.

(A) The radial functions f at
αl (r) of the nonconfined free atom

are contracted and multiplied by a smooth cutoff function45

fαl(r) = f at
αl (λαl r)

(
1 − e−γαl (Rcut

αl −r)2)
. (13)

In the projection procedure the contraction factors λαl , the
cutoff radii Rcut

αl , and the widths γαl of the cutoff functions are
optimized simultaneously for all atomic orbitals to minimize
the spillage function Sspill.

(B) The solutions of the radial Schrödinger equation for the
isolated atom in a confinement potential are taken as radial
functions fαl(r), while optimizing the shape, onset, and range
of the confinement potential. For the confinement potential we
have taken the following analytic form:

vconf
αl (r) =

(
r − R0

αl

Rcut
αl − R0

αl

)2
Aαl(Aαl − 1)(

Rcut
αl − r

)2 (14)

with R0
αl � r � Rcut

αl . The confinement potential is zero for
0 � r � R0

αl . The variable parameters for minimizing the
spillage function are the coefficients Aαl , the onset radii
R0

αl , and the range Rcut
αl of the confinement potential. Typical

confinement potentials are shown in Fig. 1(a). The analytic
form of Eq. (14) has several advantages compared to previous
choices of confinement potentials.12,46–53 First, the atomic
wave functions of the free atoms, which are very well adapted
to the external potential in the ionic core regions of the
atoms, remain unchanged inside a sphere with radius R0

αl .
The quadratic onset of the confinement potential guarantees
that the derivatives of the wave functions remain continuous
up to the third order. Second, the pole in the potential vconf

αl

ensures that the atomic orbitals are localized and become zero
outside the radius Rcut

αl . Third, by using a quadratic pole at Rcut
αl

the radial functions fαl(r) decay as (Rcut
αl − r)Aαl , as can be

shown by a Taylor expansion. Therefore, the smoothness of
the decay of the radial functions can be controlled in a simple
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FIG. 1. (Color online) (a) Triple-ζ basis functions g
(k)
αl (r) for

carbon 2p as obtained from DFT calculations for the free C atom
in confinement potentials with different cutoff radii. The three basis
functions are used to optimize the carbon 2p radial AO function
according to scheme (C). The confinement potentials are shown by
thin gray lines. (b) 2p radial function for carbon (solid line) from a
DFT calculation for the free C atom in a confinement potential with
Rcut

αl = 5 Bohr, together with the first two derivatives with respect to
the occupation numbers (dashed lines). The three functions were used
as basis functions g

(k)
αl (r) to optimize the carbon 2p radial AO function

according to scheme (D). (c) Optimized 2s and 2p radial AO functions
according to schemes (A)–(D) for diamond at the equilibrium volume.
(d) Electron spillage function Sspill as a function of the C–C distance R

between nearest-neighbor atoms in diamond. The radial AO functions
were optimized using scheme (A) while keeping the range Rcut

αl fixed
at the value given in the inset.

way by setting a lower limit for the allowed range for Aαl in
the optimization procedure.

(C) The atomic radial functions fαl(r) are represented by
linear combinations of basis functions g

(k)
αl (r) with different

ranges. Our experience is that three basis functions are usually
sufficient to get well-converged results (“triple-ζ basis”):

fαl(r) = g
(0)
αl (λαl r) + c

(1)
αl g

(1)
αl (λαl r) + c

(2)
αl g

(2)
αl (λαl r). (15)

Optimization parameters are the contraction factors λαl and
the linear coefficients c

(1)
αl and c

(2)
αl . In principle, any scheme

that is useful for finding suitable localized atom-centered basis
sets for electronic structure calculations might be employed to
generate a set of g

(k)
αl (r) functions.47–57 Specifically, we have

taken the g
(k)
αl (r) from DFT calculations for free atoms in the

confinement potential of Eq. (14) with fixed values for R0
αl and

Aαl . Rcut
αl controls the extent of the basis functions. Several

different schemes have been proposed in the literature on how
to choose the range of the g

(k)
αl (r) functions.39,50–53 All of them

are closely related to the “split valence” scheme of quantum
chemistry.54 In the present work, the cutoff radii Rcut

αl were
chosen in such a way that the confinement potential increased
the energy eigenvalue of the corresponding atomic orbital in
steps of 0.4 Ry (Refs. 39 and 50). The onset of the confinement
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potential was set to 40% of the cutoff radius and Aαl was
taken to be 2. A set of three g

(k)
αl (r) basis function for the

carbon 2p orbital, which was generated by this procedure, is
shown in Fig. 1(a). A similar scheme was used recently by
Madsen et al.39 to determine a TB parameterization for Fe
by downfolding the results of triple-ζ LCAO calculations to a
minimal basis representation.

(D) As in scheme (C) the atomic radial functions fαl(r) are
represented by linear combinations of three basis functions
g

(k)
αl (r). For the basis functions g

(k)
αl (r) we take the radial

function from a DFT calculation for the free atom in the
confinement potential of Eq. (14) with fixed parameters
together with the first two derivatives of the radial func-
tion with respect to the occupation numbers of the atomic
orbitals.55–57 The derivatives are determined by repeating the
DFT calculation for the free atom in its confinement potential
for slightly ionic configurations (typically we remove 0.1 and
0.2 electrons) and then taking first- and second-order finite
differences. The derivatives of the radial functions with respect
to the occupation numbers are closely related to the energy
eigenvalue derivatives in the so-called “linear methods,”
[e.g., the linear muffin-tin orbital (LMTO) and the linear
augmented plane-wave (LAPW) methods].16,56,58 The three
basis functions g

(k)
αl (r) are automatically pairwise orthogonal

and exhibit an increasing number of nodes. Fig. 1(b) shows a
set of representative g

(k)
αl (r) functions for the carbon 2p orbital.

All four schemes were thoroughly tested. We found that
they all work equally well, giving spillage values of about
10−2 per electron. The example of the carbon 2s and 2p

orbitals in Fig. 1(c), optimized for the diamond structure at
the equilibrium volume, shows that the differences in the
optimized radial functions are rather small. From a practical
point of view, the schemes (A) and (D) are most convenient
since they are numerically most stable and thus allow for a full
automatization of the projection and the derivation of the bond
and overlap integrals.

The final point requiring some further consideration is the
range of the atomic orbitals in the optimized minimal basis
set. The range of the radial functions fαl(r) is a variational
parameter only in the schemes (A) and (B), whereas in the
schemes (C) and (D) it is mostly determined by the choice
of the cutoff radius for the confinement potential (only small
variation via the contraction factor λαl is possible). From our
investigations it appears that the results are rather insensitive to
the choice of Rcut

αl . In Fig. 1(d) we plotted the electron spillage
Sspill for diamond at different volumes after optimizing the
minimal AO basis using scheme (A) but keeping Rcut

αl fixed.
As long as the AO radial functions are not too short-ranged,
the spillage values are very similar. Only if Rcut

αl becomes too
small, the spillage starts to increase significantly. Typically,
this onset of the increase in the spillage is a convenient choice
for the range of the radial functions in the minimal atomic
orbital basis set.

C. Application to carbon

In this section we illustrate our projection procedure for
the derivation of TB parameters for carbon. The first step
is to choose a set of reference configurations from which
the bond and overlap integrals are obtained. Since we are

interested in the derivation of universal and transferable TB
parameters, this set should represent a broad range of structures
and bonding configurations. To fulfill this criterion, our choice
comprises several hydrocarbon molecules (ethane, ethylene,
acetylene), the infinite linear chain of carbon atoms, the planar
structure of graphene, and the bulk diamond phase. This set
thus encompasses the most relevant atomic coordinations (one-
to four-fold in one to three dimensions) and hybridizations
(sp, sp2, and sp3) of carbon atoms. The distance dependence
of the Slater-Koster integrals is then monitored by changing
uniformly the bond length in molecules or the lattice constant
of bulk structures by ±10 % and by calculating the bond and
overlap integrals for first, second, and third nearest-neighbor
atom pairs.

In the second step, DFT calculations and subsequent
projection procedures are carried out for all configurations.
Apart from the chosen projection scheme, the resulting spillage
depends on whether the radial AO functions are optimized for
each individual configuration or not. Figure 2(a) shows the
electron spillage as a function of C–C bond distance R for
two different choices of how the optimization of the AOs is
done. As expected, the lowest spillage values are achieved
when the radial functions of the minimal atomic orbital basis
are re-optimized for every structure (dashed lines). Since
the re-optimization of the radial AO functions is rather time
consuming, we also tested the performance of a fixed AO basis
that is only optimized for a limited set of structures. Indeed,
we find that the individual re-optimizations are not necessary.
As shown by the solid lines in Fig. 2(a), the overall spillage
remains almost equally low when the radial AO functions are
optimized only once by a simultaneous minimization of the
combined electron spillage for the equilibrium geometries of
the linear carbon chain, graphene, and diamond (i.e., three
atomic configurations). Even more important, with this fixed
optimum AO basis also the spillage in the electronic band
energy remains at the same low level as for the individually
re-optimized basis [see Fig. 2(b)].

Since the single optimum AO basis can reliably describe
the bonding in all reference structures, we have only used this
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FIG. 2. (Color online) Electron spillage Sspill (left) and energy
spillage Espill (right, given in percent of the DFT result) as a function
of the C–C distance R between nearest-neighbor atoms in different
carbon containing structures. Dashed lines: the radial AO functions
were optimized for all structures and C–C distances using scheme
(D); solid lines: a fixed AO basis was used which was obtained
by optimizing the AO radial functions simultaneously for the linear
carbon chain, graphene, and diamond at their equilibrium geometries
using scheme (D).
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URBAN, REESE, MROVEC, ELSÄSSER, AND MEYER PHYSICAL REVIEW B 84, 155119 (2011)

-1.0

-0.5

0.0

0.5

1.0

 2  4  6  8

B
on

d 
in

te
gr

al
 (

R
y)

Distance R (Bohr)

ssσ

spσ

ppσ

ppπ

chain
graphene
diamond

-0.6

-0.2

0.2

0.6

 2  4  6  8

O
ve

rla
p 

in
te

gr
al

Distance R (Bohr)

ssσ

spσ

ppσ

ppπ

FIG. 3. (Color online) Slater-Koster NOTB bond (left) and
overlap (right) integrals for carbon calculated with the fixed AO
basis which was obtained by optimizing the AO radial functions
simultaneously for the linear carbon chain, graphene, and diamond at
their equilibrium geometry using scheme (D). Symbols: results from
the projection for different carbon containing structures; solid lines:
interpolation through the data points using an exponential function
times a third-order polynomial; dotted lines: projection result for the
carbon dimer.

fixed AO basis for completing the final step, the calculation
of the Slater-Koster bond and overlap integrals. The resulting
distance dependencies of these integrals are shown in Fig. 3.
The convenient advantage of a fixed AO basis is that there is no
scatter in the overlap integrals, and they are therefore plotted
as continuous lines in Fig. 3. On the other hand, since the bond
integrals contain contributions from three-center integrals,
they might vary strongly according to the bonding environment
and their description by simple distance-dependent functions
is sometimes problematic.22,23 However, the results shown in
the left panel of Fig. 3 demonstrate that the carbon bond
integrals obtained using our projection scheme exhibit a
very good transferability between the chain, graphene, and
diamond: They can be represented well by smooth functions of
interatomic distance only. The full lines in Fig. 3 are obtained
by fitting a simple exponential function times a third-order
polynomial to the projection data. Only for the ppπ integrals
some small scatter is visible for the first nearest neighbor.

The importance of including the three-center contributions
to the bond integrals in an averaged way can be seen by
comparing the full and dashed lines in the left panel of
Fig. 3. The dashed lines correspond to the carbon dimer
where no three-center contributions are present. Relatively
large three-center contributions are seen for the ppσ integrals,
which effectively extend the range of these integrals.

In Fig. 4 we present a comparison of calculated band
structures for graphene and diamond. The plots demonstrate
that the DFT results (thick gray lines) for both structures are
reproduced very well by the NOTB Hamiltonian with bond
and overlap integrals from our projection procedure (solid red
lines). When the interpolated bond integrals (i.e., the solid
lines in Fig. 3) are used instead of the projected values,
the occupied valence bands remain basically unchanged. The
overall agreement of both TB band structures with the DFT
result is significantly better than for the case when bond
integrals are calculated from unoptimized AO functions (blue
dotted lines) as in the DFTB approach.

The calculation of total energies in a TB scheme requires
also a parameterization of the repulsive energy term in Eq. (1).
In its simplest form, this energy term may be written as the
sum of pair potentials,6,35 but often more elaborate functional
forms are chosen which utilize additional embedding functions
or many body terms.17,18,39,59–62 The description of repulsive
interactions cannot be derived directly from DFT calculations
in a similar way as our bond and overlap integrals. Instead, the
chosen functional forms need to be parameterized by fitting to
forces or total energies of representative atomic configurations.

To demonstrate that such an approach also works in
conjunction with the bond and overlap integrals derived using
our projection scheme, we constructed a simple NOTB total
energy model for carbon. A pair potential ansatz was chosen
for the description of the repulsion with the potential function
�(R) represented by an exponential times a polynomial (the
same functional form as for our bond and overlap integrals).
The decay constant of the exponential and the coefficients
of the polynomial were fitted to reproduce the total energies
of the most relevant carbon phases. As shown in Fig. 5, this
basic ansatz already provides a very reasonable representation
of the total energies for the linear carbon chain, graphene,
and diamond that are comparably good as those of previous
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FIG. 4. (Color online) Band structure for (a) diamond and (b) graphene. Gray lines: mixed-basis DFT result; red solid lines: NOTB band
structure with Slater-Koster bond and overlap integrals from the projection procedure; red dashed lines: NOTB band structure from interpolated
Slater-Koster bond and overlap integrals (see solid lines in Fig. 3); blue dotted lines: DFTB band structure.12 The Fermi level/valence band
maximum is set to 0 eV.
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models.12,59,63 It should be noted that this model is preliminary
and there is still much potential for further optimization. Our
ongoing studies of highly distorted bonding environments
(e.g., amorphous structures) indicate that a more sophisticated
description of the repulsive interactions might be needed,
which will be the focus of future work.

D. Application to Ti and TiC

In addition to carbon, we applied our projection scheme to a
series of transition metals (Ti, Zr, Nb, Ta, Mo, W, Fe) (Refs. 64
and 65) as well as to several binary systems (Si-C, Ti-C, Si-N,
Ti-N) (Refs. 62 and 65) to test extensively its applicability
to various bonding environments. Here we present the results
for Ti as a representative transition metal and demonstrate the
transferability of the optimized basis for binary TiC.

The NOTB ss, sd, and dd bond and overlap integrals for
Ti obtained from the projection are displayed as functions
of interatomic distance in Fig. 6. In these calculations, the
spd AO basis was first optimized for the hexagonal close-
packed (hcp) phase of Ti at its equilibrium volume and then
used without further modification for projections in other bulk
phases at different volumes. As in the case of carbon, with

the fixed basis the overlap integrals are simple continuous
functions of the interatomic distance only and do not vary for
different crystal structures (see top panels of Fig. 6). On the
other hand, the bond integrals show some variations among
different structures (see bottom panels of Fig. 6). The scatter
is, however, much smaller than in results obtained using the
QUAMBO approach.23 Especially the dd bond integrals can
be well approximated by simple continuous functions. The
weaker dependence on the environment is most likely related
to the fixed AO basis in our approach and also its relatively
short range. The QUAMBOs need to be newly constructed for
every bonding environment and the requirement to reproduce
all occupied electronic states makes them significantly longer
ranged.

Figure 7 shows a comparison of DFT and projected band
structures for three distinct bulk phases of Ti. The band
structure plots in Fig. 7 again demonstrate that the orbitals
optimized just for the equilibrium hcp phase provide also an
excellent description of the electronic structure of other phases
with very different bonding environments. Additionally, Fig. 8
shows that this transferability is not limited to elemental
phases, but that the optimized atomic orbitals obtained for
the two elements can even capture the bonding in binary
compounds, namely two distinct phases of TiC, without any
re-optimization. This is a very encouraging result since it
demonstrates a possibility to construct transferable TB models
for multicomponent systems without a need for extensive
fitting.

IV. FROM NOTB TO OTB HAMILTONIANS

The atomic orbitals used in our projection scheme are
orthogonal when they are centered on the same atom but
nonorthogonal for centers at different atomic sites. However, as
already mentioned above, orthogonal TB models are simpler
and therefore more appealing than nonorthogonal ones. In
addition, the OTB schemes serve as a basis for approximate
linear-scaling schemes such as the bond-order potentials.31–33

In this last section, we therefore address two issues associated
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URBAN, REESE, MROVEC, ELSÄSSER, AND MEYER PHYSICAL REVIEW B 84, 155119 (2011)

A L M Γ A H K Γ
-8

-4

0

4

8

E
ne

rg
y 

(e
V

)

DFT
projection

Γ H P N Γ
-8

-4

0

4

8

E
ne

rg
y 

(e
V

)

A L M Γ A H K Γ
-8

-4

0

4

8

E
ne

rg
y 

(e
V

)

(b)(a) (c)

FIG. 7. (Color online) Band structures of bulk Ti in the (a) hcp, (b) bcc, and (c) ω phase. Gray lines: mixed-basis DFT result; red solid
lines: NOTB result with Slater-Koster bond and overlap integrals from the projection procedure. The Fermi level is at 0 eV.

with the derivation of the simplest possible OTB models—the
orthogonalization and the basis reduction.

A. Löwdin transformation and basis reduction

The orthogonalization of the AO basis is, in principle,
a straightforward mathematical procedure, but it is not a
unique one. The most natural and convenient transformation
for derivation of OTB models is Löwdin’s symmetrical
orthogonalization.37 Its main advantages are that it produces
orthogonal functions that have the same symmetry as the
original nonorthogonal ones and that these functions are
least distorted in the least-square sense.66 However, as every
orthogonalization, the Löwdin orthogonalization is environ-
ment dependent (i.e., the magnitudes, ranges, and distance
dependences of the resulting OTB bond integrals depend not
only on the NOTB Hamilton and overlap matrix elements but
also on the geometry of the particular atomic configuration).
It is therefore necessary to obtain a thorough insight into
the NOTB-OTB relationship, particularly in terms of the
transferability of the bond integrals.

Additionally, it is often possible to reduce the minimal spd

AO basis even further and to retain only orbitals that contribute
most to the chemical bonding. This reduction results in the
simplest possible TB models that are still able to capture the
key essence of chemical bonding while being computationally
most efficient. The basis reduction can be exemplified on the
case of middle transition metals with partially filled d bands.
The cohesion in these elements is primarily governed by d

electrons, so that the s and p orbital interactions do not need
to be treated explicitly and their effective contributions to the
binding energy can be incorporated, for instance, via pair or
simple many-body terms.19,39 Similarly, for transition-metal
compounds, such as TiC, it is possible to a good approximation
to consider only a Ti(d)–C(p) OTB model.62 However, in this
case the reduction of the basis has its limitations. While the
simplest Ti(d)–C(p) model is likely to be sufficient for the
description of the binary system alone, for studies of TiC/C
interfaces a more complete sp basis on C has to be retained to
ensure a proper transferability between the elemental carbon
and the TiC compound. The issue is therefore rather subtle
and depends also on the particular problem. The advantage
of our projection scheme is that we can study in detail the
influence of a reduced basis on the electronic properties in a
well-controlled way.

The last issue that needs to be considered when obtaining
the reduced OTB parameters is whether the orthogonaliza-
tion is done either before or after the basis reduction. In
simple terms, the orthogonal orbitals are mixtures (linear
combinations) of the original orbitals with orbitals located
on the neighboring atoms. If the full spd basis is kept, the
orthogonal orbitals are admixtures of all three orbital types
and consequently the OTB Hamiltonian elements are more
affected by their surroundings; if the basis is reduced before
orthogonalization, the environment dependence of the result-
ing Hamiltonian elements is weaker. The physical meaning
of the orthogonalization can be also understood within the
concept of bond screening.60,67 Nguyen-Manh et al.17 showed
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mixed-basis DFT result; red solid lines: NOTB result with Slater-Koster bond and overlap integrals from the projection procedure. The Fermi
level is at 0 eV.
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that the environmental dependence of OTB parameters can be
derived from the NOTB theory in the form of an analytical
screening function. The screening function represents the fact
that a given bond is influenced by the presence of other atoms
in its vicinity. The strength of the screening is proportional to
the overlap with orbitals on the neighboring atoms. The issue
of doing orthogonalization before or after basis reduction is
exemplified for Ti in the following section.

B. OTB models for Ti

Our investigations for transition metals confirm the effect
of basis reduction on the behavior of OTB parameters. Figure 9
gives a comparison of the original NOTB dd bond integrals
for Ti from Fig. 6 with corresponding orthogonalized ones
obtained using a completely reduced d-only and partly reduced
sd basis. In both cases, the orthogonalization leads to smaller
absolute values of the bond integrals and it increases the range
of the interactions. This increase is, however, not dramatic,
showing that the orthogonalization does not necessarily lead
to long-range interactions.

Another finding is that the orthogonalization does not
cause an overall decrease of the transferability of the bond
integrals. In fact, the orthogonal ddσ bond integrals turn
out to be more transferable than the NOTB ones. When the
completely reduced d-only basis is used, the environment
dependence of all three ddσ , ddπ , and ddδ orthogonal bond
integrals is very weak. They can be described very well by
simple continuous functions, which depend on the interatomic

distance only. For the partly reduced sd basis the screening
effects of the s orbitals are visible on the ddπ and ddδ bond
integrals. In this case, the s orbitals contribute significantly
to the screening of the interatomic bonds and cause stronger
environmental effects with some of the values corresponding
to more distant neighbors even changing the sign. The more
complete basis therefore leads, as expected, to bond integrals
that are environment dependent.

As a validation of the d-only OTB model, we show in
Fig. 10 again a comparison of DFT and OTB band structures
for three bulk phases of Ti (cf., Fig. 7). Obviously, since the
s orbitals are not present, the corresponding lowest bands are
missing, but the d band is reproduced well, especially for
the hcp and bcc phases. In the ω phase, a rather strong pd

hybridization occurs, which pushes some of the unoccupied d

bands up. Since this effect is also missing in the d-only model,
the band structure above the Fermi level is reproduced less
satisfactorily for this phase, and the width of the d band is
somewhat underestimated.

V. SUMMARY AND CONCLUSION

In this work, a rigorous bottom-up approach is presented
for deriving TB Hamiltonians from first-principles DFT calcu-
lations without the need for empirical fitting to materials data.
The approach is universally applicable to both elements and
compounds in arbitrary structural and chemical arrangements.

The procedure from DFT to NOTB models is built on the
projection of DFT wave functions on basis sets of atomic-
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FIG. 10. (Color online) Band structures of bulk Ti in the (a) hcp, (b) bcc, and (c) ω phase. Gray lines: mixed-basis DFT result; red dashed
lines: d-OTB result. The Fermi level is at 0 eV.
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orbital-like functions, which are strictly angular-momentum
eigenfunctions and whose radial ranges and shapes are
optimized with respect to completeness of the projection
(minimum spillage). As illustrated by the comparison of
DFT and NOTB band structures for several crystalline
phases of the elements C and Ti and their compound TiC,
nonorthogonal TB bond integrals are obtained which are well
transferable to various molecular and crystalline configura-
tions. Their distance dependencies are short ranged and can
be well represented by smooth analytical functions. Their
environment dependencies are rather weak and can be well
controlled.

The procedure from NOTB to OTB models involves two
distinct steps, the mathematical orthogonalization and the
physical reduction of the basis set. As illustrated for the case
of Ti, the sequential order of orthogonalization and reduction
is important and can be advantageous for getting best suited
orthogonal TB Hamiltonians for specific purposes. Namely
for Ti and other middle transition metals whose bonding and
structure are mainly governed by partially filled d bands,
the reduction of the optimized spd-NOTB basis to only
the d-AOs before the orthogonalization leads to a d-OTB
model whose bond integrals have rather short ranges and
negligible environment dependences. The comparison of DFT
and d-OTB band structures for different crystalline phases
of Ti demonstrates the good transferability of the d-OTB

model as well. Furthermore, our methodology simplifies the
development of total-energy TB models and closely related
bond-order potentials that include a parameterization of the
repulsive energy term. Such models have been recently
developed for Fe (Ref. 64) as well as the binary systems Ti-C
and Ti-N (Ref. 62) and applied in atomistic simulations of
complex crystalline defects.

Altogether, our presented bottom-up approach founded on
first-principles DFT calculations has the potential to cope with
the whole spectrum of materials modeling from accurate semi-
empirical NOTB electronic-structure calculations via reduced
OTB models to linear-scaling atomistic BOP simulations for
both single-component and multi-component materials.
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