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Topological insulators and fractional quantum Hall effect on the ruby lattice
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We study a tight-binding model on the two-dimensional ruby lattice. This lattice supports several types of
first- and second-neighbor spin-dependent hopping parameters in an s-band model that preserves time-reversal
symmetry. We discuss the phase diagram of this model for various values of the hopping parameters and filling
fractions and note an interesting competition between spin-orbit terms that individually would drive the system
to a Z2 topological insulating phase. We also discuss a closely related spin-polarized model with only first- and
second-neighbor hoppings and show that extremely flat bands with finite Chern numbers result, with a ratio of
the band gap to the band width of approximately 70. Such flat bands are an ideal platform to realize a fractional
quantum Hall effect at appropriate filling fractions. The ruby lattice can be possibly engineered in optical lattices
and may open the door to studies of transitions among quantum spin liquids, topological insulators, and integer
and fractional quantum Hall states.
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I. INTRODUCTION

Topological phases of matter have received a great deal of
attention recently.1,2 In part, this is motivated by the fractional
quantum Hall effect and its possible role as a platform for
topological quantum computation.3 However, there is also
a more general interest in phases of quantum many-particle
systems that can exhibit responses and other properties that
are a consequence of global (i.e., topological) features that are
not captured in a local order parameter.4–6 A key example
of such a phase is the time-reversal-invariant topological
insulator.7–9 In contrast to most of the previously known
systems that exhibited some topological property (the integer
quantum Hall effect being a notable exception), topological
insulators do not require electron-electron interactions, but
they are stable to interactions of weak to moderate strength.7–9

The weakly interacting nature of topological insulators has
enabled accurate predictions10–13 for a wide range of two- and
three-dimensional systems,14–28 and experiment has followed
with confirming data in a large and rapidly growing number
of instances.29–40

The salient feature of topological insulators is that their
boundaries possess a topologically protected “metallic” state
that is robust to disorder.41–47 Both the two-dimensional48–55

and the three-dimensional56–59 boundaries have been shown
to exhibit interesting responses to perturbations. In this work
we focus on a two-dimensional tight-binding model with a
single s-orbital on each lattice site. We study the so-called
ruby lattice shown in Fig. 1. We find that it exhibits a complex
phase diagram that includes topological insulators at a number
of filling fractions. This lattice has earlier played an important
role in the study of topological order in spin models.60,61

Starting with the work of Kane and Mele62,63 on the
honeycomb lattice (and key earlier precedents by Haldane64 in
a spinless version), such simple noninteracting lattice models
have helped to develop our understanding of topological
insulators.65 Besides the honeycomb lattice,62,63 a number of
other two-dimensional lattices have been shown to support a
topological insulator phase, including the decorated honey-
comb lattice,66 the checkerboard lattice,67 the square-octagon
lattice,68 the kagome lattice,69 and others.70 It is now well

appreciated that such noninteracting lattice models possess
topological features that commonly occur in interacting mod-
els without spin-orbit coupling at the mean-field level.67,71–74

Evidently, such simple lattice models contain rather rich
physics.

An interesting related topic of study is the class of insulators
with nearly flat bands that possess finite Chern numbers. With
a finite Chern number, a partial filling of the flat bands can
lead to a fractional quantum Hall effect.75 To date, only a few
lattice models have been proposed which are expected to lead
to a fractional quantum Hall effect.76–79 The relevant figure
of merit in such models is the ratio of the band gap to the
bandwidth of the flat band with a finite Chern number. In the
model we discuss in this paper, we find that this ratio can be as
high as 70, which is among the largest in the models reported
in the literature thus far.

The remainder of the paper is organized as follows. In
Sec. II we introduce our tight-binding model, and we discuss
the basic features of the energy bands as a function of the
hopping parameters. In Sec. III we discuss the phase diagrams
at different filling fractions, and in Sec. IV we discuss a closely
related spinless (spin-polarized) model with nearly flat bands
and finite Chern number. Our main conclusions are given in
Sec. V.

II. HAMILTONIAN AND BAND STRUCTURE

We study the Hamiltonian

H = H0 + HSO, (1)

where

H0 = −t
∑

i,j∈�,σ

c
†
iσ cjσ − t1

∑
�→�,σ

c
†
iσ cjσ (2)

and

HSO = it2
∑

�ij�,αβ

νij s
z
αβc

†
iαcjβ + it3

∑
�ij�,αβ

νij s
z
αβc

†
iαcjβ (3)

on the ruby lattice shown in Fig. 1. Here c
†
iσ and ciσ are,

respectively, the creation and annihilation operators of an
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FIG. 1. Schematic of the ruby lattice and illustration of the
nearest-neighbor hopping, t,t1 (real) and t ′,t ′

1 (complex), and the three
types of “second-neighbor” spin-orbit coupling or hopping indicated
by the dashed or dot dashed lines, t2, t3, and t4r . (a) The spin-orbit
coupling strength t2 within a hexagon. (b) The spin-orbit coupling
strength t3 within a pentagon composed of one triangle and one
square. The hoppings t2 and t3 are present on all such bonds of
the type shown that are consistent with the symmetry of the lattice.
(c) The unit cell of the ruby lattice. (d) Schematic of the hopping
parameters used to obtain a flat band with a finite Chern number and
W/Eg ≈ 70. (e) The first Brillouin zone of the ruby lattice, with the
high symmetry points �, M , and K .

electron on site i with spin σ . As indicated in Figs. 1(a) and
1(b), t and t1 are real first-neighbor hopping parameters, and
t2 and t3 are real second-neighbor hoppings [which appear
with the imaginary number i in Eq. (3), making the total
second-neighbor hopping purely imaginary and time-reversal
symmetric]. The quantity νij is equal to 1 if the electron makes
a left turn on the lattice links during the second-neighbor
hopping, and it is equal to −1 if the electron make a right
turn during that process. As is clear from Fig. 1, the unit
cell of the lattice contains six sites so six two-fold degenerate
bands will result. In addition to the real hopping parameters
t and t1 in (2), symmetry also allows complex, spin-dependent
nearest-neighbor hopping with imaginary components t ′,t ′1, as
shown in Fig. 1. We will discuss terms of this type later in
Sec. IV.

The full Hamiltonian (1) can be diagonalized by going to a
momentum-space representation:

H =
∑
kσ

�
†
kσ H̃kσ�kσ , (4)

where �
†
kσ = (c†1kσ ,c

†
2kσ ,c

†
3kσ ,c

†
4kσ ,c

†
5kσ ,c

†
6kσ ) is the six-site

basis, and H̃kσ is the Hamiltonian in k space. The bulk energy
bands as well as the bands on a strip geometry can be readily
calculated. If the problem is solved on a two-dimensional
strip, then periodic boundary conditions can be used in one
direction (the direction parallel to the length of the strip). We
diagonalize the Hamiltonian matrix using standard LAPACK

routines.
The bulk energy bands and the energy bands on a strip

geometry are shown in Figs. 2 and 3, respectively, for different
sets of parameters. Having six sites per unit cell, our tight
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FIG. 2. (Color online) The energy bands without any spin-orbit
coupling and with finite spin-orbit coupling, given by Eq. (2). (a)
Bulk energy bands along high symmetry directions in the absence of
spin-orbit coupling. Note that there is a Dirac point at K for 1/6 and
2/3 filling and a quadratic band touching point at � for 1/2 and 5/6
filling. (The underlying lattice is triangular, as it is for the honeycomb
lattice.) Note also the flat bands along the �-M direction at 1/2 and
5/6 filling. (b) The energy bands for finite spin-orbit coupling, with
t2 = t3 = 0.1t . It is clearly seen that the Dirac points at the K points
and quadratic band touching point at the � point are removed.

binding model yields six bands that are doubly degenerate
due to spin degrees of freedom. Thus the filling factors are
determined by counting how many of bands are fully occupied,
which are 1/6, 1/3, 1/2, 2/3, and 5/6. If one imagines
shrinking the triangular plaquettes on the ruby lattice down
to a point, the links will look like those of the honeycomb,
showing that the underlying Bravais lattice is triangular (since
the underlying Bravais lattice of the honeycomb is triangular).
For the case t1 = t , t2 = t3 = 0 shown in Fig. 2(a) there is no
spin-orbit coupling on the lattice, and at all filling fractions
the model predicts metallic behavior. Also in Fig. 2(a) we can
see that when the energy is zero (1/2 filling), three bands are
degenerate at the � point. For 1/6 filling and 2/3 filling, there
are Dirac points at the K and K ′ points. Spin-orbit coupling can
open a gap in the spectrum at some fillings [see Fig. 2(b)] and
drive the model into an insulator. The nature of these insulators
can be further understood by looking at the spectrum of the
system with edges, as shown in Fig. 3. We see that at 1/6 and
2/3 filling, there exist states at time-reversal-invariant points
in k space, that is, at the points where kx = 0 or kx = π/a.
These states traverse the bulk band gap and are composed of
an odd number of Kramers pairs, indicating that the insulating
phase is in fact topological.62,63
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FIG. 3. (Color online) The energy bands on a strip geometry for
the case that t1 = t , t2 = t3 = 0.1t . At filling fractions 1/6 and 2/3,
edge modes cross the band gap an odd number of times, which clearly
reveals the topological insulator phases. Their identification is also
confirmed with a direct evaluation of the Z2 invariant.

A direct evaluation of the Z2 invariant confirms this, as we
will show in the next section. We found that the Dirac point at
2/3 filling in Fig. 3 is a linear crossing point, but for the special
case of t1 = t , t2 = 0, and −0.04t < t3 < 0.04t , the absolute
value of the slope at kx = 0 is less than 10−4. Therefore, in an
experimental situation where temperature is finite (providing
a low-energy cutoff) it could be regarded as a quadratic
crossing point. We also verified that a staggered potential with
a magnitude as small as 0.01t which breaks the C4 symmetry
in the square plaquettes can enhance the slope by one order
of magnitude. Our calculation is consistent with the discovery
that extra symmetry of the underlying lattice may deform the
shape of the Dirac node on the surface of three-dimensional
topological insulators, giving rise to a warping effect80 or
a quadratic crossing in crystalline topological insulators.81

The flat crossing at 2/3 filling in our model may alter the
low-energy description of the edge modes and change their
stability.67 In particular, this may make them more susceptible
to magnetic ordering from Coulomb interactions.

Having established that our model supports the topological
insulator phase, we now turn to cases which explore the
whole parameter space of the model and determine the phase
diagrams at various filling fractions.

III. PHASE DIAGRAMS OF THE MODEL

We are interested in determining the phases of the
Hamiltonian (1) as a function of filling fraction and the
hopping parameters t, t1, t2, and t3. From earlier work62,63,66–70

we know that we must consider three possible phases: (i)
conductor, (ii) insulator, and (iii) topological insulator.

We determine the phase for a given set of parameters in the
following way. First we must determine whether the system is
conducting or insulating. After choosing a filling fraction, we
search for the bottom of the “upper band” with respect to this
filling fraction and the top of the “lower band.” For example,
at 1/2 filling the “upper band” would be band 4 and the “lower
band” would be band 3, with the labeling starting at the lowest
energy band and the counting increasing as one moves to
higher energy bands. Finding the extrema of a given energy
band is a formidable task since the band structure is rather
complex and there are many local minima and maxima. We

use an optimization algorithm called the differential evolution
method.82 The method works well in most cases, but is not so
efficient for some special parameters. In those cases, we use
the software MATHEMATICA to help us to determine the extreme
values. If the system is insulating (i.e., there is a positive gap
between the “upper band” minimum and the “lower band”
maximum), then we calculate the Z2 invariant according to
the scheme proposed by Fu and Kane.11

By taking the real-space triangular Bravais vectors of the
ruby lattice as a1 = ax̂ and a2 = a

2 x̂ +
√

3a
2 ŷ, the reciprocal

lattice basis vectors are

b1 = 2π

a
x̂ − 2π√

3a
ŷ, b2 = 4π√

3a
ŷ. (5)

Since our model possesses inversion symmetry, we will
calculate the eigenvalues of the parity operator at the four
time-reversal-invariant points in k space,11 that is,

b = n1

2
b1 + n2

2
b2, (6)

where

n1,n2 = 0,1. (7)

From the eigenvalues of the parity operator at the time-
reversal-invariant momenta, the Z2 topological class can be
determined as11

(−1)ν =
4∏

a=1

δa, (8)

where

δa =
N∏

m=1

ξ2m(�a). (9)

Here ν is the Z2 topological invariant, �a is one of the four
time-reversal-invariant points defined as above, and ξ2m(�a)
is the eigenvalue of the parity operator for the Bloch wave
function of the 2mth occupied band at the time-reversal-
invariant point �a .

Because of the large parameter space of the model, we
must choose different “cuts” of the parameters to explore the
phase diagrams. We will use the methods described above to
determine the phases at filling fractions for different hopping
values.

A. Phase diagrams for t2 = t3

We begin by fixing the second-neighbor hopping values
t2 = t3 = λSO in (3). Thus we take uniform spin-orbit coupling
λSO and inter-triangle hopping t1 as tuning parameters which
are expected to drive the system into different phases. Figure 4
depicts the phase diagrams for filling fractions 1/6, 1/3,
1/2, 2/3, and 5/6. (In the figure, and all related figures
that follow in the paper the gray-scale coding is as follows:
black = conductor, gray = insulator, and white = topological
insulator.)

A variety of phases are seen at different fillings. Starting
with 1/6 filling, we see that the middle axis λSO = 0 is
never in the topological insulator phase. This is easy to
understand because in the absence of spin-orbit coupling,
the system can only be a metal or trivial insulator. There
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FIG. 4. Phase diagrams for different filling fractions. Figures (a)–
(e) are for the filling fraction from 1/6 to 5/6, with filling fraction
increasing in units of 1/6. For each filling, the vertical and horizontal
axes measure t1 and t2 = t3 = λSO, in units of t , respectively. The
gray-scale coding is as follows: black = conductor, gray = insulator,
and white = topological insulator.

also exists a horizontal straight line on the phase diagram
which corresponds to the metallic phase when the inter-triangle
hopping is zero. It is noteworthy that large areas of the phase
diagram are occupied by the topological insulator. That is
consistent with the observation of Dirac points at 1/6 filling
for t2 = t3 = 0 in the bulk energy bands and the crossing edge
modes on the strip geometry for λSO 
= 0. The phenomenology
is similar to the case of the decorated honeycomb lattice
model.66

At 1/3 filling most areas are either a conductor or a trivial
insulator, which is consistent with the lack of Dirac cones or
quadratically touching points in the bulk energy bands when
there is no spin-orbit coupling. However, as the spin-orbit
coupling is turned on, at some special parameters the system
can still be a topological insulator, as shown by white spots in
Fig. 4(b).

At 1/2 filling the phase diagram appears rather complex.
In most areas it is a conductor, while for some areas the trivial
insulator and the topological insulator can be distinguished.
The topological insulator phase also appears on some narrow
areas close to the region around λSO = ±0.7t and t1 = −2.0t .

The phase diagram for 2/3 filling consists mainly of the
trivial insulator and the metallic phase. Nevertheless, small
regions around the center of the phase diagram occurring at
small values of spin-orbit coupling present the topological
insulator phase. For much of the phase diagram, the conducting
and trivial insulating phases occur alternately when the
hopping strength and/or spin-orbit coupling are increased. The
crossing states at k = 0 in the calculation on the strip geometry
shown in Fig. 3 lies in the narrow region of the topological
insulating phase.

Finally, for 5/6 filling most of the area is occupied by
the topological insulator, in strong contrast to the former
cases. This is also clearly seen from the calculation in the
strip geometry shown in Fig. 3 combined with the less stable
quadratic band touching points67,83 (compared to Dirac points)
that are clearly seen at 5/6 filling in Fig. 2(a) at the � point.

B. Phase diagrams for fixed t1

As we emphasized earlier, the model (3) supports two
types of spin-orbit couplings: t2 and t3. In this section we
investigate the interplay between theses couplings and the
resulting phases. We describe phase diagrams with the same
gray-scale coding as before: black = conductor, gray =
insulator, and white = topological insulator. We assume that
the hopping between triangles, t1, is set to a fixed value, and
the spin-orbit coupling t2 and t3 are independently varied. This
type of phase diagram takes a slice in the three-dimensional
parameter space (t1/t,t2/t,t3/t). Such phase diagrams reveal
even more features than those presented earlier with t2 = t3
(Fig. 4). In particular, we find that the two second-neighbor
spin-orbit coupling terms can “compete” with each other and
drive the system out of the topological insulator phase, even
though each individually would place it there.

We consider two cases: t1 = 0 and t1 = t . The correspond-
ing phase diagrams are shown in Figs. 5 and 6. The phase
diagrams illustrated in Fig. 5 in which t1 = 0 are a special case.
First note that in the absence of second-neighbor hopping it
is clear the model must be in a trivial insulator phase since
the only hopping is around triangular plaquettes in the lattice.
Thus, the origin at all filling fractions is a trivial insulator.
However, away from the origin the behavior is rather different
at different filling fractions. For example, close to the origin
the model is in a trivial insulating state at 1/3 filling, while
it remains a metal nearby at 2/3 filling (for the most part).
Interestingly, at 1/6 filling only the metallic phase appears.
Also, at 1/2 and 5/6 filling the phase diagram is mostly
metallic.

In Fig. 6 we show the phase diagrams for t1 = t . Although
those phase diagrams show a complex evolution with the
hopping parameters, we can still draw some clear conclusions
from them. For example, filling fractions 1/6 and 5/6 are rich
in regions of topological insulator, while filling fractions 1/3
and 2/3 are poor in regions of topological insulator. Filling
fraction 1/2 tends to have roughly one-third to one-half of the
parameter space occupied by the topological insulator phase.
Ultimately, the explanation for these behaviors comes from the
band structure in the presence of second-neighbor hopping.
However, as shown in Fig. 2(a), the bands at filling fraction
1/6 and 2/3 both have a Dirac cone at the K point so the naive
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FIG. 5. Phase diagrams for t1 = 0. The horizontal axis is t2/t ,
and the vertical axis is t3/t . Figures (a)–(e) are for the filling fraction
from 1/6 to 5/6, increasing in units of 1/6. For all fillings the origin
t2 = t3 = 0 is a trivial insulator.

expectation might be for these two fillings to respond similarly
when second-neighbor spin-orbit couplings are added. Our
calculations clearly indicate this is not the case and the actual
evolution is rather complicated. This feature should be borne
in mind when viewing the present model as the result of a
self-consistent Hamiltonian in which spin-orbit coupling was
spontaneously generated from interactions.67,71–74 We note that
if the signs of any two among t1, t2, and t3 are reversed,
the figures show the phase of the system is unchanged.
For example, if one flips the phase diagram for t1 = t (see
Fig. 6) around the axis t2 = 0 or t3 = 0, the phase diagram
obtained is identical to the phase diagram for the case t1 = −t .
This symmetry is easy to verify from the Hamiltonian (1).
Indeed, the sign of t1 can be absorbed via a simple gauge
transformation of electron operators. The latter is defined as
follows: c†(c) → −c†(−c) for up triangles and c†(c) → c†(c)
for down triangles. This transformation flips the signs of t1 and
t3. Thus this simple argument implies that the phase diagram is
symmetric via such transformations. Moreover, if the signs of
t2 and t3 are flipped, the phase diagram will not change, which
can be simply understood by noting that this flipping can also
be absorbed into the magnetic fields for different spin species,
i.e. νij → −νij .
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FIG. 6. Phase diagrams for t1 = t . The horizontal axis is t2/t , and
the vertical axis is t3/t . Figures (a)–(e) are for the filling fraction from
1/6 to 5/6, increasing in units of 1/6.

We also studied other cases with different values of inter-
triangle hopping. For example, when t1 = 2t and the filling
fraction is 5/6, if t2 = t and t3 = 0, or t2 = 0 and t3 = 0.4t , the
system is topological insulating, while if t2 = t and t3 = 0.4t ,
the system is a metal (See Fig. 7). A possible explanation for
such phenomena is the inner magnetic field created by the
two different types of spin-orbit coupling may have opposite
contributions to the phase of the hopping terms, and therefore
they may cancel each other for some parameter values. A
similar inverse case also exists where a single type of spin-orbit
coupling does not result in the topological insulator phase
while if both types of spin-orbit coupling are present, the
system becomes a topological insulator.

IV. FLAT-BAND FRACTIONAL QUANTUM HALL EFFECT

In recent years, lattice models with flat bands have attracted
attention for a number of reasons, among them are enhanced
interaction effects.84–89 Since the scale of the kinetic energy
is set by the band width, if the band width vanishes, any
residual interparticle interactions will be “large” and may drive
the system into a strongly correlated state such as a Wigner
crystal87 or a fractional quantum Hall state.89
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FIG. 7. Phase diagrams for t1 = 2t . The horizontal axis is t2/t ,
and the vertical axis is t3/t . Figures (a)–(e) are for the filling fraction
from 1/6 to 5/6, increasing in units of 1/6.

Flat-band lattice models in which the flat bands possess a
finite Chern number are thought to be excellent candidates
for systems that might realize a fractional quantum Hall
effect when the flat band is partially filled.76–79 Indeed, exact
diagonalization studies on the checkerboard lattice75,79 and
other lattices77,79 support the development of a fractional
quantum Hall state at certain filling fractions.

In order to maximize the effectiveness of the interactions in
driving a fractional quantum Hall state, the flat band should be
as flat as possible and the band gap to the next band should be
as large as possible. (Virtual transitions to higher lying bands
with finite Chern numbers are more effective at disrupting
the fractional quantum Hall state than those with zero Chern
number.) If we call the bandwidth of the flat band W and the
energy difference between the lowest point of the band above
the flat band and the highest point of the flat band Eg , the figure
of merit is Eg/W , and this should be much larger than unity.
If the characteristic strength of the interparticle interactions is
U , the regime W � U � Eg will involve little mixing from
the higher bands and the physics will be dominated by the
interactions in the flat band with a finite Chern number.

In this section, we show that the ruby lattice possesses flat
bands with finite Chern number. One can readily reach the
regime Eg/W ≈ 70.

We first study a new model without the spin-orbit coupling
in Eq. (3), but with the imaginary part on the hopping terms
from Eq. (2). Specifically, in the Hamiltonian (2) the hopping
terms are substituted by

t ′ = t + iσzti , t ′1 = t1r + iσzt1i . (10)

The complex hopping parameters above can be artificially
synthesized in fermionic cold atomic optical lattices via a
specific tuning of Raman fields,90–92 or they can arise in some
spin-orbital perovskites where strong intrinsic spin-orbit cou-
pling can make the hopping complex and spin-dependent.93

To explicitly break time-reversal symmetry, we assume the
fermions are spin polarized and calculate the band structure
and Chern number for one spin orientation. The Chern number
of the nth band is defined as78

cn = 1

2π

∫
BZ

d2kF12(k), (11)

where the integral is taken for the two-dimensional Brillouin
zone, and F12(k) is the associated field strength defined as

F12(k) = ∂

∂k1
A2(k) − ∂

∂k2
A1(k), (12)

where Aμ(k) = −i〈unk| ∂
∂kμ

|unk〉 is the Berry connection and
|unk〉 are the Bloch wave functions of the nth band. The full
Chern number is the sum of cn over all occupied bands,
which in our case is just the single lowest energy band.
The calculation of Chern numbers is based on the methods
in Ref. 94, where F12(k) is expressed in some U (1) gauge
transformation link variables, and then the integration is
converted into a summation in k space. With only the hopping
parameters (10) our flattest band with finite Chern number had
W/Eg ≈ 13, which is not very large.

To obtain a nearly flat band with nonzero Chern number, we
needed to add more terms to the Hamiltonian. One option is to
add the hopping inside the square in the diagonal directions,
which is called t4r . This is shown schematically in Fig. 1(c).
The nonzero Chern numbers and nearly flat bands do occur
in this case. For example, with ti = 1.2t, t1r = −1.2t, t1i =
2.6t, and t4r = −1.2t the Chern number is −1, the gap =
2.398t,and the band width = 0.037t , which gives W/Eg ≈
70. The corresponding band structure is shown in Fig. 8.
Based on the results of exact diagonalization studies on other
lattices75,77,79 and the general arguments given before,76–79 we
expect a flat-band fractional quantum Hall effect to be realized

−10

−5

0

5

10

E
/t

Γ M K Γ

FIG. 8. (Color online) The energy bands with ti = 1.2t, t1r =
−1.2t, t1i = 2.6t, and t4r = −1.2t .
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on the ruby lattice as well for the appropriate fractional filling
of the flat band. This could form the basis of a lattice model of a
fractional topological insulator95 by taking two time-reversed
copies.62,63

V. CONCLUSION

In conclusion, we have studied the energy bands of a tight-
binding model on the ruby lattice, and we also obtained the
phase diagrams for a variety of filling fractions. The phase di-
agram is rather complex in its dependence on the various types
of spin-orbit coupling and nearest-neighbor hopping we con-
sidered. We have seen how various spin-orbit coupling terms
can “compete” with each other and also “support” each other.

In a related spinless model we calculated the Chern number
for the nearly flat bands, and we showed that they will likely
support a robust fractional quantum Hall effect with W/Eg ≈
70. This could lead to possible lattice models of a fractional
topological insulator.95

Since the ruby lattice has earlier appeared in the study
of topological spin models,60,61 the current work opens the
way for an exploration of the transitions among various
interesting phases in a more general interacting model.96

Current technology in cold atomic gases should allow an
experimental study97–103 (although perhaps with challenges) of
fermions in the ruby lattice and will likely raise new questions
to challenge theory.
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