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Geometrical frustration effects on charge-driven quantum phase transitions
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The interplay of Coulomb repulsion and geometrical frustration on charge-driven quantum phase transitions
is explored. The ground-state phase diagram of an extended Hubbard model on an anisotropic triangular lattice
relevant to quarter-filled layered organic materials contains homogeneous metal, “pinball,” and threefold charge
ordered metallic phases. The stability of the pinball phase occurring for strong Coulomb repulsions is found to
be strongly influenced by geometrical frustration. A comparison with a spinless model reproduces the transition
from the homogeneous-metallic phase to a pinball liquid, which indicates that the spin correlations should play
a much smaller role than the charge correlations in the metallic phase close to the charge-ordering transition.
Spin degeneracy is, however, essential to describe the dependence of the system on geometrical frustration.
Based on finite-temperature Lanczos diagonalization we find that the effective Fermi temperature scale T ∗ of
the homogeneous metal vanishes at the quantum phase transition to the ordered metallic phase driven by the
Coulomb repulsion. Above this temperature scale “bad” metallic behavior is found which is robust against
geometrical frustration in general. Quantum critical phenomena are not found whenever nesting of the Fermi
surface is strong, possibly indicating a first-order transition instead. “Reentrant” behavior in the phase diagram
is encountered whenever the 2kF charge-density wave instability competes with the Coulomb driven threefold
charge order transition. The relevance of our results to the family of quarter-filled materials, θ -(BEDT-TTF)2X,
is discussed.
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I. INTRODUCTION

Strongly correlated electron materials are often charac-
terized by complex phase diagrams, reflecting an intricate
interplay between magnetic, orbital, lattice, and charge degrees
of freedom. As these excitations couple to the conduction
electrons, the metallic state expected in the absence of
interactions has to compete with several ordered phases.
Examples of these materials include cuprate superconduc-
tors, nickelates, heavy-fermion compounds, transition-metal
dichalchogenides, organic charge transfer salts, and the iron-
based pnicitide superconductors, all presenting various forms
of magnetic, orbital, and charge order. Even when a metallic
phase is stabilized, these systems are generally found to
exhibit large effective mass enhancements and electrical
resistivities violating the Ioffe-Regel-Mott (IRM) condition.1–6

Surprisingly enough, such “bad” metallic behavior does not
impede the emergence of superconductivity, but rather appears
to be a prerequisite for the achievement of high critical
temperatures.7

Charge-ordered (CO) phases are commonly observed
in the class of two-dimensional organic compounds
θ -ET2X (ET = BEDT-TTF, bisethylenedithio-
tetrafulvalene)8–12 and ascribed to the prominent role of
electron-electron interactions.13 At the noninteracting level,
these compounds are predicted to be metals with 3/4-filled
electronic bands. The observation of electronic ordering
implies that the magnitude of electron-electron interactions
is comparable with the widths of the relevant electronic
bands constructed from the π molecular orbitals. In turn, the
presence of such strong interactions raises questions about
the nature of the metallic phase in these materials, that should
exhibit distinctive features of “correlated electron systems” in
the Mott sense. The proximity to charge-ordering instabilities,
with the possible emergence of quantum critical points as

the transition temperature is made to vanish, is also expected
to strongly alter the physical properties of the metal. All
these ingredients should lead to measurable deviations from
the usual Fermi-liquid behavior,14,15 in close analogy with
heavy-fermion systems.16–19

The minimal theoretical description of the electronic
properties of θ -ET2X organic conductors is based on the two-
dimensional extended Hubbard model (EHM) on a triangular
lattice. Several theoretical studies have aimed at reproducing
the different CO patterns realized in this class of materials,
either within the framework of the EHM itself or its gener-
alizations, including longer ranged electronic interactions and
various types of electron-lattice interactions.20,21 In the present
work we focus on the following open issues: (i) How does the
strength of the local Coulomb correlations modify the nature
of the metallic phase as well as its CO instabilities? (ii) What
are the effects of geometrical frustration in the electron motion
arising from the triangular molecular arrangement? (iii) How
does the proximity to a given CO phase extend its influence
onto the properties of the correlated metal, possibly leading to
non-Fermi-liquid behavior?

In Sec. II we set the minimal electronic model needed for the
study of electronic properties of θ -(ET)2X compounds and pro-
vide a brief review of established theoretical results. In Sec. III
the model is solved by Lanczos diagonalization and the zero-
temperature phase diagram is obtained for different degrees
of geometrical frustration. In Sec. IV the resulting metallic
phases are explored through a finite-T Lanczos diagonalization
calculation.22–24 We theoretically explore the consequences of
a quantum critical point (QCP) at a charge-ordering transition
driven by the quantum fluctuations associated with strong
intersite Coulomb repulsion. Our results are compared with
a spinless calculation in order to assess the importance of
the magnetic degrees of freedom in the observed quantum
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criticality and make contact with the existing literature. The
relevance of the present results to the physics of θ -type ET
compounds is discussed in the conclusive Sec. V.

II. MODEL AND METHOD

A. Extended Hubbard model on the triangular lattice

Quasi-two-dimensional organic conductors (general for-
mula A2B) are charge transfer compounds composed of
alternating layers of conducting (donor) molecules A and
insulating (acceptor) units B. They exhibit a large variety of
molecular arrangements corresponding to different polytypes
classified by greek characters.13,25 The materials of the θ -ET2X
class have a triangular lattice structure, shown in Fig. 1, with an
average of n = 3/2 electrons per molecule, fixed by complete
charge transfer between A and B units. Since this corresponds
to a three-quarter filled electronic band, these materials should
be normal metals in the absence of interactions.

The electronic properties of θ -ET2X materials are com-
monly described via the extended Hubbard model (EHM),

H = −tp
∑

〈ij〉pσ

(c†iσ cjσ + H.c.) − tc
∑

〈ij〉cσ
(c†iσ cjσ + H.c.)

+U
∑

i

ni↑ni↓ + Vp

∑

〈ij〉p
ninj + Vc

∑

〈ij〉c
ninj . (1)

This model includes transfer integrals between the π orbitals
of nearest-neighboring molecules in the conducting plane,
labeled by tp and tc according to the bond directions, a
local (on-site) Coulomb repulsion energy U , and nonlocal
(nearest-neighbor) repulsion terms Vc,Vp (see Fig. 1).26

Early mean-field calculations27–29 indicated that three types
of striped patterns (vertical, diagonal, and horizontal) are
realized depending on the relative magnitude of the nonlocal
Coulomb interaction parameters. These results were later
confirmed by more advanced numerical techniques that can
properly account for electronic correlations, such as exact
diagonalization (ED)30,31 and density matrix renormalization
group (DMRG).32

More interesting from our perspective is the isotropically
interacting case, Vp = Vc ≡ V .20,28,29,32–36 There, because of
the frustration of intermolecular interactions induced by the

FIG. 1. (Color online) (a) Arrangement of BEDT-TTF molecules
in the conducting layers of θ -type ET crystals, with the correspond-
ing transfer integrals and nearest-neighbor Coulomb interactions.
(b) Threefold charge ordered phase in the triangular lattice considered
in this work. The triangular lattice is defined by the real-space unit
vectors a1 = (1,0) defining the c direction and a2 = (1/2,

√
3/2).

triangular lattice geometry, an alternative charge-ordering
pattern with threefold periodicity is favored with respect to
the (degenerate) striped arrangements, illustrated in Fig. 1(b).
A more exotic situation is found in the limit of strong
local Coulomb interactions (or, similarly, in a fully spin
polarized electron system, i.e., for spinless electrons), where
the constraint of no double occupancy on molecular sites
converts this threefold order into a partially ordered phase
termed “pinball liquid” (PL):15,32,34,36 This state shows a three-
sublattice structure with the same symmetry as the threefold
phase, in which the carriers of one sublattice are essentially
localized as a Wigner-crystal (pin), with the remaining charges
(balls) forming an itinerant liquid on the interstitials. It is
not clear at present how the transition between these two
qualitatively different forms of threefold order takes place as
a function of the local Coulomb repulsion U . This issue will
therefore be thoroughly discussed here.

In addition to the effects of the local electronic correlations,
we are interested in the effects of geometrical frustration in
the electronic motion, which are triggered by the strongly
directional π overlaps between neighboring molecules.37 This
issue is of particular importance to actual materials, as the
relative values of the transfer integrals tc and tp can be
tuned experimentally by applying pressure or by chemical
substitution, which modifies the relative angles between
neighboring molecules.38,39 As a general observation, negative
values of the ratio tc/tp produce the highest charge ordering
temperatures,20,38 while vanishing or positive values lead to
glassy [X = CsCo(SCN)4, X = CsZn(SCN)4]40 or even
superconducting (X = I3) ground states.20,38,41 From a more
theoretical point of view, how the system evolves from a
perfectly isotropic triangular lattice at tc = ±tp to a square
lattice at tc = 0 remains an open issue.

Transfer integrals obtained through the Hückel approxima-
tion in quarter-filled θ -ET crystals are in the range −0.5 �
tc/tp � 1.5, with tp ≈ −0.05 to 0.1 eV.39 These values gener-
ally differ from the ones extracted from optical reflectivity and
de Haas–van Alphen experiments41 for each specific crystal.
On the other hand, Coulomb repulsion energies in organic
molecular crystals42 have been estimated by calculating the
screening corrections to the bare repulsion energies of the
isolated molecules, U0 and V0, obtained from ab initio
calculations.43 These calculations lead to Hubbard parameters
of the model Eq. (1): U ∼ U0/2 ∼ (15–20)|tp|, and Vp ∼
Vc ∼ U/2, with a bandwidth W ∼ (8–9)|tp|. These Coulomb
energies are larger than assumed in previous works:31,32,36,44

U ∼ (8–10)|tp|, and V ∼ (1–3)|tp|, as extracted from optical
reflectivity measurements.13 The degree of uncertainty in the
microscopic parameters implies that a general understanding
of the model and its phase diagram in the full parameter space
U , V , and tc/tp is essential. This is the main focus of the
present work.

B. Finite-T Lanczos approach

We perform ED calculations through a finite-T Lanczos
algorithm with periodic boundary conditions.22,23 The large
number of excited states inherent to the many-body problem
which are needed to evaluate statistical sums is cut off by
keeping only a small number of low-lying states at each
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temperature. This is performed through an Arnoldi algorithm24

which reduces the size of the Hilbert space enormously. The
accuracy of the method is restricted to temperatures which
are not too low, i.e., not lower than the energy of the lowest
excitation of the quantum many-body system. For the method
to be practical T should not be so large that one needs to
keep too many states in the statistical sums. Finite-size effects
are somewhat reduced by the effect of temperature and the
method is quite reliable for extracting integrated properties.
Instead, spectral properties such as optical conductivity and
photoemission spectra are prone to large finite-size effects,
and will not be analyzed here.

Due to the high computational demand of the finite-T
algorithm, the calculations are performed on an Ns = 12 site
cluster. In principle, a larger Ns = 18 cluster whose geometry
is also suitable for reproducing the threefold CO pattern could
be used at T = 0. However, we shall not consider such case
because a 3/4-filling implies a different number of spin-up and
spin-down electrons, while the ground state is expected to be
in a S = Sz = 0 state.

We characterize the physical properties of the different
phases based on the following quantities, which are accessible
through finite-T Lanczos calculations.

(i) Charge correlation function. The charge structure factor
signaling the possible occurrence of a charge-ordered state in
the system is evaluated at finite-T through

C(q) = 1

Z

∑

m

e−βEm〈m| 1

N2
s

∑

i,j

eiq·Rij ninj |m〉. (2)

Here Z = ∑
m e−βEm is the partition function of the system

and β = 1/kBT . A charge-ordered state with modulation Q
is signaled if C(Q) is finite in the thermodynamic limit. The
threefold ordering corresponds to a charge density modulation
with wave vector Q = (2π/3,2π/

√
3), which lies at the corner

of the hexagonal Brillouin zone, see Fig. 11 (all corners are
equivalent, being connected by reciprocal lattice vectors or
time-reversal symmetry). An accurate numerical determina-
tion of the phase boundaries should rely on a proper finite-size
scaling of the results. While this is prohibitive for the fermionic
system under study due to the rapidly increasing size of the
Hilbert space, the ordering transitions can still be identified
as the locus of steepest variation of charge correlations upon
varying the microscopic parameters of the model.

(ii) Kinetic energy. This quantity provides direct informa-
tion on how the motion of the charge carriers is slowed down
by interactions. It can be evaluated with high accuracy from
the finite-T Lanczos diagonalization, because it results from a
quantum mechanical and thermal average over a huge number
of states. By normalizing it to a reference noninteracting
value K0, it gives valuable information on the degree of
electronic correlations in the many-body system.45,46 Under
suitable assumptions, this quantity can be compared with
optical absorption experiments in actual materials via the
f -sum rule.47

The kinetic energy is evaluated from the following thermal
average,

K = 1

Z

∑

m

e−βEm〈m| 1

Ns

∑

k,σ

εkc
†
kσ ckσ |m〉, (3)

where |m〉 is the total set of eigenstates of the system with
energies Em.

(iii) Double occupancy. It is useful to analyze the number
of double occupancy per site in the lattice which reads

d = 1

Z

∑

m

e−βEm〈m| 1

Ns

∑

i

ni↑ni↓|m〉, (4)

and is different for the different phases analyzed. For example,
it is a key quantity in the analysis of the Mott transition in the
half-filled Hubbard model since d is suppressed in the Mott
insulator, which allows us to determine the critical Coulomb
coupling. In model Eq. (1), d is helpful for characterizing the
different possible CO states for different U and V .

(iv) Specific heat. From the total energy of the system, E =
〈H 〉, we can obtain the specific heat by taking the derivative
with respect to the temperature T :

CV = ∂〈H 〉
∂T

. (5)

Unless otherwise specified, we use units such that kB =
h̄ = 1. The finite-temperature method recovers the ground-
state properties by taking the limit β → ∞. In practice this is
achieved for β = 50–100 for the various U and V explored
across the whole phase diagram. Typically about 30 to 50
terms are kept in the evaluation of the statistical sums over the
excited states |m〉 with corresponding energies Em.

III. PHASE DIAGRAM AT T = 0

The zero-temperature phase diagram of the model Eq. (1)
in the (U,V ) plane is shown in Fig. 2. The phase transition
lines are determined using three alternative methods, which
all give coincident results: (i) via the evolution of the charge
correlation function C(Q) calculated at the threefold wave
vector, Fig. 3; (ii) by tracking directly the charge-ordering
patterns that develop in real space, Fig. 4; and (iii) by analyzing
the fidelity between ground states at different values of the
microscopic parameters, Fig. 5, as introduced below.
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FIG. 2. (Color online) Phase diagram obtained at T = 0 from
numerical diagonalization of a Ns = 12 cluster. The different shaded
areas correspond to the pinball (PL) phase for tc/tp = 1,0.5,0, −0.5
(squares, circles, triangles, diamonds respectively, from light to dark
blue). The case tc/tp = −1 has no pinball phase in the explored
U range. The red line corresponds to a direct transition from the
homogeneous-metal (HM) or pinball-liquid (PL) to the threefold
charge ordered (3CO) state.
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FIG. 3. (Color online) (a), (b) Charge correlation function for the threefold wave vector Q = (2π/3,2π/
√

3) as a function of V/tp (a) in
the weakly correlated U = 5tp and (b) the strongly correlated limit U = 40tp . (c), (d) Average normalized kinetic energy K/K0 as a function
of V/tp . (e), (f) Double-occupancy probability. The plots in (b) have a vertical offset of ±0.02 for tc = ±tp and of ±0.01 for tc ± 0.5tp for
clarity.

We are interested here in the charge-ordering instabilities
driven by the intersite repulsion V . Our numerical results
confirm the existence of three distinct phases: a homogeneous
metal (HM) at low V , a threefold charge ordered phase (3CO)
at large V , and an intermediate “pinball-liquid” (PL) phase
emerging at large values of U . The most striking effect

nA, nB

nC

HM
3CO

PL

0 5 10 15 20

0.5

1.0

1.5

2.0

V tp

n i

FIG. 4. (Color online) Average electron densities in the electron-
rich (hole-poor, nA = nB � n, upper curves) and electron-poor (hole-
rich, nC � n, lower curves) sublattices, as obtained from Lanczos
diagonalization at U/tp = 40 in the presence of a weak translational
symmetry breaking potential. We take δ = +0.05tp on the sites of the
hole-rich sublattice in order to select one realization of the threefold
symmetry. Color codes are the same as in Fig. 2 (from light to dark
blue: tc/tp = 1,0.5,0, −0.5; red: tc/tp = −1).

in Fig. 2 is that the region of the homogeneous-metallic
phase is strongly reduced upon increasing the tc/tp ratio,
evidently due to a corresponding stabilization of the competing
pinball-liquid phase. We note that the homogeneous metal is
always the ground state at V = 0 independently of the strength
of the local repulsion U . This can be rationalized by the fact
that in the absence of nearest-neighbor interactions, at n = 3/2
the holes (nh = 2 − n = 1/2) can effectively avoid each other
when moving along the lattice.

A. Characterization of the different phases

Figure 3 reports the evolution of the charge correlation
function, the kinetic energy, and double occupancy as a
function of V , along vertical cuts in the phase diagram
corresponding to U/tp = 5 and U/tp = 40. Different curves
correspond to different values of tc/tp (upper and lower panels,
respectively).

1. Small U: HM to 3CO transition

At low U , the instability toward the threefold charge
ordered phase is signaled by a sharp jump in the correlation
function [Fig. 3(a)], starting from a small constant value in
the homogeneous metal. The locus of the 3CO transition
shows an appreciable dependence on geometrical frustration:
The homogeneous metal is rapidly destabilized for positive
values of tc/tp, in marked contrast with the weaker (and
opposite) variations expected from an RPA analysis valid in
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FIG. 5. (Color online) Fidelity FV,V ′ = |〈ψ0(V ′)|ψ0(V )〉| for various values of tc/tp , from left to right 1.0,0.5,0.0, −0.5, and −1.0
and U = 40|tp|. There is a perfect agreement with the phase transitions obtained by standard quantities (order parameters, kinetic energies,
susceptibilities). The case of zero overlap is represented in black, while the blue-violet (diagonal squares) represents overlap 1 (V =V ′). The
nonuniform-colored zones stand for fluctuating ground states possibly related to a strong degeneracy.

the weakly correlated limit29 (see Appendix A). From the
phase diagram of Fig. 2 it is quite clear that this trend is
governed by a mechanism that extends from the strongly
correlated limit U � tp down to the lowest values of U . The
emergence of an intermediate plateau in the charge correlation
function, clearly visible in the data at tc = tp in Fig. 3(a), is
also reminiscent of the situation encountered at U/tp = 40
(see below). These observations suggest that the presence of
geometrical frustration, tc/tp > 0, strongly enhances the role
of electronic correlations. The pinball phase characteristic of
strong U is stabilized at tc = tp despite a relatively low nominal
value U/tp = 5.

We note that the nature of the ordering transition changes in
the opposite limiting case tc = −tp, where the sharp jump in
the correlation function is replaced by a smoother evolution,
possibly due to the competition with an incipient nesting
instability (Appendix A).

The behavior of the charge correlation function is directly
mirrored in the other physical quantities shown in Figs. 3.
The kinetic energy [Fig. 3(c)] jumps at the phase transition
from an essentially free-electron value, K/K0 � 0.9, to a value
that is reduced by the opening of the charge ordering gap. At
the same time, the double occupancy [Fig. 3(e)] undergoes
a marked increase toward the value d = 0.66 of the fully
formed 3CO: The charge is ordered into three sublattices with
average occupations nA = nB = 2 and nC = 1/2 (see Fig. 4,
large V region), so that each of the two charge-rich sublattices
contributes dA = dB = 1/3 to the average double occupancy.
The fact that the double occupancy in the homogeneous metal
is suppressed from the noninteracting value d = (n/2)2 =
(3/4)2 = 0.5625 indicates the presence of moderate electronic
correlations.

2. Large U: HM to PL transition

A richer situation is found in the large-U regime. First of all,
the homogeneous liquid is characterized by a total suppression
of double occupancy: By introducing the double occupancy
of holes dh = 〈(1 − ni↑)(1 − ni↓)〉 = 1 − n + d and setting
dh = 0 we obtain d = n − 1 = 1/2, which is actually observed
in Fig. 3(f). Furthermore, the presence of both local and
nonlocal Coulomb interactions hinders the particle motion,
resulting in a marked reduction of the kinetic energy upon

increasing V . An approximate expression for its V dependence
is

K (HM) ≈ (1 − AV 2)K (HM)
U , (6)

where K
(HM)
U is the value at V = 0. This V 2 dependence is

consistent with a previous slave-boson48 calculation of the
metallic phase formed by spinless particles on a d-dimensional
hypercubic lattice, which is compatible with the data of
Fig. 3(d). Because the ordering instability is pushed to large
values of V for negative values of tc/tp (cf. Fig. 2), the
homogeneous metal that is so revealed can acquire quite a
strongly correlated character, as testified by a kinetic energy
ratio that decreases down to K/K0 � 0.5 before the onset of
charge order.

The numerical data of Figs. 3(b) and 3(d) show quite clearly
that an intermediate phase emerges between the homogeneous
metal and the 3CO, which we associate with the pinball-liquid
phase introduced by Hotta and coworkers.34,35,50 The PL is
a partially ordered phase with a three-sublattice structure, in
which the carriers of one sublattice (pins) are localized as a
Wigner crystal and the remainder (balls) form an essentially
noninteracting liquid within the resulting hexagonal lattice
[Fig. 1(b)].

To get further insight about the different broken-symmetry
phases, we have calculated the static density profile in the
presence of a local perturbation breaking all the translations
of the lattice, but respecting the π/3 rotation. In this way,
instead of obtaining a uniform linear combination of all
symmetry-related crystal states, the system selects one crystal
state favored by the perturbation, giving access to a real-space
snapshot of the broken-symmetry ground state. The basis of
the method employed for getting the real-space snapshot of
the local densities is the following: We add a local potential
on certain sites related by rotations in such a way that only
translations are broken. The value of the local defects is a few
percent of the hopping term. In the Hamiltonian, we simply
add the perturbation term: δ

∑
i(ni↑ + ni↓). This method has

previously been used for distinguishing the exact nature of two
phases breaking the translational and the rotational symmetries
differently.51 Since the additional term is kept very small, it
only corresponds to a perturbation and does not change the
main property of the ground state. In this paper, we do want
to keep the rotational symmetry safe; we hence chose 4 sites,
in the 12-site cluster, in such a way that the system is still
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rotationally invariant. The perturbation has to be lower than the
typical energy scale and we put δ = +0.05tp on the sites of the
hole-rich sublattice. Results are depicted in Fig. 4. Expressing
the charge densities in terms of holes, nh = 2 − n = 1/2, and
starting from the 3CO phase (nh,A = nh,B = 0 and nh,C = 3/2,
Fig. 4), by progressively increasing the local repulsion U , it
becomes energetically unfavorable to accommodate more than
one hole per molecule. Part of the hole density will then tend
to spill out of the hole-rich sites in order to prevent double
occupancy, resulting in nh,C = 1. The average charge density
in the three sublattices, nA = nB = 7/4, nC = 1, illustrated in
Fig. 4 indeed corresponds to a scenario where one sublattice
is occupied by localized holes (nh,C = 1 leading to nC =
2 − nh,C = 1) with the remaining particles equally spread
in the interstitial sites (nh,A = nh,B = nball = 1/4 hole per
site, leading to nA = nB = 2 − nball = 7/4). The critical value
for the transition from 3CO to PL can be readily estimated
to be U � 3V from electrostatic considerations alone (see
Appendix B), and is therefore independent of tc/tp.

Notably, in the PL phase the physical quantities whose V

dependence is depicted in Fig. 3 form well-defined plateaus,
suggesting that they are locked as a consequence of the spon-
taneous separation between localized and itinerant charges.
For example, the charge correlation function tends to the value
C(Q) = n2/3 � 0.08 instead of the full C(Q) = n2 obtained
at complete ordering in the large-V limit, corresponding to the
fact that only 1/3 of the particles participate to the ordering
phenomenon.

From our numerical results in Fig. 3(d), the kinetic energy
of both the homogeneous metal at V < VPL and the 3CO
phase at V > V3CO is found to depend only weakly on the
degree of geometrical frustration tc/tp. On the other hand,
the kinetic energy forms a plateau within the PL phase, at
a value which is strongly dependent on tc/tp: The absolute
value of the (negative) kinetic energy in the PL phase is lowest
at tc = −0.5tp and its magnitude steadily increases as the
frustration ratio is increased to tc = tp. Our data therefore
suggest that it is this gain in kinetic energy for positive
values of the geometrical frustration ratio that is responsible
for the stabilization of the pinball-liquid phase against the
homogeneous metal observed in Fig. 2.49 We note that a
kinetic-energy-driven mechanism for the PL transition was
also pointed out in Ref. 35. Since the effective filling associated
with the itinerant balls on the hexagonal lattice is only
nball = 1/8, Coulomb interaction effects are small. Indeed,
we have checked that the kinetic energy of the balls coincides
with the kinetic energy of the corresponding noninteracting
tight-binding model on a hexagonal lattice, at filling n = nball,
as a function of the ratio tc/tp.

B. Fidelity analysis

In order to characterize the quantum phase transitions of
our system, the simple yet powerful concept of fidelity52

is considered here (Fig. 5). Initially introduced in quantum
information, the fidelity has proven to be successful in
determining superfluid-insulator transitions of the Hubbard
model.53–55 The idea behind the fidelity is very simple; it
consists of computing overlaps of ground states (GS) |ψ0〉
at different values of the microscopic parameters. At a QCP,

even the smallest change of the parameters can have dramatic
effects in some of the observables. This is encoded in the GS
properties; hence, the overlap is expected to strongly react and
indicate the locations of the phase transitions. We define the
fidelity F as

FV,V ′ = |〈ψ0(V ′)|ψ0(V )〉|. (7)

Obviously, for V = V ′, the fidelity should be FV,V = 1.
Typical results are depicted in Fig. 5 at U = 40tp, and for
five values of tc/tp = ±1.0, ± 0.5, and 0.0.

It is surprising to see how the fidelity is indeed able to
pinpoint the phase transitions. For each of the values of tc/tp,
we exactly recover the transitions obtained by more standard
methods in the preceding sections. More information is avail-
able, however. First, there is always some region where F is
strongly fluctuating, even though well delimited in the (V,V ′)
plane (nonuniform-colored zones). These fluctuations can be
due to a large degeneracy of the GS hence corresponding to a
same order but with destructive interferences. The second im-
portant piece of information is visible in the case tc/tp = 0.5,
where the fidelity indicates the existence of two distinct phases
in the pinball region [namely 5.20(2) � V/tp � 11.00(2) and
11.00(2) � V/tp � 13.00(2)], suggesting a possible ordering
of the mobile charges. In fact, a slight change in the kinetic
energy [Fig. 3(d)] appears at this transition, but the other
quantities seem to be insensitive to it. The fact that the
transition within the pinball phase is not detected by the
charge correlation function [Fig. 3(b)] nor by the average
densities (Fig. 4) tends to show that their properties remain
extremely close. Nevertheless, the fidelity F allows a precise
determination of the subphases.

C. Spinless model

We now consider the spinless version of the model Eq. (1),
which has been discussed extensively in the literature.34,35,50,56

Since the spinless model only contains charge degrees of
freedom, by comparing it with the spinful model we can
obtain useful information on the relative role played by charge
fluctuations as compared to the spin fluctuations.

The spinless model reads

H = tp
∑

〈ij〉p
(h†

i hj + H.c.) + tc
∑

〈ij〉c
(h†

i hj + H.c.)

+Vp

∑

〈ij〉p
ninj + Vc

∑

〈ij〉c
ninj , (8)

where we have changed the sign of the hopping integrals to deal
explicitly with holes. As in the preceding sections we consider
the case Vc = Vp = V for different values of the tc/tp ratio.
Importantly, for spinless particles the physical situation of one
hole per two sites implies a half-filled band, which gives rise to
a spurious particle-hole invariance that is absent in the spinful
case at 3/4-filling. Therefore, the thermodynamic properties
as well as the phase transition lines become invariant under a
change of sign of tc/tp.

In Fig. 6 we show the V dependence of the kinetic energy
for different tc/tp ratios compared with the spinful model.
As expected the figure shows how the kinetic energy in the
spinless model does not depend on the sign of tc/tp (black
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FIG. 6. (Color online) Dependence of the kinetic energy on V

for the spinless and spinful extended Hubbard models. Different tc/tp
ratios are compared in the two situations. As expected, the properties
of the spinless model are independent of the sign of tc/tp , in contrast
to the spinful model.

curves). The spinless model is able to recover the qualitative
trends of the full model for tc/tp � 0: The critical values
at which the transition from the HM to the PL occurs are
respectively VPL � 4.5tp and 8.5tp for tc/tp = 0.5 and 0
in the spinless case, to be compared with VPL � 5.5tp and
7.5tp in the spinful case at U = 40tp (Fig. 6). However,
because of the artificial particle-hole symmetry, for tc/tp < 0
the locus of the transition is completely inconsistent with
the spinful case, and the stability of the PL is widely
overestimated.

We see from Fig. 6 that the effect of nonlocal interactions
V on the renormalization of the kinetic energy in the
homogeneous metal is very similar in the spinful model at
large U and in the spinless model, both being compatible with
the quadratic V dependence discussed above. We therefore
conclude that the different behaviors observed in the two
models at tc/tp > 0 are a direct consequence of the different
kinetic energies at the noninteracting level, which results from
the spurious particle-hole symmetry acquired by the spinless
version.

The results presented here indicate that the charge rather
than spin correlations dominate the renormalization effects on
metallic properties approaching the charge-order transition.
However the spin multiplicity enters (indirectly) via the
geometrical frustration, which is not treated correctly in
the spinless model. A realistic spinful calculation therefore
appears to be necessary to properly address the physics of
θ -(ET)2X salts, where tc/tp is a key parameter in determining
the experimental phase diagram.20,38

IV. CORRELATED METAL AT FINITE TEMPERATURES

Here we analyze the properties of the homogeneous-
metallic phase at finite temperatures close to the QCP. A
temperature scale emerges, which we denote T ∗, above which

the kinetic energy departs from Fermi-liquid behavior and
the specific-heat coefficient goes through a maximum. We
interpret T ∗ as a renormalized Fermi temperature, which
generally drops to zero at the approach of the QCP. Such
behavior is typically found for geometrical frustration tc �=
±tp. On the contrary, in cases in which there are competing
Fermi surface instabilities, especially in the perfectly nested
case tc = −tp, the T ∗ phenomenon is much weaker, and hardly
affects the properties of the electron liquid. The data in that case
are compatible with a Fermi temperature that remains finite
right close to the QCP, possibly indicating that a first-order
transition may be occurring.

In the following paragraphs we focus specifically on
the realistic value U = 15tp, but the qualitative features
presented here are unchanged for different large values
of U .

A. Non-Fermi-liquid behavior close to CO

1. Kinetic energy

The temperature dependence of the average kinetic energy
K normalized to the noninteracting value K0 (U = V = 0) is
shown in Fig. 7 for tc/tp = 1,0.5,0, −0.5, −1. The different
curves in each panel correspond to different values of the
intersite Coulomb repulsion, V , across the charge-ordering
transitions. The ratios tc/tp = 0.5,0, −0.5 [Figs. 7(b), 7(c),
and 7(d)] all show marked departures from the quadratic
temperature dependence K = KT =0 − BT 2 characteristic of
conventional metals, occurring in the HM phase above a certain
temperature (the approximate locus of the inflection points is
indicated by arrows). We denote it as T ∗ and take it as an
estimate of the renormalized Fermi temperature, governing
a crossover to non-Fermi-liquid behavior. Clearly, T ∗ is
progressively reduced upon approaching the charge-ordering
transition and vanishes at the critical point. In this respect,
our data in the experimentally relevant case U = 15tp do
not show qualitative differences between the transition to
the threefold charge order obtained for tc/tp = −0.5,0 and
that to the pinball phase for tc/tp = 0.5 (cf. Fig. 2): In
both cases the temperature scale T ∗ appears to be entirely
controlled by the approach to the zero-temperature ordering
transition, indicating the possibility of quantum critical behav-
ior at finite temperatures around the zero-temperature phase
transition.

In the cases in which tc = ±tp, the emergence of a
temperature scale T ∗ is much less clear [Figs. 7(a) and
7(e)] as the temperature dependence of the kinetic energy is
smooth within the whole homogeneous-metallic phase except
very close to the transition. Our RPA analysis presented in
Appendix A shows that in these cases there is a competing
charge-density wave (CDW) instability, which could indeed
be masking the quantum critical behavior associated with the
3CO transition. For tc/tp = −1 the CDW is driven by the
perfect nesting of the Fermi surface whereas for tc/tp = 1
a mixed CDW/CO phase induced by both nesting tendencies
and strong Coulomb repulsion exists.

The perfect nesting of the Fermi surface for tc/tp =
−1 occurs at the wave vectors QF = (±π, ±π/

√
3) and

(0, ± 2π/
√

3). Such nesting instability is dominant at weak U ,
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FIG. 7. Temperature dependence of the total kinetic energy at
U = 15tp normalized to the noninteracting value K0, for tc/tp =
−1, −0.5,0,0.5, and 1. Arrows correspond to inflection points of
the curves, indicating the temperature scale T ∗ corresponding to the
breakdown of the quasiparticles. Open circles correspond to the HM
phase, diamonds to the PL (full lines), and squares (dashed lines) to
the 3CO phase.

where it results in a striped charge modulation that dominates
over the threefold charge order discussed above (this striped
order is analogous to the checkerboard pattern obtained in the
square lattice). Our data suggest that even in the presence of
a sizable local Coulomb repulsion, U = 15tp, that prevents
the stabilization of such stripe order, an incipient nesting
instability is strong enough to destroy the quantum criticality
around the QCP. This conclusion is based on the observation
that there is no clear signature of the vanishing low temperature
scale T ∗ at the QCP and there is no clear evidence of the “bad”
metallic behavior found for other tc/tp ratios. However, there
is a weak T dependence of the kinetic energy that vanishes at
a critical value Vc = 6tp as can be observed from the data of
Fig. 7(e). Such critical value, Vc, is found to be consistent with
the critical value obtained from the 3CO charge correlations
calculated below.

2. Charge correlations

The emerging QCP scenario can be further appreciated
by studying the evolution of the charge-ordering transition
TCO vs temperature. This can be obtained by tracking the
steepest variation of the charge correlation function, C(Q)

0 0.1 0.2 0.3 0.4 0.5
T/t

p

0.04

0.06

0.08

0.10

0.12

C
(2

π/
3,

2π
/√

3)

V/t
p
=5

4.8
4.7

4
32.72.52.2

2.15

t
c
=t

p

(a)

0 0.1 0.2 0.3 0.4 0.5
T/t

p

0.06

0.08

0.10

0.12

C
(2

π/
3,

2π
/√

3)

V/t
p
=5

3.9
3.95

4.5
4.2

4.8
4.7

4.4
4.1

4.6
4.65

t
c
=0.5t

p

(b)

0 0.1 0.2 0.3 0.4 0.5
T/t

p

0.08

0.10

0.12

0.14

0.16

C
 (

2π
/3

,2
π/

√3
)

t
c
=0

V/t
p
=5.25

5.15
5

4.95
4.9

4.85

(c)

0 0.1 0.2 0.3 0.4 0.5
T/t

p

0.08

0.12

0.16

0.20

C
 (

2π
/3

,2
π/

√3
)

5.05

t
c
=-0.5t

p V/t
p
=6

5.15
5.1

5.2
5.3

5.5

(d)

0 0.1 0.2 0.3 0.4 0.5
T/t

p

0.12

0.16

0.20

0.24

C
 (

2π
/3

,2
π/

√3
)

V/t
p
=8t

c
=-t

p

5.3
5.35

5.4

5.75

(e)

6

FIG. 8. Charge correlation function versus the temperature for
different V/t in the CO phase at U = 15t for tc/tp = 1,0.5,0,

−0.5, −1. Arrows correspond to inflection points of the curves,
indicating the ordering temperature TCO.

[arrows in Figs. 8(a)–8(d)]. In Fig. 9 we report TCO together
with the T ∗ extracted from Fig. 7, showing a common
behavior in proximity to the CO instability. As stated in the
preceding paragraph, the case tc/tp = −1 exhibits a different
behavior, with no visible T ∗ approaching the QCP. The charge
correlations [Fig. 8(e)] also exhibit a qualitatively different
behavior in the perfectly nested case tc/tp = −1, with a mild
nonmonotonic temperature dependence showing a maximum
at intermediate temperatures which suggests a “reentrant”
ordering transition. For this case, there is no clear indication
of “bad” metallic behavior in the kinetic energy and there is
clear evidence of “reentrant” behavior in the 3CO transition.
This reentrant behavior disappears at around the critical value
Vc = 6tp as can be noted in Fig. 8(d). It can be noted that a
slightly reentrant behavior can be extracted from the data at
tc/tp = −0.5. The presence of a reentrant behavior at negative
values of tc/tp is confirmed by our RPA analysis, and is
strongly reminiscent of what is commonly observed in the
EHM on the square lattice (cf. Fig. 1 in Ref. 14), which also
in that case is ascribed to the competition of the CO phase
with a Fermi surface nesting instability. We have added to the
phase diagram for the case tc = −tp the 2kF -CDW instability
and may also be present in other cases. However, the limited
wave vector resolution of our small-cluster calculation does
not permit an accurate determination of the stability of the
2kF -CDW phase. In fact, for tc = −0.5tp, we may also expect
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FIG. 9. (Color online) Color plots summarizing the QCP behavior at U = 15tp for the representative cases tc/tp = 0.5, −0.5, and −1. The
dashed curve is the renormalized Fermi temperature T ∗ extracted from Fig. 7. The full line is the charge ordering temperature TCO extracted
from Fig. 8. The color gradients (blue and red, respectively) are derived from the kinetic energy and charge correlation data of Figs. 7 and 8.

that CDW instabilities occur in the proximity of the 3CO
instability.

3. Specific heat

Further insight on the anomalous properties of the homo-
geneous phase can be gained by exploring thermodynamic
properties such as the temperature dependence of the specific-
heat coefficient CV /T on approaching the QCP. In a Fermi
liquid at low T , this quantity measures the effective mass
enhancement of the quasiparticles. In Fig. 10 we compare
CV /T for tc/tp = 0.5, −0.5, −1. In this way we compare
the behavior of the specific heat of a system across the 3CO
(tc = −0.5tp) with a system across the PL transition (tc/tp =
0.5). For completeness we also analyze the tc/tp = −1 case
in which perfect nesting exists which can be compared to the
other two cases. For both tc/tp = ±0.5 we find that a peak in
CV /T develops at T ∗ with T ∗ → 0 on approaching the QCP
as V → Vc. This indicates that both the drop of T ∗ and the
effective mass enhancement occurring in proximity to the QCP
are consistent with the phase diagram of Fig. 9. Both effects
are key signatures of the presence of a QCP together with the
bad metallic behavior arising around it.

The case tc = −tp deserves special attention. For Coulomb
repulsion energies up to about V = 5.4tp, there is a moderate

increase of the effective mass enhancements and a moderate
shift of the peak to lower temperatures in contrast to previous
cases. However, increasing V further leads to different behav-
ior with a rapid increase of the effective mass enhancement and
a shift of the peak to zero which indicates the proximity to a
3CO transition at Vc = 6tp. The shift of the peak in the specific
heat with V is plotted in the phase diagram of Fig. 9 together
with the transition line to the 3CO. The two lines merge and
a clear reentrant behavior of the 3CO transition is observed
which is ascribed to the presence of the competing Fermi
surface nesting instability. The origin of the specific-heat peak
is unclear since it does not separate the HM from the bad metal
and from Fig. 9 it is clear that the peak position has a different
qualitative behavior for tc/tp = −1 than for other tc/tp ratios.
In fact, there is no bad metallic behavior in the HM phase as
discussed previously. However, the fact that the effective mass
is enhanced may indicate a transition to the 2kf -CDW.

B. Connection with QCP physics

It is worth analyzing our numerical results from the
perspective of the standard Moriya-Hertz-Millis (MHM)57,58

theory of quantum critical points (QCPs). In principle, this
theory could be appropriate to the transition from the HM
to the 3CO phases considered here since both are metallic.
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FIG. 10. (Color online) Temperature dependence of effective mass enhancement for different tc/tp ratios for U = 15tp . A different behavior
in the T dependence is found for the case tc = −tp for T ∗ (indicated by the vertical arrows) which indicates a departure from the quantum
critical behavior found in the other non-nested Fermi surface situations.
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However, one should keep in mind the limitations of the
MHM theory. First, it is based on a weak-coupling perturbative
expansion around the QCP. Second, the MHM theory is
not applicable for ordering transitions which are driven by
“2kf ” Fermi surface instabilities. Hence, the MHM theory
is applicable only to systems in which there is no nesting
at all and for which the ordering wave vector Q is not an
extremal vector of the Fermi surface, i.e., loosely speaking,
Q �= 2kf . Our model satisfies the latter condition whenever
tc/tp �= ±1 for the 3CO wave vector: Q = (2π/3,2π/

√
3)

(see Fermi surfaces and discussion in Appendix A). In these
cases, the two-dimensional version of MHM, d = 2, with a
dynamical scaling dimension, z = 2 (corresponding to nearly
antiferromagnetic metals with effective dimension at the QCP:
D = d + z = 4), is relevant. This situation corresponds to a
marginal case which contains dangerously irrelevant operators
in the renormalization group sense which can destroy the
hyperscaling at the QCP. In this marginal case, d = z = 2,
the Fermi-liquid phase is bounded in the phase diagram by the
condition T < r , where r = |V − Vc| quantifies the proximity
to the QCP from the metallic side of the transition and
Vc is the critical value at which CO occurs. The quantum
critical region is bounded by the condition T > r obtained
from the scaling behavior of the renormalization group (RG)
equations. A similar linear dependence with r is found in the
boundary of the ordered phase which displays a critical non-
Gaussian behavior around it due to the Coulomb interaction.
As summarized in Fig. 9, for tc/tp �= ±1 the suppression of
T ∗ at the QCP and the bad metallic behavior obtained at finite
T from our numerical calculations are qualitatively consistent
with the MHM predictions for the marginal d = z = 2 case.

On the other hand, the extremal values, tc/tp = ±1, deserve
special consideration. In the particular case tc = −tp, the
system has perfect nesting at the ordering wave vector,
QF = (π,π/

√
3) (see Fig. 11), which describes diagonal stripe

order in real space. A RPA analysis on the model shows that
a CDW instability at QF exists at small but finite U and V ,
which competes with the 3CO with Q = (2π/3,2π/

√
3). Such

coexistence/competition between CDW and CO instabilities
has also been found in RPA studies of the extended Hubbard
model on the square lattice.14 The situation in which two
instabilities coexist—a nesting-driven CDW with ordering
vector QF and a Coulomb-driven instability with ordering
vector Q—has not been addressed in general at the level
of the MHM approach. Our analysis shows that at moderate
values of U � 7tp nesting instabilities are washed away and
the charge-ordering transition is Coulomb driven. However,
the competition washes out the T ∗ phenomenon and we find
no clear evidence of bad metallic behavior around the QCP in
the case tc = −tp. This coincides with the breakdown of the
MHM approach when nesting is present in the lattice.

We may speculate, based on our numerical analysis, that in
the perfectly nested situations quantum criticality is destroyed
and a first-order transition occurs. Indeed, a somewhat related
renormalization group (RG) approach59 to 2kF -density-wave
quantum phase transitions in which curved Fermi surfaces with
parallel tangents at two points of the Fermi surface connected
by 2kF are considered has found that critical fluctuations
strongly influence the fermions on the Fermi surface and
that the feedback effect of these fluctuations can destroy the

second-order quantum critical point turning it into a first-order
transition. Only in the special case in which Q = G/2, with
G being a reciprocal lattice vector, a second-order quantum
phase transition is recovered.

In actual quarter-filled organic materials, θ -ET2X, for
which hopping ratios tc/tp �= −1, the MHM theory may be
relevant. Many of the predictions for thermodynamic and
transport properties in the quantum critical regime above the
zero-temperature QCP could be then experimentally checked.
One important prediction of the MHM theory for d = z = 2
is the anomalous temperature dependence of the specific heat:

C ∼ T
∂S

∂T

∣∣∣∣
V

∼ T ln 1/r, T � r, (9)

T ln 1/T , T � r, (10)

where r describes the proximity to the QCP. On the other
hand, in clean nearly charge ordered two-dimensional metals
the resistivity around the “hot” spots in the quantum critical
regime19,60 reads

ρ ∝ T 2, T � r, (11)

T , T � r. (12)

However, the resistivity is short-circuited by the contribution
of electrons at the “cold” spots since the scattering is small
around these parts.61 Hence, the non-Fermi-liquid behavior
at the hot spots is masked by the cold sections eventually
restoring Fermi-liquid behavior: ρ ∼ T 2. Therefore, within
the MHM approach and in the the quantum critical region, the
specific-heat coefficient displays divergent behavior as T → 0
following Eq. (10). The resistivity could show non-Fermi-
liquid behavior under small disorder which has been found to
strongly influence antiferromagnetic QCPs.62 Averaging the
scattering rate over the Fermi surface reduces the effectiveness
of the Hlubina-Rice mechanism and the scattering from the hot
regions becomes effective leading again to non-Fermi-liquid
behavior.62

The behavior of the specific-heat coefficient that we have
found around the critical point (see Fig. 10) does show an
enhancement on approaching the QCP in consistent agreement
with Eq. (10). However, we cannot accurately determine
whether a logarithmic dependence occurs in our numerical
darta due to the small cluster sizes reached.

V. CONCLUSIONS AND OUTLOOK

We have analyzed in detail the effect of geometrical
frustration on charge-ordering transitions realized in the
extended Hubbard model on the anisotropic triangular lattice,
which appropriately describes the family of quarter-filled
layered organic crystals: θ -(ET)2X. The model contains both
on-site, U , and intersite Coulomb repulsion terms Vp and Vc,
which are taken to be isotropic, Vc = Vp = V . The degree of
geometrical frustration in the electron motion is tuned through
the tc/tp ratio, which is an important parameter controlling the
experimental phase diagram.

The zero-temperature phase diagram of this model contains
a homogeneous-metal (HM), a pinball-liquid (PL), and a
threefold charge ordered (3CO) phase. While the 3CO phase
occurs at sufficiently strong intersite interactions V for any
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fixed U , the PL only occurs above a certain threshold U

value, as its existence is inherently tied up to the strong
coupling regime. On the other hand, the PL is found to be
stabilized by increasing the geometrical frustration of the
lattice. Our results do show that in the range of values of U/tp
and V/tp appropriate to the θ -(ET)2X materials, increasing
the geometrical frustration of the lattice can effectively tune
the system from a homogeneous metal (HM) with strong
charge-order correlations to a pinball-liquid (PL) phase.

The phase transitions between charge-ordered and - disor-
dered metallic phases can display quantum critical phenomena
in close analogy with the heavy-fermion systems16–19 with the
critical charge rather than the spin fluctuations driving the
CO transition. Such type of fluctuations may be at the origin
of both the anomalous properties in the metallic state and
Cooper-pair formation. Indeed, non-Fermi-liquid behavior as
well as non-BCS superconductivity have both been predicted
and observed in quarter-filled organic materials of the α, β ′′,
and θ -(ET)2X type.63–67 Such heavy-fermion behavior arising
from molecular π electrons instead of the d or f electrons, as
occurs in the rare earths, may indeed find a natural explanation
based on the properties of matter expected near a QCP.

In order to establish whether quantum critical behavior
occurs or not in the quarter-filled layered materials close to
CO several issues could be experimentally and theoretically
addressed: (i) Is there evidence for the divergence of the
specific-heat coefficient and the quasiparticle effective mass,
m∗/m → ∞, and for the collapse of the Fermi temperature,
T ∗ → 0, near the QCP? Measurements of the quadratic
coefficient of the resistivity approaching the QCP from the
Fermi-liquid side of the critical point can be useful to test
the effective mass enhancement. Such type of experiments
have been systematically performed in κ-(DHDA-TTP)2SbF6

and (MeDH-TTP)2AsF6, by tuning the system across the CO
transition via applied pressure,64,65 yielding phase diagrams
similar to those of Fig. 9. (ii) Is there non-Fermi-liquid
behavior of transport and thermodynamic properties in the
quantum critical regime above the QCP? What is the tem-
perature dependence of the resistivity in these systems? Are
there clear deviations from Fermi-liquid behavior of the form
in Eqs. (10) and (12)? (iii) If quantum criticality and scaling
are observed in transport and thermodynamic quantities, how
much of this behavior is consistent with the MHM predictions?
Could there be a new universality class around the QCP
in quasi-two-dimensional organic materials, related to the
emergence of the pinball phase? (iv) Measurements of the
Hall coefficient can be useful to disentangle whether the QCP
is of the MHM type or different. In standard MHM theories,
the Fermi surface would fold due to Bragg reflection off the
density wave with no discontinuity in the Hall constant when
the system is tuned across the QCP.17,18 However, as in heavy
fermions a local type of QCP could arise in which the system
jumps discontinuously from a large Fermi surface to a small
Fermi surface through the QCP leading to a discontinuous
jump of the Hall coefficient. Since the transition from the
HM to the PL involves localization of the “pin” electrons, a
transition from the large Fermi surface of the HM involving
all carriers to a small Fermi surface involving only “ball”
itinerant electrons could indeed occur. Understanding how this
transition takes place and the type of QCP observed could be

resolved by Hall constant measurements in analogy to the
heavy-fermion systems. (v) Here we have mainly discussed
transitions between disordered and ordered metallic phases for
which MHM theory is meant. An important issue to address is
how quantum criticality is modified in transitions from HM to
CO insulating phases. This issue can be addressed within the
EHM studied in the present work, by allowing for anisotropic
Coulomb interactions Vp �= Vc.

As observed in Refs. 68 and 68 the superconductivity
in θ -(ET)2X compounds, as in other polytypes, frequently
appears near to an insulator. In such cases, the cause of
superconductivity (SC) may not be the simple weak-coupling
BCS mechanism by the electron-phonon interaction, but rather
due to electronic correlations. Several theoretical works in the
weak-coupling limit have been performed in order to examine
the possible mechanism for the onset of SC in proximity to the
CO phase.67,70,71 Unconventional SC of the f -wave type has
been encountered on the anisotropic triangular lattice with the
model parameters tc = 0 and Vc = Vp ≈ tp

36 with U = 10tp
and mediated by the charge fluctuations. This f -wave pairing
symmetry is the analogous to the dxy-wave pairing found in
proximity to the checkerboard CO on the square lattice.67 It
would be interesting to search for unconventional SC around
the QCP found for other tc/tp �= 0 ratios and U values both
in the 3CO and PL type QCP. Based on the results of
the present work, it can be conjectured that the anomalous
properties and unconventional superconductivity observed in
X = I3 compounds maybe related to the proximity to the
strong-coupling PL phase since the on-site Coulomb repulsion
energy is significant: U = (15 − 20)tp. This could be tested
by applying uniaxial pressure on the θ -(ET)2I3 crystals.

Other materials such as the rare-earth nickelates, AgNiO2,
do show threefold CO transitions similar to the one discussed
here72 although the origin of the CO transition may be non-
Coulomb in origin since AgNiO2 has a complex multiorbital
structure73 and other effects such as Hunds coupling and
crystal fields can play a relevant role. Thus, the organic
materials of the θ -(ET)2X type appear to be ideal candidates to
single out the effects on electronic properties of metals close to
a charge-driven quantum phase transition mediated solely by
the off-site Coulomb repulsion between electrons at different
sites.
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APPENDIX A: RANDOM PHASE APPROXIMATION
RESULTS AT WEAK U

In the random phase approximation (RPA), the instability
of the homogeneous metal is signaled by a divergence of the
charge susceptibility14

χ (q) = χ0(q)

1 + [U/2 + V (q)]χ0(q)
(A1)
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FIG. 11. (Color online) (a) Brillouin zone of the triangular lattice
(black), reciprocal lattice vectors G1 = (2π, − 2π/

√
3) and G2 =

(0,4π/
√

3) (arrows), and Fermi surface: from light blue to dark blue,
tc/tp = 1,0.5,0, −0.5; red, tc/tp = −1 (same color code as in Fig. 2).
The blue and red dots are respectively the threefold wave vector Q =
K = (4π/3,0) and the nesting wave vector QF = M = (π,π/

√
3)

connecting flat segments of the Fermi surface at tc/tp = −1 (red),
while the white dot is the wave vector associated with the predominant
instability for tc/tp = 1. (b) The critical value of the intersite Coulomb
interaction V3CO for U = 5tp , comparing the RPA and ED results. (c)
Free-electron susceptibility χ0 along symmetry lines of the Brillouin
zone, for different values of tc/tp .

at a given wave vector. Here χ0(q) is the noninteracting
susceptibility of the lattice, V (q) is the interaction potential
in Fourier space, and U is the on-site repulsion. For isotropic
nearest-neighbor interactions on the triangular lattice we have

V (q) = 2V {cos(qx)

+ cos[(qx +
√

3qy)/2] + cos[(qx −
√

3qy)/2]}.
(A2)

An instability occurs when the denominator in Eq. (A1) van-
ishes, which requires −V (q) = χ−1

0 (q) + U/2. In principle
the above equation can describe both charge ordering, driven
by the Coulomb iteraction −V (q) that is maximum at the six
equivalent threefold wave vectors Q = (±2π/3, ± 2π/

√
3),

(±4π/3,0) [blue dot in Fig. 11(a)], and a charge-density
wave (CDW) induced by a large χ0. The evolution of the

free-electron susceptibility with frustration is illustrated in
Fig. 11(b).

A CDW instability occurs for tc/tp = −1 due to a perfect
nesting between parallel segments of the Fermi surface [red
lines in Fig. 11(a)], at wave vector QF = (π,π/

√
3) (red dot,

corresponding to the M point), but is washed out at U/tp � 7,
where the threefold order is always favored. An instability
also appears to compete with the 3CO in the case tc/tp = 1 for
U � 2tp, at a wave vector Q1 = (2.62,2.72) (white dot). Such
vector lies at the intersection between a circle of radius |Q1| =
2kF and the boundary of the Brillouin zone. It represents a
compromise between a Fermi surface instability and a genuine
charge ordering, as it benefits from both a large χ0 and a large
−V (q). For values of the frustration ratio |tc/tp| � 0.9, the
RPA predicts that the 3CO transition is dominant for all U > 0.

The critical coupling V3CO at the threefold instability is
shown as a function of the geometrical frustration in Fig. 11(b).
The RPA predicts an increase of V3CO with tc/tp which
originates from a decrease of the density of states at the Fermi
level.56 We see that even at a relatively low value of U = 5tp,
the RPA result does not agree with the exact diagonalization
data, showing an opposite trend for positive tc/tp ratios. In
the ED, the tc dependence is governed by the stabilization
of the pinball-liquid phase, which is not captured by the
weak-coupling RPA argument.

APPENDIX B: MEAN-FIELD POTENTIAL ENERGY
IN THE CHARGE-ORDERED STATE

The Hartree expression for the potential energy per site in
a charge-ordered state with threefold symmetry reads

EH = U

3
(nA↑nA↓ + nB↑nB↓ + nC↑nC↓)

+V (nAnB + nAnC + nBnC). (B1)

We take nA↑ = nA↓ = nB↑ = nB↓ = 1, nC↑ = 1/2,nC↓ = 0
corresponding to the Hartree solution for the 3CO state and
nA↑ = nB↑ = 3/4, nA↓ = nB↓ = 1, nC↑ = 1,nC↓ = 0 for the
pinball-liquid phase (see Fig. 4). Inserting these values in the
preceding expression we find

E
(M)
H = (9/16)U + (27/4)V, HM; (B2)

E
(PL)
H = (1/2)U + (13/2 + 1/16)V, PL; (B3)

E
(3CO)
H = (2/3)U + 6V, 3CO. (B4)

The potential energy calculated by ED closely follows the V

dependence predicted by the above mean-field equations (not
shown). The transition from the pinball state to the threefold
CO state is well captured by the mean-field analysis: The ED
data closely follow the value Vc = U/3 obtained by equating
E

(PL)
H = E

(3CO)
H .
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