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Adaptation of the projector-augmented-wave formalism to the treatment of orbital-dependent
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This paper presents the formulation and numerical implementation of a self-consistent treatment of orbital-
dependent exchange-correlation functionals within the projector-augmented-wave method of Blochl [Phys. Rev.
B 50, 17953 (1994)] for electronic structure calculations. The methodology is illustrated with binding energy
curves for C in the diamond structure and LiF in the rock salt structure, by comparing results from the Hartree-Fock
(HF) formalism and the optimized effective potential formalism in the so-called KLI approximation [Krieger, Li,
and lafrate, Phys. Rev. A 45, 101 (1992)] with those of the local density approximation. While the work here uses
pure Fock exchange only, the formalism can be extended to treat orbital-dependent functionals more generally.
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I. INTRODUCTION

In order to improve the physical representation of materials
beyond that of conventional density functional theory,'?
there has recently been renewed interest in the use of
orbital-dependent exchange-correlation functionals including
the use of hybrid functionals®'? and the use of a combina-
tion of exact-exchange and the random-phase approximation
(EXX/RPA).13-1° At the moment, some of these treatments
are treated non-self-consistently in the sense that the orbital-
dependent contributions are treated by “postprocessing” wave
functions obtained from traditional density-dependent func-
tionals. Because the orbital-dependent functionals are typically
formulated in terms of integrals of the orbitals, the refinement
of these treatments to full self-consistency requires updating
the electron orbitals by solving integral-differential equations,
a process which is, in principle, outside the realm of Kohn-
Sham theory.

In order to treat orbital-dependent contributions self-
consistently within Kohn-Sham theory, it is necessary to
represent its effects in terms of a local potential function known
as an optimized effective potential (OEP).>>>> An interesting
measure of the numerical effects of the various approaches can
be seen from the ground-state energies of spin-unpolarized
spherical atoms for the case of pure Fock exchange. Using
ideas in the literature,?>~2® we have modified our atomic code®
in order to construct Figs. 1 and 2 and Table I. Figure 1 shows
the results of calculating the ground-state total energies of spin-
unpolarized spherical atoms using the exact OEP approach, an
approximate OEP approach (“KLI” described below), and the
non-self-consistent postprossessing result using local density
approximation (LDA) or generalized gradient approximation
(GGA) orbitals. In this figure, energy differences relative
to Hartree-Fock are presented. Because of the variational
properties of the Hartree-Fock solutions, all of the energy
differences are positive.”2” The “OEP-HF” results presented
in Fig. 1 are consistent with results found earlier by Talman.?’
Also shown in Fig. 1 are the corresponding results generated
by the approximation to OEP introduced by Kreiger, Li, and
Iafrate (KLI).*® The corresponding “KLI-HF” energies are
slightly larger than the “OEP-HE,” differing by at most 0.1 eV
for the 3d transition metals. Other approximate OEP methods
have been developed, including the localized Hartree-Fock
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method?! and the common energy denominator’?> and the
effective local potential®® approximations. Bulat and Levy*
have recently shown these methods to be equivalent to calcu-
lating the optimized effective potential within the subspace
of occupied orbitals [v°“(r)]. We have evaluated v°(r)
for the spherical atoms in Fig. 1, finding the corresponding
ground-state energies to differ by at most 0.005 eV from those
calculated within the KLI scheme.

By contrast to the self-consistent results, the results ob-
tained by using wave functions from self-consistent GGA™®
or LDA% functionals and a postprocessing evaluation of the
Fock exchange have significantly larger values of AE. On the
one hand, given that the self-consistent Hartree-Fock wave
functions®® are very similar in shape to those obtained from
self-consistent LDA or GGA calculations, the large values of
postprocessing energy differences shown in Fig. 1 is somewhat
surprising. On the other hand, the Hartree-Fock postprocessing
energies LDA(PP) and GGA(PP) themselves are considerably
different from the self-consistent ground-state LDA and GGA
atomic energies as shown in Fig. 2. Interestingly, the plot
of Fig. 2 shows that the LDA energy differences [LDA —
LDA(PP)] have the opposite sign from the GGA energy
differences [GGA — GGA(PP)], presumably due to the
different correlation functional forms of LDA and GGA. The
results of Figs. 1 and 2 suggest that postprocessing treatments
may introduce unintended effects into the calculations. It
is reasonable to expect that a self-consistent treatment will
produce much more reliable results, benefiting from the power
of the variational principle.

In order to have a more precise measure of the energy
relationships, some representative total energies (for rare-gas
atoms) are listed in Table I. Also listed in the table are literature
results,”"*” which are essentially identical to those generated
with our code.

These results for atoms provide a motivation for developing
methods to calculate the orbital-dependent terms accurately
and self-consistently in extended systems. In previous work,
we showed how to formulate the Hartree-Fock theory within
the projector-augmented-wave (PAW) formalism of Blochl.?®
In this paper we extend this analysis to the OEP theory. For
reasons discussed in Sec. I C, it turns out that treating the full
OEP equations within the PAW formalism is computationally
demanding. As a step close to reaching that goal, the present
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FIG. 1. (Color online) Plot of total energy differences AE for
spin-unpolarized spherical atoms in their ground-state configurations
for Z=1 (H) through Z =36 (Kr), using the self-consistent
Hartree-Fock energy as reference. Results for AE obtained using
self-consistent OEP or Kreiger, Li, and lafrate (KLI) calculations
are compared with results obtained using self-consistent generalized
gradient approximation (GGA) or local density approximation (LDA)
wave functions to “postprocess” the Fock exchange energies.

work focuses on the KLI approximation and its relationship
with Hartree-Fock theory. It is assumed here that the orbital-
dependent contribution is that of the full Fock exchange.
More importantly, extension of this approach to other orbital-
dependent functionals, including hybrid functionals, and to
RPA treatments is expected to follow similar steps.

The outline of the paper is as follows. In Sec. II, we present
the KLI formalism for spherical atoms, briefly reviewing
the all-electron formulas®® and discussing the frozen-orbital
approximation. In Sec. IIC we present the PAW formalism
for spherical atoms and derive the relations for constructing
basis and projector functions for a PAW-KLI treatment. More
details of this work are presented in the Ph.D. thesis of Xu.?
In Sec. III we generalize the atomic formulations of both the
Hartree-Fock and KLI approaches to treat periodic solids in
a plane-wave representation. The methods are demonstrated
in terms of binding energy curves for diamond and for LiF in
Sec. IV. A summary and conclusions are presented in Sec. V,
where we also compare the PAW-HF and PAW-KLI approaches
with previous treatments of Fock exchange reported in the
literature. In particular, we note that a recent description of
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FIG. 2. (Color online) Plot of energy differences AE for spin-
unpolarized spherical atoms in their ground-state configurations using
LDA or GGA exchange correlation functionals, each referenced to
the corresponding energies obtained using the same wave functions
to “postprocess” the Fock exchange contribution.

the GPAW code'? which implements the PAW formalism on a
real-space grid includes some PAW-HF formulations as well.

II. ELECTRONIC STRUCTURE OF SPHERICAL ATOMS
WITHIN THE KLI APPROXIMATION

A. All-electron formalism

For simplicity, we discuss the formalism for spin-
unpolarized, spherically averaged atoms and use the same
notation as in our previous work on developing a PAW
formalism for Hartree-Fock theory.?® The total electron energy
takes the same functional form as in Hartree-Fock theory,
as a sum of kinetic energy (Ek), nuclear energy (Ey),
electron-electron or Hartree energy (E 'y ), and exchange energy

(Ey):
Ew=Eg+Ey+Eg+E;. (1

Here the exchange energy is written in terms of radial integrals
defined by Condon and Shortley:*°

1+,
] 1 1 oL
E":_Z Z §®qupq:qp’ @
pq L=ll,—l]

TABLE I. Total energies (in Ry) for some of the atoms shown in Figs. 1 and 2, comparing the self-consistent Hartree-Fock (HF), optimized
effect potential (OEP), Kreiger-Li-lafrate approximation (KLI), and occupied subspace (OCC) approximations with the postprocessing energies
calculated with local density approximation [LDA(PP)] and generalized gradient approximation [GGA(PP)] wave functions with the Fock
exchange expression replacing the exchange-correlation contributions. Also listed are literature values for the HF, OEP, and KLI results.

He Ne Ar Kr
HF (this work) —5.7234 —257.0942 —1053.6350 —5504.1100
HF (literature)® —5.7234 —257.0942 —1053.6350 —5504.1100
OEP (this work) —5.7234 —257.0908 —1053.6244 —5504.0859
OEP (literature)® —5.7234 —257.0908 —1053.6244 —5504.0860
KLI (this work) —5.7234 —257.0897 —1053.6210 —5504.0796
KLI (literature)® —5.7234 —257.0896 —1053.6210 —5504.0796
OCC (this work) —5.7234 —257.0896 —1053.6211 —5504.0793
LDA(PP) (this work) —5.7191 —257.0630 —1053.5940 —5504.0264
GGA(PP) (this work) —5.7191 —257.0734 —1053.6125 —5504.0587

4Reference 37.
bReference 21.
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where

L
Ry = [ [ ar ar oo, o

Here the Fock weight factor @f,q for the moment L for the
spherically averaged atom was derived by Refs. 23-25 and is
givenin Eq. (14) of Ref. 28. In contrast to Hartree-Fock theory,
in the OEP approach, the one-electron orbitals {v,(r)} which
appear in the energy expression are eigenstates of an effective

Hamiltonian of the form
H=K+ Vy@r)+ Vu(r)+ Vi(r)
with  Hr,(r) = €,¥,(r).

Here the expressions for the nuclear and Hartree potentials are
identical to those of Ref. 28. In the full OEP theory, the local
potential V, (r) can be determined iteratively in terms of orbital
shift functions*' g »(r) which are solutions to inhomogeneous
differential equations of the form

“

(H— Ep)gp(r) = Xp(r) - Vx(r)l/fp(r) - (pr - pr)llfp(r)v
)
where
Vip = (W,|Vi|W,) and U,y = (W,|X,). 6)

The exchange integral function X ,(r) is identical to that
defined in Eq. (19) of Ref. 28 except that the orbitals
{¥,(r)} are the self-consistent OEP orbitals instead of the
self-consistent Hartree-Fock orbitals. It takes the form
L+, |
X,n==Y > N—p@,ﬁ,, W), ()

g L=ll,~,]

where

I"L
1 Ve V(). ®

rs

LoN_ 2
W (r)=e /dr’

For the full OEP treatment, the converged local exchange
potential V. () is obtained when the combined shift function
vanishes:?041-43

Y Ny (r) = 0. ©)

p
The KLI approximation®* to the OEP is based on the
reasonable assumption that the orbital shift functions g,(r)
are numerically small so that the left-hand side of Eq. (5) can

be set to 0.* Then a local exchange potential function VX (r)
can be found which satisfies the following KLI equation:

V) = Ny (XS
P
+ Y N P(VET = T8, (10)
V4

The radial density function is defined as

n(r) =Y Nplyrp(r)l*. (11
P

In order to solve Eq. (10) it is first necessary to determine
the matrix elements VXI;LI. The p index references each of
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the S atomic shells. The boundary conditions require that for
the shell p = o corresponding to the outer most orbital v, (r),

the exchange potential matrix element must satisfy>!->
FKLI _ 7KL
VX() = UX() ° (12)

For the S — 1 shell indices p # o, the following linear

equations must be satisfied:?!-*
Z[ap‘l = DpgNglAg = E)p — Ui;”, (13)
q#o
where
Aq = VX]ZLI - quu. (14)
Here
[, (1) 9 ()12
Ipg = /dr# (15)
and

(1]

, /dr V(1P Y, quq(r)XgLI(V)’ (16)

n(r)
Once the matrix elements VXIELI are determined from Egs. (12),
(13), and (14), the KLI exchange potential VXM (r) can be
determined from Eq. (10). Figure 3 shows three examples
of VELL(r) in comparison with corresponding local potentials
calculated using the full OEP formalism. The small differences

in the potentials shown here is consistent with results on other
materials presented in the original KLI manuscript.*

B. Frozen-core orbital approximation

The arguments favoring the frozen-core orbital treatment
over the frozen-core potential treatment for the Hartree-Fock
formalism were presented in our previous work?® and apply to

er(r) (bohr Ry)

r (bohr)

FIG. 3. (Color online) Comparison of OEP and KLI functions of
V. (r) for Br, Cl, and F in their ground states.
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the KLI formalism as well. The frozen-core orbital approxi-
mation within the KLI approach is almost a trivial extension of
the all-electron treatment. The equations have the same form
as given above, with the summation over shells p including
both valence states W, (r) which are updated and core states
W, (r) which are “frozen” to the reference configuration form.®
We note that in order for the KLI exchange potential (10)
to remain orbital independent and especially independent of
core-valence orbital labels, it is essential for both valence and
(frozen) core contributions to be included in the evaluation
of Eq. (10). As we will see, this will be true in the PAW
formulation as well. On the other hand, it is often convenient to
remove the constant contributions to the energy and to define
a valence electron energy from terms that involve valence
electrons alone and terms that involve interactions between
core and valence electrons:

Ew=EY +Ey+EY+EY+EX+E™. (17

Numerical results for the frozen-core orbital approximation
of KLI are comparable to those of the frozen-core orbital
approximation of Hartree-Fock reported in our earlier work.?
For example, we considered ionization energies for spherically
averaged 3d atoms. The results are shown in Fig. 4, where the
Hartree-Fock and KLI results are compared with those ob-
tained using the LDA.*® The Hartree-Fock and KLI ionization
energies are very similar throughout the 3d series, differing
from from each other by less than 0.08 eV. Not surprisingly,
the LDA ionization energies differ from the HF ionization
energies by roughly 2 eV. With the core states defined by
the configuration of Ar, the errors introduced by calculating
the ionization energies within frozen-core approximations are
not visible on this scale. For the frozen-core orbital approach
within HF, KLI, and LDA formalisms, the average error in the
ionization energies is 0.002, 0.002, and 0.001 eV respectively.
We also calculated the ionization energies using the frozen-
core potential approach described in Ref. 28 (labeled HFV
on the graph). In this frozen-core potential approach, the
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FIG. 4. (Color online) Plot of ionization energies for spherically
averaged 3d atoms, assuming transitions 3d* 452 — 3d* 4s', using
the HF, KLI, and LDA exchange approximations. The results
designated as HFV were calculated using the frozen-core potential
approximation as described in Ref. 28.
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average error in calculating the ionization energies is 0.05 eV,
25 times larger than that of the frozen-core orbital approach.
This motivates the adoption of a frozen-core orbital treatment
for our PAW formulation, which can be accomplished in a
straightforward way.

C. PAW formalism for a spherical atom
1. Motivation for various approximations

In addition to the approximations associated with the PAW
formalism itself, the treatment presented here uses two major
approximations which need justification. We first consider the
reason for using the KLI approximation rather than directly
solving the full OEP equations. The reason follows from the
fact that the PAW formalism is designed to represent a valence
electron wave function W, (r) of the form

W,(r) = Uy (r)
+) (@4 —RY) — B¢(r —R)(PE|T,),  (18)

ai

where a denotes an atomic site (which is trivial for a spherical
atom) and i denotes atom-centered functions, which include
[®F), [P¢), and |Pf) for the all-electron basis functions,
pseudo basis functions, and projector functions, respectively.
Typically, the index i represents a small number of states (one
or two states per angular momentum channel) to represent the
electron wave function in typical environments found in solids.
In order to adapt the PAW formalism to the OEP treatment, it
is necessary to use this form to also represent the orbital shift
function g,(r) defined in Eq. (5). Because of the oscillatory
shape of these g,(r) functions, it is necessary to significantly
increase the number of one-center basis functions included in
the general transformation of Eq. (18). The recent paper by
Bulat and Levy** clarified this point by showing that the full
optimized effective potential function can be determined as
a sum of contributions from the space of occupied orbitals
to determine vY°°(r) plus additional terms generated by all
unoccupied states. These additional terms require additional
basis functions. While the use of additional basis functions in
the PAW expansion is in principle possible, it is computational
expensive. Some details are presented in Appendix A. In
fact, recent work by Harl and co-workers!® describes the
use of these additional basis functions for a postprocessing
treatment of the RPA within the PAW formalism. In this case,
the additional basis functions are physically motivated by the
excited state contributions to the random phase formalism,
while in the exchange-only OEP treatment they are needed
only to fulfill the numerical requirements of the equations
which represent only the ground state of the system. On
the other hand, the minimal basis PAW formalism is well
suited to represent the approximate OEP equations in the KLI
approach accurately and efficiently. The PAW-KLI approach
presented here can be also extended to the full occupied space
approximation vy°°(r) with few changes to the formalism.
The second approximation in this work is made for sim-
plicity. We have argued that the core states provide important
contributions to the exchange interactions and in Ref. 28 we
have shown how to treat extended core states with frozen-core
pseudo wave functions ¥.(r) and their fully nodal counterparts
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Y.(r). While including these upper core wave functions in
the calculation is straightforward, in order to simplify the
presentation in the present work, we make the assumption
that for all core wave functions wc(r) = (. This can be made
precise for any system, by treating upper core states as valence
states (with additional computational cost), leaving the core
designation to refer only to states whose orbitals are well
confined within the augmentation sphere. What this means
is that the summations over all states in the pseudo space
includes only valence states. The core states then only enter
the calculations through the one-center all-electron terms.
The more general case of allowing for nonzero I/IC(V) for
upper core wave functions can be derived by straightforward
extension.

2. PAW-KLI formalism for atoms

The purpose of deriving the PAW-KLI equations of a
spherical atom is to define the consistent basis and projector
functions which satisfy the atomic PAW-KLI equations for
the reference configuration and to provide the basis for
extending the formalism to a more general system. The PAW
representation of the radial electron density of a spherical atom
takes the form?%38

n(r) = n(r) + [n“(r) — n“(r)], 19)

where 7(r) represents the radial pseudo density defined over
all space and the terms with superscript a represent the
atomic density confined within the augmentation sphere. For
materials, the single index a will be replaced by a summation
of one-center contributions over all augmentation spheres.
The PAW transformation allows us to approximate the left-
hand side of the of KLI equality—Eq. (10)—by the form

VxKLl(r)n(r) — VXKLI(,,)E(’.)

+(VE n (r) — V“KLI(r)n“(r)) (20)
Here VKLI(;") denotes the smooth pseudo exchange potential
in the KLI approximation, which is defined over all space,
while VM) and VeKU(r) denote the atom-centered all-
electron and pseudo exchange functions, respectively, which
will appear in atom-centered matrix elements in the PAW
formalism. In order to determine these three contributions to
the exchange potential, we assume that each of them satisfies
Eq. (10) in their respective spatial and functional domains.
The pseudo-space contribution takes the form

VL@ =Y N ()X )

+ Y NP (VT =TT, @D

Within the augmentation region, the two types of one-center
contributions can be written as

VIRt () = ) Ny (X0
p

+ Y N, |wi )| (VEH - OKM) - (22)
p
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and
Vi) = ) N0 X )
+ ) NP (VEY - oK. (23)

The VXM and UXM matrix elements that appear in each of
the three equations are determined from a sum of contributions
in the form

VKLI (\IJ |VKLI|\IJ>
H({wy Ve ) — (B VB 24

and
DK = (| R5H) + (g xg) — (@] Rk 2s)

In these expressions and in others in this section, the index p
for core states is nontrivial only for the one-center all-electron
terms.

In order to determine the unknown coefficients V5™, a set
of linear equations similar to Eq. (13) must be solved. These
can be written in the form

Z [5194
g#o

Once the unknown matrix elements A, have been determined,
they can be used in Egs. (21), (22), and (23) to determine
VKU, VaKUGr), and VKU (r), respectively. In Eq. (26)
the " matrix elements are given by

o |1// r? W 2
Fi/;w_/ dr p\r q\r
0 n(r)

N f 0 [|w;(r)| {AGH
0

_ FPAWN ] g = EPAW _ UKLI' (26)

|w“<r)| [Fe)? ]

né(r) e (r)
27
The exchange coefficients E "‘PAW are given by
SPAW _ /Ood |1//p(r)| >N 1l,q(r)XKLI(},)
’ 0 n(r)
O
0 n(r)

|$Z(r)|2 Zq Nq&;(r)fzKLI(r) N
- ne(r) : (28)

In Eqgs. (27) and (28), the one-center integrands are confined
within the augmentation spheres (r < r{) and contributions for
p or g representing core states come only from the one-center
all-electron terms.

In these expressions the pseudo exchange kernel is given
by

Ly+ly
XMo=-3 > 5 @L WE,P (), (29)
v L=|l,—l, |

with the interaction function evaluated according to

L
Wk, () = & / dr’r%[wvf(r’m(r’) +MEG) (o)
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The summation over shells v and v’ includes contributions
from valence pseudo wave functions Wv (r). The moment
function M ML ,(r) is defined by Eq. (58) of Ref. 28.

For the one-center all-electron terms (22), the sum over p
includes both valence and core contributions. The one-center
all-electron orbitals for the valence states are given by

Vi) =Y (P (). 31

i

The PAW functions are denoted by p{(r),¢{(r), and q?lf’(r)
for the radial projector, all-electron basis, and pseudo basis
functions, respectively, while the capitalized forms [for ex-
ample P“(r)] denote the corresponding full three-dimensional
function. For the all-electron core contributions (p = c), the
all-electron frozen-core functions ¥¢(r) are used directly.
These expressions for the atom-centered radial wave func-
tions are only valid in the augmentation region 0 < r < rf.
Fortunately, in all the expressions in which they are used,
it is only necessary to evaluate the one-center functions
in the augmentation regions. For evaluating the one-center
all-electron exchange kernel X4*"(r) the following form for
the interaction integrals can be used for 0 < r < ré:

L
o ,
Wiy (r) = D (B | B Py 8, Jwi () + (7) Wik, (32)
ij c

where
L 2 e rk
wii(r)=e / dr/ﬁqﬁf’(r’)q&?(r’). (33)
0 >

This expression is correct for both shell indices g and p corre-
sponding to valence states. If one or both of them correspond
to core states, the expressions are modified according to

(82| P?) — 8. (34)

and the replacement of ¢ with ¢ (r).
The one-center pseudo orbitals for the valence states are
given by

Vi) =Y (P, )l (), (35)

i

using the same notation as above. For evaluating the one-center
pseudo exchange kernel X“KU(r), the followmg form for the
interaction integral can be used for 0 < r < r¢

L
a7al _ a a al al
Wv,v(r)_;(\ll | P (P |@, Jiwt ) + (r) it (36)

where

a
@ij(r) = 62/
0 >

where the augmentation moment nﬁ?f(r) has been defined in
Eq. (53) of Ref. 28. For convenience we repeat the definition
here:

[¢ ey + mek ], (37)

mif(r) = mif gi(r), (38)
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where the charge moment coefficient m;
the i and j basis functions

L is given in terms of

a

mij = /(; dr rL(¢f(r)¢?(r) — q’;,f‘(r)%’(r)), (39)

and the augmentation shape function gf (r) is localized to the
augmentation sphere, 0 < r < r/, and is normalized according
to

/ Cdr ot gt = 1. (40)
0

In the interaction integrals for valence states in Eqs. (32)
and (36) the same constants wﬂfj appear. (The corresponding
contributions vanish for localized core states.) In atomic
calculations, the constants can be evaluated from the pseudo
pair density outside the augmentation region:

o't = (r)* [ %‘fl(ﬂ) (41)

vv

c

In general, it is necessary to evaluate the constants w®:

within the augmentation region. This can be accomplished by
matchlng the boundary values of of W“L (r¢) and W“L(r“) to
that of WL ,(r8), the full pseudo interaction integral given in
Eq. (30).

In terms of the given representations of orbitals and of
the interaction integrals, the one-center all-electron exchange
kernel function can be written as

Ly+Hy
XpHr == Z O, WAL, (42)
q L=|l, 71:/'

and the one-center pseudo exchange kernel function can be
written as

Lo+,

D

v L=|l,—l,] Ny

Xy = L Wk L), @3)

The expressions for the exchange kernel functions given
in Egs. (30), (42), and (43) are consistent with the PAW
exchange kernel function given in Ref. 28 for the Hartree-
Fock formalism, XPAW(r) = XHF(r) 4 i |P” )X with
the correspondence

XMy — XK (44)
and the approximate relation

XaHF ((.Da \XaKLI>

(7| X5<H). 43)
These approximate relationships rely on the fact that within
the augmentation spheres, ¥, (r) ~ 1. (r), based on the PAW
expansion given in Eq. (35) and approximate completeness
relations®® for 0 < r < ré such as

P CHERICES S (46)

for the the pseudo space functions.

The equations given above can be used to self-consistently
solve the Kohn-Sham equations within the PAW-KLI approx-
imation, given a PAW dataset of basis, projector, and pseudo
potential functions. For the construction of a PAW dataset in
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the PAW-KLI approximation, it is necessary to evaluate these
expressions for the reference configuration used to generate
the basis and projector functions. In this case, Eqs. (21) and
(23) are identical to each other, and Eq. (22) is identical to the
all-electron result, Eq. (10). By evaluating Eq. (21) or (23) to
determine the pseudo exchange potential V¢ (r), for the given
choice of basis and projector functions, it is possible to deter-
mine the unscreened local pseudo potential V)’ (r) from the
chosen screened pseudo potential V*FS(r) according to

Vi (r) = VS(ry — 2995(r) = V() | — VEW) | - 47)

ref”

Here 9§ (r) is defined as the Coulomb potential associated with
the L = 0 augmentation shape function g7 (r). The Hartree
contribution can be evaluated as a sum of core and valence
contributions in the form

VI(—;C(”) = goreﬁg(r) and ?ZU(V)J ref — Z Ny WUOU(F)J ref*
(48)

[The expression for fo(r) differs from that of Ref. 28
because here we assume 7%, (r) = 0.] For evaluating both
the reference Hartree potential and reference pseudo exchange
kernel function

Lo+,

~ 1 ~ ~
Xyt ==Y > - O Wi | o), (49)

v L=|l,—ly] Y

the interaction function can be evaluated from
~ o0 ri ~ ~ —~
Wi =€ /0 dr’ré+l [V (WY (r) + ML ()],
(50)

For the reference configuration, the shell labels v’ and v
correspond to valence basis functions so that the moment
functions have the simplified form

Mlﬁv(r)Jref
= g.(r) /0 Cdr P (W) — B ()T (51)

Figure 5 shows the pseudo versions of the KLI local
exchange potentials given in Fig. 3. Figure 6 shows_some
examples of the unscreened local pseudo potential, Vi2 (r),
showing that for the same choices of construction parameters
the shapes are quite similar to those of the LDA. These results
for F,* C1,*” and Br*® were generated using a variation of the
ATOMPAW code,” using the Vanderbilt*” scheme for generating
the pseudo basis and projector functions.

III. PLANE-WAVE REPRESENTATIONS OF PAW-HF
AND PAW-KLI EQUATIONS

In order to develop the projector-augmented-wave approach
for Hartree-Fock and KLI formalisms to treat periodic systems,
it is necessary to extend the equations presented in Ref. 28 and
in Sec. II C to consider multiple atomic sites @ and additional
angular dependence. A pseudo wave function for a Bloch state
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0 \ \ \ =
Br

-1

— Pseudo

i — = All-electron
\
\

rV (v) (bohr Ry)

r (bohr)

FIG. 5. (Qolor online) Comparison of KLI all-electron [V, (r)]
and pseudo [V, ()] local exchange potentials for Br, CI, and F in their
ground states.

of band n and wavevector k can be represented in a plane-wave
expansion of the form

~ 1 .
W, (r) = \/; D Ak(G)e O,
G

where V denotes the unit cell volume, A,k(G) is an expansion
coefficient, and the summation over reciprocal lattice vectors
G includes all terms for which |k + G|?> < Eqy, for an
appropriate cutoff parameter E.,. For simplicity, we assume
a spin-unpolarized system with band weight and occupancy
factors fk.

(52)

V. Ry

~

| | | | | | | | |
0 05 1 150 05 1 150 05 1 15
r (bohr)

FIG. 6. (Color online) Plots of ‘Zﬁc(r) for F, Cl, and Br, comparing

KLI results with the corresponding LDA results.
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A. Total energy expressions

The formulas for the total valence energy are the same
in both the Hartree-Fock and KLI treatments. The energy
differences are only due to differences in the wave functions
used to evaluate the energies. Here we focus on the the
Fock exchange term only, since the other contributions are
identical to those found in earlier papers.’®°%2 The total
valence exchange energy is a sum of smooth and one-center
contributions of the form

EJw=E"+) (ES+ E&—Ee).  (53)
a

The fact that the core-valence interactions enter only in the one-
center all-electron term is a consequence of our assumption
that upper core states are treated as valence electrons so that
only core states localized within the augmentation sphere are
treated as frozen-core states.

1. Smooth contributions to the Fock energy

For the purposes of evaluating the Fock energy and
interaction terms, the smooth pair density function for band
indices nk and n’K’ can be written as

Pk i (1) = W ()W (1) 4 B e (1), (54)

where the second term is the compensation pair charge.*?® For
a nonspherical system, the forms of these moments must be
generalized from those presented in Eq. (58) of Ref. 28, in the

form>3
Z(P |"Ijnk>< n’'k’

aij

Pkt () = P{)af(r =R, (55)

where the generalized moments are given by
l im; Zm, AaL(’, )
() = Z

———Yu (). (56)
Here all of the terms are the same as defined in Ref. 28 except
for the Gaunt coefficient,’* which we take to be>>

Gl i = Vén f A}, ®)Y] @Y, @).  (57)
By design, this pair density function has the property

1
lim — / &r P () = S0 Q8K — K. (58)
NV

N—o0

The Fourier transform of the smooth pair density function is
defined to be

Fnk,n’k’(G) = f d3r (I’[)"nk’n/k,(r)efi(kfk/)m)efi(;.l‘. (59)
%

The compensation pair charge contribution can be evaluated
according to

Bt (@) = Y (P [ W)W | Py )i, (k — K + G, (60)

aij
where

ILU(Q) =N ZGI ol Var (=) YLu(@)

a

X /-r erL(qr)m”L(r) (61)
0

with j; (x) denoting a spherical Bessel function.
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In terms of smooth pair densities, the corresponding Fock
energy can be written in the form

~ ez
E;v = _Z Z fnkfn’k’
nkn'k’
> /dSr d3r, pnk,n’k’(r)p:k,y,'k'(r/)
Ir—r|

e Bk (@I
= — n n'k’ . . 62
y n;{/fkfkglk_k,wlz (62)

The evaluation of this singular integral has been the subject
of several investigations.’*%" In this work, we evaluated both
the methods of Spencer and Alavi®’ and of Duchemin and
Gygi®® as described in more detail by Holzwarth and Xu.®!
Results given in Sec. IV were obtained using the method of
Spencer and Alavi.”’

2. One-center contributions to the Fock energy

The combinations of angular contributions that appear in
the one-center Coulombic contributions can be expressed in
terms of the four-index matrix elements

Rq'Lkl - I?‘a'Lkl
a M L] K
ijkl = § :Glm Lim; ( 1) lemkl,m,( 2L + 1 )’ (63)

where the generallzed Condon-Shortley radial interaction
integrals R”L + and Rl " have been defined in Egs. (63) and
(64) of Ref. 28.

It is also convenient to define a weighted projector product

W?j = Z fnk({i}nk|P,a><PJa |‘Tjnk>~ (64)
nk

In evaluating both V“ &l and W¢, i each basis index i, j,k,l
stands for both the radlal and angular quantum numbers
(I’Lil,’m,’, etc.).
The one-center valence-valence contribution to the Fock
energy can then be written as
E® — B9 = —— ZW" WEVE - (65)
ijkl

We note that in this formulation, which follows Ref. 28 and
is slightly different from that of our earlier work [Eqgs. (A26)
and (A31) of Ref. 50], the corresponding one-center Hartree
energy contributions take the form

EQY — EgY = ZW“ WV (66)
t]kl

The one-center valence-core contribution to the Fock
energy depends only on the Condon-Shortley interaction
integrals between valence all-electron basis functions and
frozen-core orbitals and takes the form

E& = — Z W 811, 8mm,; Cli. (67)

where

2
N.[(l. L I
cr=> = Y) OReE 68
i 2 (0 O O) icicj ( )

cL
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Here the sum over c is a sum over core shells with occupancies
N, =2(2l. + 1) for each atom a.

B. Fock exchange kernel for Hartree-Fock formalism

The generalization of Eqs. (70)—(74) of Ref. 28 for a Bloch
state nk can be written as

XPV(r) = X + ) | P)X (69)
The pseudo exchange kernel takes the form
~ 1 ~ ~
XK@ = =23 fe Wakme@Te@), (70)
n'k’
where the interaction function is defined by
d3r/ an,n’k’(r/)
Ir —r'|

I’}r/nk,n’k’(r) = 62/

— ei(k—k’)‘l‘ Z Wnk,n’k’(G)eiG.r~ (71)
G

The Fourier transform of the interaction kernel is given by

4 62 Fnk,n’k’(G)

Wt (G) = .
k() = S T TGP

(72)

In order to treat its singular behavior in evaluating the pseudo
exchange kernel and related quantities, we used the method of
Spencer and Alavi®’ which was mentioned previously in the
context of evaluating the smooth contributions to the exchange
energy [Eq. (62)].

The one-center matrix elements for the Hartree-Fock
pseudo exchange kernel function analogous to Eq. (73) in
Ref. 28 (but simplified for treating only localized core orbitals)
take the form

1 ~ i~
Xffnk = ) Z(Plam’nk)WZijj;kz

jki
- = Z NS Z P- |‘I,n’k’>ZZk,n’k’;ij
/k/
— Z Pf|\pnk)81/-[/8m,»m/ Cij’ (73)

J

where
ZZk,n’k’;ij E/ r /’L[j(r)Wnk n'k’ (l')

=Y T k=K + GO W@, (74)
G

C. Fock exchange potential for KLI formalism

The smooth pseudo exchange kernel X Kil(r) in the KLI
approximation analogous to Eq. (30) takes the same form
as the Hartree-Fock expression given in Eq. (70), evaluated
using the appropriate KLI pseudo wave functions \IJ,,k(r) The
corresponding pseudo-space potential function VXU(r) can
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be determined from an expression analogous to Eq. (21) in
Sec. IIC2:

VEH(r) = [Z Fuc T (XN ()

p(r)

+ ankl{ﬂnk(rﬂ (Vxlfllf(l UELL;)] (75)

nk

In this expression, the valence pseudo density is given by
P =Y ful U0 (76)
nk

Once the constant matrix elements VXt and UKL are known,

this expression can be evaluated most conveniently using fast
Fourier transform (FFT) methods.

The one-center contributions to the exchange kernel can
also be derived by extension of the atomic formalism. The
one-center all-electron full density for atom a can be written
in the form

RG]

,Oa(l’) Z Wa q)a*(r)cba(r) + Z NCW, (77)

were the first term represents the valence states spanned by
PAW basis functions indices i and j, and the second term
represents the localized core states with index ¢ representing
the core shells [with occupancy N, = 2(2, + 1)] for that atom.
In order to evaluate the summations involving the all-electron
exchange kernel, it is convenient to define the following
functions. Analogous to the first term on the right-hand side
of Eq. (22) we define

D NP XK Gy — TC(r) + T ) + T ().
p
(78)

Representing pure core contributions, we define

fY\a L'C(r) = _ZZ@L WaL( )I/f ( )I/j ( )’ (79)

using the all-electron notation introduced in Sec. IT A. Repre-
senting mixed core-valence contributions, we define

¢“(r)¢ (r)

TOUr) = = Y NWEY S ()Y, ()

ijc

2

lj L lC alL
XXL:<O o 0) Wik (). (80)

In order to represent the pure valence contributions it is
convenient to define the following one-center functions

Wi () =Y (P | W) 04 (r) 81)
for the all-electron states and

U () = Y (Pe | W) D4 (1) (82)
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for the pseudo states. The one-center all-electron pure valence
contributions can be written in the form

1
=-3 > DU YT, ()

ij; LM
L L.
[WLWH( )BL@] (83)

The first term of this expression can be evaluated in terms
of the interaction potentials [Eq. (33)] evaluated within the
augmentation sphere

Td UU(r)

L
Awif (r) = wiif (r) — (r ) wiif (rd) (84)
with the expression

5 wywy, YD
— LY |

a:/

W, () = GrM  Awi(r). (85)

lkm/\llm/
The second term of Eq. (83) is related to the boundary value

constant %, defined in Sec. II C 2 and can be expressed in the
form

m/ a ij
LM = § fnkBLMnk

= Z fnk Z fn k nk | Ea)(ﬁla |€le’k’>JZk€ykf~ (86)

nk n'k’

Here J ZkL,’l‘f’k, is the angular component of the pseudo interaction
integral defined by Eq. (71) expanded about the atomic site a
and evaluated at the augmentation radius r¢:

Ja LM
nk,n’k’

=47i" Y W (@)™ Y1 (@6) i (g6 (87)
G

In this expression, qg = k — k' + G, R? denotes the atomic
position, and j; (x) denotes the spherical Bessel function.

In terms of these functions, the one-center all-electron
exchange potential function can be evaluated with the relation

V;KLI(F) — |:Ta cc(r) + T4 cv(r) + T4 vv(r)

1
pa(r)
+ ank\w A (VR - O

+ ZN 1/’a(”)| VKLI UKLI)]' (88)

The one-center pseudo density, by assumption, includes
only valence contributions and can be written in the form

OE ZW“ (1) & (). (89)

The one-center pseudo exchange function can be evaluated
with an expression similar to that of Eq. (88):

V;KLI(T) —

1 [~

Ta Vv
5a(r>[ )
+ank|w (0P (VXL — UK”)]. (90)

xnk
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The function Y4 ¥*(r) is evaluated using an expression similar
to Eq. (83), replacing the all-electron basis functions ®{(r)
with pseudo basis functions 5“(r) and the all-electron basis
function kernel wy, (r) defined by Eq. (33) with the pseudo
basis function kernel w le (r) defined by Eq. (37). By construc-
tion, the basis function kernels are equal at the augmentation
radii r¢, lL(r )= leL (r?), ensuring consistency of the
equations.

In order to evaluate this expressions we need to determine
the exchange integral matrix elements. Matrix elements
corresponding to core shells come only from the one-center
terms:

U;((‘u _ _ Z F®L RL

cc'ic’e
c
;L

2
1 . L L I\ ..,
) Z Wi 81, mm, <0 0 0) Ricej- O

ijsL

In practice, each distinct core shell implies a particular site
label a and core-core contributions (¢ and ¢’) are restricted to
the same site. Matrix elements corresponding to the valence
bands can be evaluated using the expression

Uk = / d*r U X8 (r)

N

nk}P Pa|q’"k)WZ] f}kl

asijkl
LM alL
1 Z Gl,-m,vl-mj m,‘j Baij
5 LM nk
2 / L
asiji LM 4 (”f)

= 2 (W 2P|,

aiij

)6l;l,- (Sm[mjc'a

e 92)
In this expression, the coefficient L{‘j . 1s similar to the one-
center Coulomb coefficient V7, ki defined in Eq. (63) and is
given by

alL
a _ Uikl
Ui =D G, (DY G, 2LJ+ o 09
LM

where the radial Coulomb terms are defined according to

utk, = /O Cdr (#E O — BT TE)

mi“.L
_ (raj) - wif (). (94)

As in the atomic formulation, in order to evaluate the three
contributions to the exchange potential in Egs. (75), (88), and
(90), the potential matrix elements VX! and VXM must first
be determined by solving a set of linear equations. For this
purpose, we define

EPAV = B + Z B — B4, (95)
where
- - e Fe Ve (O XKL ()
anksfd3r|wnk<r)|2z o (lf‘) K, 96)
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and the one-center contributions can be written as

= B = D (kP [T
ij

x ( / d*r ®*(r)4(r)
r<ré

[1]

’Y‘d CC(r) _"_ ’Y‘LI CU(r) _"_ ’Y‘a UU(r)

p(r)
- - ’Y*a VU (p
- / d’r c1>?*(r)c1>j.(r)~—()). 97
r<re pa(r)
The corresponding core shell contribution can be written as
gV = ge, (98)

where the notation implies that the core shell ¢ corresponds to
the particular atomic site a. The term may be evaluated with
the expression

e — /d3r Wca(r)|2 YC(r) + Y(r) + T4V (r)
T 47‘[)’2 ,Oa(l') .

The coupling matrix elements between valence states can be
written in the form

= F”k'”/k, + Z (ng,n’k’ - Fsk,n/k/)' (100)

99)

PAW
l—‘nk,n’k’

Here, the pseudo space contribution is given by
~ U, (0) 2|0, (1))
o E/d3r| WO TP o
p(r)
which can be evaluated using FFT techniques. The one-center
contributions can be evaluated from the expressions

1ﬁt(:k,n’k’ - 1-‘Zk,n’k’

= > (Wi B ) P [ D) T

ijkl
( / 5 D ()@ (r) D (r) @y (r)

X d’r
r<ré Ioa (r)
~ f d3rcT>;‘*(r)cT>j(r)€ISg*(r)€f>,ﬂ(r)
r<ré 5[1 (l')

The coupling matrix elements between valence and core shells
and between core shells have only one-center contributions and

depend only on the particular atomic site a associated with that
core shell:

PN [Bne)

). (102)

¢

FPAW — Fa

vew =T . and TPV =T, (103)

The one-center matrix elements are both Hermitian and can be
evaluated from the expressions

e = Y (@l BP B [

, P i)’

T pa(r) 4rr?
(104)
and
FﬁszmeﬁwwW L 05,
e dwr2 4Amr? po(r)

For evaluating the one-center integrals, it is most convenient
to use a procedure found to be efficient in previous work.>" We
use a generalized Gaussian quadrature method to sample the
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angular directions £, with weight factors w, with Za Wy =
4. For each direction &, (usually 144 points are sufficient),
the radial integrals 0 < r < r{ are evaluated usual finite-
difference-based algorithms. For example,

f PR GLAG) VRGN
p4(r) 4mrr?

(e ()| e
4mr2pa(rey)
(106)

The linear equations that must be solved can then be put in the
form

~ Z waY[j(mi(an)Yl,-mj(f‘a)/\ dr
0
o

Z (Bnk,n’k’ - Fyl:/]?}:l]’k’ fn’k’)An’k’

n'k’
— DTN =ERY -5 07)
c
and
D (Ber = TERVNL) AL
=
= Y TP e Awne = BV = TXML(108)
K
In these expressions,
A= VEL K and A, = VR gKLIL (109)
The dimension of the the coupling matrix I'™AW is equal to

the number of occupied bands nk within the k-point sampling
grid and the number of core shells ¢ for all of the atoms
of the unit cell. As in the atomic case, the coupling matrix
is rank deficient, but the linear Eqs. (107) and (108) can be
solved up to an arbitrary constant potential shift. We chose to
fix the potential constant by setting Ak, = Erye — UK
where the index nok( corresponds to the highest Kohn-Sham
eigenvalue associated with an occupied state.

Once the potential matrix elements VX and VKU are
determined, the corresponding exchange potentials can be
calculated. While VX (r) [Eq. (75)] contributes to the Kohn-
Sham pseudo potential evaluated over all space, the one-center
contributions given in Eqs. (88) and (90) contribute to the
one-center matrix elements of the Hamiltonian D in the form

[Ve],, = (@] verH o4) — (@¢|VeRH ). (110)

ij
With the determination of these exchange potentials, the
calculations proceed in the same way as other Kohn-Sham
PAW algorithms.

IV. RESULTS FOR DIAMOND AND LiF

In order to test the formalism, we have calculated the self-
consistent electronic structure of diamond and LiF. The PAW
basis and projector functions were calculated using a modified
version of the ATOMPAW code?® using the parameters listed
in Table II. The same parameters were used to construct the
Hartree-Fock, KLI, and LDA3® datasets. While the results are
not very sensitive to the details of the PAW parameters, past
experience has shown that the choice of parameters given in
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TABLE II. PAW parameters used in calculations: the pseudo
potential radius r¢ and list of shell designations 7,/ (r,,, )2l (Fn,) - . -
of basis and projector functions used in the calculation and corre-
sponding radii r,,, (in bohr) used to match the all-electron and pseudo
radial wave functions. The symbol € indicates the use of unbound
basis functions with energies (in Ry units) € = (16.0, 10.0) and (2.0,
2.0) for C and F, respectively. In each case, the local potential was
constructed using the Troullier-Martins scheme® for a continuum
wave function of energy € = 0 and / = 2.

Atom ré¢ (bohr) {nili(rm;)}

Li 1.6 1s(1.4) 25(1.6) 2p(1.6)

C 1.3 2s(1.3) es(1.3) 2p(1.3) ep(1.3)
F 1.5 2s5(1.5) es(1.5) 2p(1.5) ep(1.5)

Table II and a wave function plane-wave expansion cutoff of
|k + G|> < 64 Ry are more than adequate to converge the
calculations to benchmark values. Details of the Hartree-Fock
dataset construction follow Ref. 28 and extensions described
in Appendix B.

The solid calculations for the Hartree-Fock and KLI calcu-
lations were performed using a modified version of the PWPAW
code.* The LDA results were obtained using the ABINIT®*
and QUANTUM-ESPRESSO® codes as well. The Brillouin zone
sampling was performed using a uniform 2 x 2 x 2 grid. This
sampling was found to be adequate for the LDA calculations;
additional code development will be needed to substantially
increase the Brillouin zone sampling for the Hartree-Fock and
KLI portions of the code. The binding energy curves shown
in Figs. 7 and 8 were fit to the Murnaghan equation of state®®
in order to extract the equilibrium lattice constant @ and bulk
modulus B which are reported in Table III. There are many
results of these quantities in the literature; a few of these are
listed for comparison in Table I1I, showing general consistency
with the present results.

To the best of our knowledge, our PAW-HF formulation
is similar if not identical to that of Paier and co-workers* as
implemented in the VASP code®” and to that of the GPAW code?
(apart from the replacement of the plane-wave expansion
with a real-space grid representation). In order to benefit
from cancellation of systematic errors, we have been careful

Diamond

34

FIG. 7. (Color online) Binding energy curve for C in the diamond
structure.
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FIG. 8. (Color online) Binding energy curve for LiF in the rock
salt structure.

to use atomic PAW datasets (Table II) constructed with the
same exchange-correlation or pure exchange formulation as
used in the solid calculations. There is some discussion in
the literature®® that it is sometimes possible to use fixed
atomic PAW datasets with the help of valence-core corrections
to perform calculations with different exchange-correlation
formulations. It is our experience that the choice of ap-
propriate basis function sets and augmentation radii such
as listed in Table II are rather insensitive to the exchange-
correlation formulation. However, the basis and projector
functions themselves as well as the local potential V|’ (r) are
more sensitive; these can easily be generated by using the
ATOMPAW code.?’

V. SUMMARY AND CONCLUSIONS

Using Fock exchange as an example of an orbital-dependent
functional, we have presented detailed equations needed
to carry out self-consistent electronic structure calculations
within the approximate optimized effective potential formal-
ism developed by Krieger, Li, and Iafrate (KLI)*® using the
projector-augmented-wave method (PAW) of Blochl.*® This
formalism together with the analogous development for the
self-consistent Hartree-Fock formalism presented in earlier
work?® has been implemented and tested on the study of
the ground-state properties of two well-known crystalline

TABLE III. Comparison of lattice parameters. Lattice constants
a are given in A and bulk moduli B are given in GPa.

Diamond LiF

a B a B
LDA (this work)  3.53 490 3.91 85
LDA (literature) 3.5423.55° 452> 3922396° 83°
HF (this work) 3.56 490 3.97 79
HF (literature) 3.58° 480°  4.02,4.01° 76,79
KLI (this work) 3.55 460 4.01 76
Experiment 3.57¢ 4434 4,034 674

4Reference 69.
bReference 70.
‘Reference 71.
dReference 72.
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materials—diamond and LiF. The fact that the present results
are in general agreement with results reported in the literature
using other computational methods provides some measure
of validation of our formalism. It is interesting and not
unexpected that the Hartree-Fock and KLI results for the
equilibrium lattice constants are increased relative to the LDA
values and are closer to the experimental values.

Both Hartree-Fock and KLI methods have been previously
implemented in all-electron and in norm-conserving pseudo
potential codes by many authors, some of whom we list
here.20.73-78 However, the present work, as well as several
other recent studies’®’*? show that there continue to be
nontrivial numerical challenges in the careful evaluation of
the Fock exchange interaction. For the PAW method, the
evaluation relies on the use of compensation pair charges
[Eq. (55)] to ensure that all of the moments of charge
are correctly represented in the exchange interaction terms.
This extension of ideas presented in the original PAW
formalism® was first introduced by Paier and co-workers.*
In principle, the correct treatment of the charge moments
in the PAW approach should have accuracy advantages
over norm-conserving pseudo potential methods,’?7476.78.83.84
which explicitly control only the diagonal L = 0 pair charges.
We also show that the treatment of core effects in the Fock
exchange is best implemented in terms of frozen-core orbitals,
which can be accomplished with high accuracy within the PAW
method. Whether this analysis of the numerical advantages of
PAW over other pseudo-potential methods in the treatment of
the Fock exchange interaction turns out to be numerically
significant and/or computational efficient needs still to be
quantified. Encouraging results have recently been reported
by the GPAW developers,'> who evaluate the Fock exchange
using the PAW method on a real-space grid.

Having introduced the detailed equations needed both for
the Hartree-Fock and for the KLI implementations, we can
begin to compare the numerical and physical approximations
involved. While the complication of the equations presented in
Sec. III C does appear to be daunting, we have demonstrated
it to be manageable. In fact, the added complication of
the KLI approach results in the determination of the local
exchange potential VXL (r) for use in Kohn-Sham equations.
While much of interest in the “exact exchange” comes from
improvements in the band-gap energies,”’®> the few results
presented in Sec. IV indicate that there are nontrivial effects
on the structural properties as well. We expect to continue to
compare the methods in future work.

There are several ways in which the present work can
be extended. The equations here have assumed that the core
states are localized within the augmentation spheres of each
atom. This condition can be relaxed by introducing core
pseudo wave functions ¢ (r) as discussed in Ref. 28 and
introducing corresponding modifications to the PAW-KLI
equations. Another extension involves improving the KLI
approximation by calculating the optimized effective potential
within the subspace of occupied orbitals [v°°°(r)] as described
by Bulat and Levy.** Operationally, this involves including
some additional nondiagonal matrix elements of the local
exchange potential and the exchange integral function in
Eq. (10). In addition, we have discussed the possibility
of extending the PAW methodogy to treat the full OEP
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equations and have argued (see also Appendix A) that this
would require a significant increase in the number of PAW
one-center basis functions. A similar experience was recently
reported by Betzinger and co-workers’ in the context of
an accurate implementation of local exact exchange poten-
tials with the full-potential linearized augmented-plane-wave
method.

The scope of the present work goes beyond the accurate
treatment of the Fock exchange interaction. By extension, the
same techniques can be used to treat other orbital-dependent
exchange-correlation functionals as they are being developed.
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APPENDIX A: AN EXAMPLE OF ORBITAL
SHIFT FUNCTIONS

Figure 9 shows an an example of the shell contributions
to the combined shift function [Eq. (9)] for atomic C in
the spherically averaged 1522522 p? configuration. While each
curve represents a complicated function, the sum of the curves
is zero at all radii, as required at convergence by Eq. (9).

Figure 10 shows the shape of the individual orbital shift
functions g,(r) for atomic C which were determined from
Eq. (5). While their magnitudes are small, their shapes are
very complicated. From the forms of these functions it is
evident that their accurate representation as a sum of atomic
basis functions would require the use of a large number
of basis functions. In particular, the PAW transformation
Eq. (18) would require that, in the augmentation region,
both the all-electron valence orbital function v,(r) and the
corresponding all-electron valence orbital shift function g,(r)
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FIG. 9. (Color online) Shell contributions to the combined shift
function for the C atom.
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FIG. 10. (Color online) Orbital shift functions g, (r) for the C atom.

be well represented by a sum of all-electron basis functions
{¢i(r)} forr < r:

Yo(r) & Y ()P |W,) and g (r)~ ) i) G).

(AD

While the expansion of ¥, (7) is well controlled, the expansion
of g,(r) is computationally much more demanding. Without
knowing the values of the expansion coefficients (P“|G )s
the shape of the curves in Fig. 10 suggest that accurate
representation of g,(r) requires many more terms than does
accurate representation of ,(r). Our numerical tests® are
consistent with this analysis. This would make a full PAW-
OEP treatment much more computationally demanding than
PAW-KLI.

APPENDIX B: SOME DETAILS OF HARTREE-FOCK
FORMALISM

In principle, the Hartree-Fock equations are not defined
for unoccupied states. However, in order to generate a more
complete basis set for the PAW formalism and to generate

1oc(r) it is convenient to use continuum states. For this
purpose, we simplified a more rigorous treatment®® and defined
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a continuum state at a given energy €, > 0 to satisfy the
integral-differential equation [similar to Eq. (17) of Ref. 28]

[IC+ VN(7)+ VH(r) —Gp]l/fp(")-i‘Xp(r) =0.

Here X ,(r) is defined by Eq. (7) with the sum over g including
only occupied states, and where no explicit orthonormalization
constraints are imposed. In our previous work we noted that
results can be sensitive not only to the basis functions but
also to the magnitude of the localized pseudo potential \71f,c(r).
By using Eq. (B1) and a method similar to that described
by Al-Saidi and co-workers®® to generate a norm-conserving
screened pseudo potential VPS(r), we can then use a similar
unscreening process described by Eq. (47) to determine a
suitable ‘71(& (r) for each atom.

In order to simplify the formulation of the Hartree-Fock
PAW equations, we relaxed the orthogonality constraints
of the valence wave functions with respect to the core
orbitals. We also assumed the core states to be confined
within the augmentation region using the expressions given in
Secs. IITA 1, [II A2, and III B.

Matrix elements of the Hartree-Fock equations in the
Bloch basis are diagonal in wavevector k and Hermitian
with respect to band indices. In order to use the same
diagonalization procedures that are used for the Kohn-Sham
formulations, it is convenient to regroup terms in the evaluation
of matrix elements of the exchange interaction defined in
Sec. III B:

B

(B | Xe™) = (Tonc| X5
= 3 (B PG P T, B2)
ail
Here
Tk _ 27‘[6 pn”k,n’k’(G)?’lkq"'k’(G)
XLk = Zk e T+ GP (B3)
and

)(3 = ——= ZWk] Zkl 81 1;Om;m; Clal (B4)

The current version of the code was written with these
equations. Further analysis will be needed to improve the
efficiency of the calculations.

“natalie @wfu.edu [http://www.wfu.edu/ natalie].
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