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The pseudogap state of high-temperature superconductors is a profound mystery. It contains tantalizing
evidence of a number of broken symmetry states, not necessarily conventional charge- and spin-density waves.
Here we explore a class of more exotic density wave states characterized by topological properties observed in
recently discovered topological insulators. We suggest that these rich topological density wave states deserve
closer attention not only in high-temperature superconductors but in other correlated electron states as well.
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I. INTRODUCTION

In a recent paper, Nayak' provided an elegant classification
of density wave states of nonzero angular momentum. The
surprise is that given the roster of the multitude of such
states, so few are experimentally observed. Of these, the
angular momentum ¢ = 2 spin singlet has taken on a special
significance in the context of pseudogaps in cuprate high-
temperature superconductors.? It breaks translational symme-
try, giving rise to a momentum-dependent d,>_,> (DDW) gap,
without modulating charge or spin, but alternating circulating
charge currents from plaquette to plaquette much like an
antiferromagnet. In its pristine form, in the half-filled limit, that
is, for one electron per site, the Fermi surface of DDW consists
of four Dirac points and is therefore a semimetal. This broken
symmetry state has inspired much effort in characterizing the
pseudogap as a phase with an order parameter distinct from a
fluctuating superconducting order parameter.

Presently, it appears from many experiments that the
pseudogap may be susceptible to a host of possible competing
orders. Thus it is important and interesting to explore an
order parameter closely related to the singlet DDW, which
retains many of its primary signatures, such as the broken
translational symmetry or a particle-hole condensate of higher
angular momentum. In particular, we consider a density wave
of nonzero angular momentum of mixed singlet and triplet
variety such that in the half-filled limit, it is a gapped insulator.
Unlike the semimetallic DDW, it has a nonvanishing quantized
spin Hall effect for a range of values of the chemical potential.
This is in fact a topological Mott insulator’ because it is
the electron-electron interaction that is necessary for it to be
realized. Further addition of charge carriers, doping, leads to
Lifshitz transitions destroying the quantization but not the very
existence of the spin Hall effect.

It is remarkable that such an unconventional broken
symmetry, possibly relevant to high-temperature supercon-
ductors, belongs to the same class of the currently discussed
novel state of matter known as topological insulators; in
fact, our work is to some extent motivated by these recent
developments.* We wish to emphasize that the undoped parent
compounds of high-temperature superconductors are proven
to be antiferromagnets with sizable moments and the spin-
density wave transforms according to £ = 0. The proposed
topological density wave should therefore be relevant at larger
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doping that perhaps originates from a nearby insulating state.
In no way is this different from the original suggestion
of DDW.

It has been known that the triplet iod,2>_,> order parameter
corresponds to staggered circulating spin currents around
a square plaquette,’ wherein the oppositely aligned spins
circulate in opposite directions, as shown in Fig. 1. This
reminds us of topological band insulators where oppositely
aligned edge-spins travel in opposite directions. However,
there is no topological protection because the bulk is not
gapped, but is a semimetal instead. A more interesting case
is the order parameter (iod,>_,» + d,), where o = %1 for
up and down spins, with the quantization axis along Z. Such a
state not only satisfies time-reversal invariance but is also fully
gapped, analogous to time-reversal-invariant band insulators
discovered recently. A singlet chiral (id>_,>» + d.,) density
wave that breaks macroscopic time-reversal symmetry was
employed to deduce a possible polar Kerr effect and an
anomalous Nernst effect’ in the pseudogap phase of the
cuprates. Another topological state with a different symmetry
of the order parameter was discussed in Ref. 8.

As to topological properties of superfluids, we refer the
reader to the book by Volovik.” Superconductors are particle-
particle condensates, and, as such, the orbital wave function
constrains the spin wave function because of the exchange
symmetry. What we are discussing here are particle-hole
condensates, and there is no exchange requirement between
a particle and a hole. Thus, the orbital wave function cannot
constrain the spin wave function. Thus an orbital singlet can
come in both spin-singlet and -triplet varieties.

The plan of the paper is as follows. Section Il is divided into
three parts. Section II A discusses the topological aspects in
the absence of magnetic field, while Sec. II B contains results
for a perpendicular magnetic field. Section IIC consists of
a thorough discussion of the bulk-edge correspondence that
follows from topological considerations. In Sec. I1I, we discuss
Fermi surface reconstruction via a Lifshitz transition as the
system is doped. In Sec. IV, possible experimental detection
schemes are suggested. The symmetry of the order parameter
that we have introduced is such that the necessary experimental
techniques are more subtle than the detection of more
common broken symmetries, such as spin- or charge-density
waves.
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FIG. 1. (Color online) Triplet iod,>_,» density wave in the
absence of an external magnetic field. The current pattern of each
spin species on an elementary plaquette is shown. The state is a
semimetal. On the other hand, iod,>_» + d,, can be fully gapped
for a range of chemical potential. An example is shown in Fig. 2.

II. ORDER PARAMETER TOPOLOGY

A. Zero external magnetic field

The order parameter that we consider is
(c] 0.0 Char) = [P K)T" 150, M)

where c,i’(, (¢, ) 1s the fermion creation (annihilation) operator
with momentum & and spin component o; u =0, ...,3; 14,
Ty, and 73 are Ehe standard Pauli matrices; and 7y = 1l. The
nesting vector Q = (;r/a,m/a). We choose the components of
the order parameter to be

W,
<I>3(k) x iTO(cos k, —cosk,) =iWg, 2)
®°(k) oc Agsink, sink, = Ay 3)

and the remaining components are set to zero. The right-
hand side is written in terms of the gap parameters and the
conversion involves suitable coupling constants, which we
do not need to specify in a non-self-consistent Hartree-Fock
theory. The lattice spacing a is set to unity.

In the absence of an external magnetic field, the triplet
d % id Hamiltonian is

Hazia — N =y WA, “
K

where the summation is over the reduced Brillouin zone (RBZ)

bounded by k, & k, = £, and the spinor, \IJ;{[ , 18 defined as

(c; T,c,t i Q,T,c,t, f ,c,i +0.,)- The chemical potential is subtracted

for convenience, N being the number of particles. The matrix
Ak is

€ — U Ay +iWi 0 0

A, — Ak—iWk €k+0 — U 0 0
k= 0 0 € — U Ak — iWk ’

0 0 A +iW; €r+Q — M
Q)
with a generic set of band parameters,

€ = €1k + €, (6)
€1 = —2t(cosk, +cosk,y), ey = 4¢' cos k, cos ky. (7

We may choose t = 0.15 eV, renormalized by about a factor of
2 from band calculations and ¢’ = 0.3¢,and Wy ~ —Ag ~ ¢ ~
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FIG. 2. (Color online) Energy spectra, A; + + i, corresponding
to (iody2_y2 +d,,) density wave. Here, for illustration, we have
chosen Wy =t and Ay = —t and the band parameters, as described
in the text. The chemical potential, x, anywhere within the spectral
gap, the lower band, is exactly half-filled and the system is a Mott
insulator, unlike the semimetallic DDW at half-filling.

J, where J is the antiferromagnetic exchange constant in high-
temperature superconductors, for the purpose of illustration.
Each of the two 2 x 2 blocks can be written in terms of two
component Spinors, Y , = (ck,a,c;#Q,a)T, oc=xl=1,1);
for example, for the up-spin block we have

Hy = Z W;:T[]l(ézk — W)+ €t 4+ At — Wit Ty
k

®)

The eigenvalues (& refers to the upper and the lower bands,
respectively)

Akx = € — £ Ey, Ey =\/€12k+Wk2+A;% )

are plotted in Fig. 2. Since up- and down-spin components
are decoupled, the Chern number for each component can be
computed separately. After diagonalizing the Hamiltonian, we
can obtain the eigenvectors

Oy (k) = (uie ™/ ve 0T (10)
where
1 €1k
2
=_(1+2), 11
73 < Ek) (b
1 €
2 1k
= (1= 12
vi 2 ( :F Ek) 9 ( )
W,
6, = arctan (A—") T 7O(=Ay). (13)
k

To compute the Berry phase of the eigenstates, we define
the Berry curvature, 2, 4, as

-

Qi = iy X (B LK)V P 4 (K)). (14)

Substituting the eigenstates into the above equation, the
Berry curvature can be written as

R R R )
Qo =iV, x [(ui —2)v, (;%‘)] . (15)
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Since u+, v+, and 6 only depend on k, and k,, only the z
component, 2, 1, is nonzero, which is given by

o 0 €1x \ 06k ad €1r\ 00k
Qe =32 | L () 0% 0 (e
2 Lok, \E ) ok, ~ ok, \E. ) ok,

A Wi e
1 AN, OW) 0e€yx
= o | K T ke | (16)
2Ei | ga, ow, ey
9k, ok, 0k,

From the above determinant, we can see that the Berry
curvature will be zero if one of A, and W, is zero, so we need
a mixing of d,>_,» and d,, to have a nontrivial topological
invariant. L. -

If we define the unit vector i, = h,/|h,|, where h, =
(Ay, — 0 Wi,€1), the Berry curvature can be written as

o 1 (oA, Oy -
= —Ng * X .
ok =T ok, ok,

More explicitly, the Chern numbers are

d*k tWoAo

= :I:cr/ — 3
RBZ 2 Ek
= *4o.

(sin® ky + sin k, cos® k) (18)

We can focus on the lower band as long as there is a gap
between the upper and the lower bands. Then,

N=N;_+N,_ =0, (19)
Ngin=N;_ — N, _=(=1)—1=-2 (20)

irrespective of the dimensionful parameters. Note, however,
that the Chern numbers vanish unless both Ay and W, are
nonvanishing. The quantization holds for a range of chemical
potential i, as can be seen from Fig. 2.

For the fully gapped case, there will be a quantized spin
Hall conductance associated with the eigenstates. The ratio
of the dimensions of the quantized spin Hall conductance to
the quantized Hall conductance should be the same as the
ratio of the spin to the charge carried by a particle, since in
two dimensions for both quantities the scale dependence L¢~2
cancels, that is,

o8] _

[oxy]

2y

SIS

So, the quantized spin Hall conductance will be

e* h e

spin __

xy = A 2_6 spin — E
The eigenstates, |\, 1(k)), are also the eigenstates of S? and
S, with eigenvalues S? = % and S; = —7. Since the spin
SU(2) is broken by the triplet DDW, one might wonder if
the Goldstone modes not contained in the Hartree-Fock picture
may not ruin the quantization. If SU(2) is broken down to U(1),
then there is still a quantum number corresponding to, say S,
which is transported by the edge currents in the system. More
succinctly, as long as time-reversal symmetry is preserved, we

(22)
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FIG. 3. (Color online) Spins are flopped perpendicular to the
applied magnetic field H. Contrast with Fig. 1.

will still have Kramers degeneracy in our Hartree-Fock state,
and therefore the edge modes will remain protected.

B. Nonzero magnetic field

In an infinitesimal external magnetic field, H , there will
be a spin flop transition in the absence of explicit spin-orbit
coupling, as shown in Fig. 3. We can assume H = HZ and
the spins quantized along the X direction without any loss of
generality. Then the Hamiltonian now becomes

Hazia = Y VLAY (23)
k

As before, the summation is over the RBZ, and the spinor is
the same. The matrix Aj is now

Eva O 0 Ak + ka
A, = 0 €k+0,1 —Ak - ka 0
k= 0 M+ iWe &y 0 ’
Ay —iWy 0 0 €k+0.1

where €, = ¢ + 0 g”z"H = ¢, + oy. Although the spin-up
and -down components are coupled, particles with momentum
k and spin up only couple to holes with momentum k& + Q and
spin down, and vice versa. Therefore, by redefining the spinor,
\IJkT = (CIE,T’CltJrQ,wClt,i’c/LrQ,?)’ the Hamiltonian can still be

expressed as a block-diagonal matrix: Hyeig = ), \If,,jA'k\IJ,;.
The Chern numbers for each subblock, i = 1,2, can be
calculated as before. Therefore, defining »; = +1 or —1 for
i =1 or2, we obtain Ey; = [(erx + n;y)* + W} + A2]'/2,
and the Berry curvature

1 - (on; ok
Qo=F—h- [T T 24
= Fogg, <8kx 8 Bky> 9

where ﬁi = (n; Ak, — Wi,e1x + n;v). Performing a surface
integration of the Berry curvature, we get

k1o .2 2
= £nitWoAo 3 [sm ky + sin” k, cos” k,

%(COS k, sin’ ky + sin® k, cos ky)]. 25)
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The =+ refers to the upper and the lower band, respectively.
The integral does not depend on the external field, nor on
the magnitude of the parameters ¢, Wy, and Ay. The Chern
numbers are

Ni+ = %1, Nt = N1, + No— =0,
Nspin = Nl,f - NZ,f = -2

(26)

Once again, the spin Hall conductance is quantized but the
charge quantum Hall effect vanishes. The flopped spins carry
the same current as before. The corresponding spin Hall
conductance, as long as the gap survives, is

. e
o= 27)

The eigenstates, |®; (k)), are the eigenstates of S*> with
eigenvalues S° = %, but not eigenstates of S, because of the
mixing of up and down spins.
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C. Bulk-edge correspondence

For the (iod,>_> + d.,) order, the bulk-edge correspon-
dence can be studied by an open boundary condition in the x
direction but a periodic boundary condition in the y direction,
that is, by cutting open the torus. The edge modes, if they exist,
will reside on the ends of the cylinders. The cut then leads to
a Hamiltonian

H=). \y,T,kyA,-‘,-(ky)w,-_ky,
kyi,j

(28)

where the spinoris W; ;= (ci,kmc,',kﬁm,c,',kylc,;kyﬂi)T, and
A;j(ky)isa4N x 4N matrix parametrized by the wave vector
ky, which is given by

Tjky)  Siaky) 0 0
A;iky) = S;rj,T(ky) T;j(ky + ) 0 0
ij(Ky 0 0 ]J;ij(ky) Sij i (ky) )
’ 0 8y,0k) Tijky + )

where T;;(ky) and S;; 5(ky) are N x N matrices:

—u — 2t cosk, —t + 2t cosk, 0
—t 4 2t'cosky, —p — 2t cosk, —t + 2t' cosk, a
T, (ky) = 0 —t 4+ 2t'cosky —u —2tcosk, —t +2t' cosk, 7
: : : ' —1 + 21" cosky
—t +2t'cosky, —p — 2t cosk,

—2cosky, -1 0 1 0

W 1 2cosk, 1 10 -1
Sijuo (ky) = iGTO 0 —1 —2cosk, —I +i=2sink, |01 0 1
: . .. (_l)Nfl . (—l)N
(=D (=1)V2cosk, (—D¥ 0

The corresponding one-dimensional system with N sites
depends on the band structure and the order parameters defined
above.

The eigenvalue spectra are shown in Fig. 4. The spectra,
degenerate for up and down spins, are plotted in the range 0 <
ky < 7 (ky < 0canbe obtained by reflection). To find the edge
states, we choose the chemical potential in the gap. In Fig. 4,
we set u = —0.075 eV for the purpose of illustration. There
are two edge states with positive group velocity, one with up
spin and the other with down spin. Let them be .. 4 and v/ |,
respectively. There are also two edge modes with negative
group velocity denoted as v/ 4 and ¥ | for up spin and down
spin, respectively. By explicitly computing the support of each
of these wave functions, we have verified that electrons in
states .. | and Y. 4 are localized near the left edge of the
system whereas those in states ¥ | and v 4 are localized
near the right edge. The localization length of these states is
essentially a lattice spacing; an example is shown in Fig. 4.

It is interesting to see how these spectra compare with the
one where periodic boundary conditions are applied in both x
and y directions. After diagonalizing the Hamiltonian, we plot

the spectra for a fixed value of k, for all values of the energies.
The results, shown in Fig. 5, are essentially identical to those
in Fig. 4 except that the edge states are missing.

III. FERMI POCKETS AND LIFSHITZ TRANSITION

It is interesting to track the evolution of successive Lifshitz
transitions as we change the parameters. At first, when we
lower the chemical potential, four hole pockets will open
up in the full Brillouin zone, as shown in Fig. 6, and the
corresponding spin Hall effect will lose its quantization but
not the effect itself. But in mean-field theory, this cannot
continue indefinitely with the nodal or the antinodal gaps
fixed. So the parameters W, and A, will also decrease and
will lead to a further opening of two electron pockets in the
full Brillouin zone, as shown in Fig. 6. Ultimately, when
the doping is increased further, the large Fermi surface will
emerge as a further Lifshitz transition. There is good evidence
that such Lifshitz transitions indeed occur in high-temperature
superconductors.
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FIG. 4. (Color online) (a) Spectrum of the triplet (d & id)-density
wave on a cylinder. Parameters are t = 0.15 eV, ¢ =0.3t, u =
—0.075 eV, Wy =t, and Ay = —t. The subscripts L and R to the
spins correspond to left and right modes. (b) The probability density
for positive group velocity for L and R spins for a lattice of N = 100
sites.

IV. EXPERIMENTAL DETECTION

While there are many speculations about the nature of the
pseudogap, they largely fall into two categories: (i) it is a
crossover between a Mott insulator and a Fermi liquid, without
any sharp, coherent excitations, and (ii) it reflects a broken
symmetry, with quasiparticles due to a reconstructed Fermi
surface that, despite strong correlations in the system, can
behave in many ways as weakly interacting particles. The
resolution of this dichotomy will ultimately be settled by
experiments, which, to date, have shown some support for
both. In the absence of definitive evidence one way or the

Ek‘.(ev)
0.8 e -

0.6 _\

~ k,/TI
02 04 06 08 10

FIG. 5. (Color online) The bulk spectra for fixed values of k, with
the same parameters, as in Fig. 4.
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FIG. 6. (Color online) Left: Region plot, u = —0.16 eV. Here, for
illustration, we have chosen W, = t and Ay = —t as before. The hole
pockets open up. Right: Wy = 0.05¢ and Ag = —0.5¢, illustrating the
opening of the electron pockets at (77,0) and symmetry-related points
with enlarged hole pockets.

other, we have adopted the second perspective (to some extent
motivated by recent quantum oscillation experiments) to see
what consequences there may be of having a broken symmetry
phase with sufficiently hidden order, in particular one that has
striking similarities to topological insulators.

A prime characteristic of a broken symmetry is that
deep in the broken symmetry phase, an effective mean
field, or a Hartree-Fock Hamiltonian, suffices in discussing
the properties of matter, and the symmetries alone determine
the excitation spectra and the collective modes. It is only in the
proximity of quantum critical points that such a description
breaks down, but that is not the subject of discussion here.
Moreover, those properties that are determined by symmetries
alone should be robust and can be understood in the weak-
coupling limit, simplifying our task of exploring a correlated
electron system.

The mixed triplet-singlet order parameters considered here
are even more hidden than the corresponding singlet DDW.
Not only do they not modulate charge or spin, but as long as
spin-orbit coupling is absent, they are also invisible to elastic
neutron scattering because there is no associated staggered
magnetic field, as in a singlet DDW.

Inelastic neutron scattering can detect its signature in terms
of a spin gap at low energies in the longitudinal susceptibility
and signatures in the transverse susceptibility of quasi-
Goldstone modes, and even the onset of a finite frequency
resonance mode. Recall that at any finite temperatures SU(2)
symmetry cannot be spontaneously broken in two dimensions;
interlayer coupling is necessary to stabilize it. Thus the scale
of symmetry breaking must be considerably smaller than
t ~ J, and the signature must be sought at higher energies.
It could be a challenge to disentangle the signal from inelastic
spin-density-wave excitations. On the other hand, since the
quasiparticle excitations are essentially identical to the singlet
DDW, the quantum oscillation properties will be similar,'”
except perhaps those in a tilted field,!' which is currently being
explored. The essence of this order parameter is modulation
of spin current and kinetic energy. So, it will require probes
that can detect higher-order correlation functions, such as the
two-magnon Raman scattering. In the presence of modest
spin-orbit coupling, it may be possible to find small shifts of
nuclear quadrupolar frequency (NQR). The modulation of the
kinetic energy arising from the d,, component, in particular
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staggered modulation of ¢, may lead to anomalies in the
propagation of ultrasound'? at a temperature where such an
order is formed, presumably at the pseudogap temperature 7*.
The detection of the unique features of the proposed order
parameter, the spin Hall effect, and edge currents would be
even more challenging.

The effects of nonmagnetic impurities on the mixed triplet-
singlet phase studied here are rather subtle. We expect such
disorder to couple only weakly to spin currents. Generically,
disorder will couple differently to the iod,>_,» and d,,
components since each breaks a different symmetry. However,
by breaking both the point group and lattice translation symme-
tries, disorder can enable mixing with (generally incommensu-
rate) density wave states in other angular momentum channels.
For example, at the level of Landau theory, we expect terms
in the free energy proportional to the product of quadratic
powers of the component order parameters, which would be
proportional to the impurity concentration, thus inducing spin-
or charge-density waves. As long as spin rotational symmetry
is preserved in the normal state, the phase transition into the
iod,>_ state can remain sharp.

From the standpoint of topological order at zero tempera-
ture, the effects of weak disorder are somewhat simpler. Since
the density wave phase considered here is a gapped phase with
topological order that is protected by time-reversal symmetry,
it remains robust against weak nonmagnetic disorder. Thus,
the phase can still be described in terms of its topology at
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zero temperature, a feature that it shares with topological band
insulators.

Lastly, we remark that in the presence of magnetic im-
purities, the phase is not sharply defined, either as a broken
symmetry or in terms of its underlying topology.

In terms of microscopic models beyond the phenomenol-
ogy discussed here, it is almost certain that correlated
hopping processes will play a key role.!* Finally, since
dy_y» and d,, are two distinct irreducible representations
on a square lattice, generically they will each have their
own transition temperatures, as dictated by Landau theory.
The development of the dy, order parameter would be at
a higher temperature compared to the triplet component,
which breaks SU(2) and therefore requires interlayer cou-
pling. Thus it follows that when applied to cuprates there
must be two transitions in the pseudogap regime. Since
the topological phase studied here arises from spontaneous
symmetry breaking, it can support charged skyrmion textures
in analogy with Ref. 14. The properties of such textures and
their transport signatures will be the topic of a forthcoming
publication.
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