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Spin dynamics of a J1 − J2 antiferromagnet and its implications for iron pnictides
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Motivated by the recent observation of antiferromagnetic correlations in the paramagnetic phase of iron
pnictides, we study the finite-temperature spin dynamics of a two-dimensional J1 − J2 antiferromagnet. We
consider the paramagnetic phase in the regime of a (π,0) collinear ground state, using the modified spin wave
theory. Below the mean-field Ising transition temperature, we identify short-range anisotropic antiferromagnetic
correlations. We show that the dynamical structure factor S(q,ω) contains elliptic features in the momentum
space, and determine its variation with temperature and energy. Implications for the spin-dynamical experiments
in the iron pnictides are discussed.
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I. INTRODUCTION

High-temperature superconductivity in the iron pnictides1,2

arises by doping antiferromagnetic parent compounds.3

Hence, the strength of the electronic correlations, the nature of
magnetism, and the relationship between magnetic excitations
and the superconductivity are important issues for understand-
ing the emergence of high-temperature superconductivity in
these materials. In the parent iron pnictides, the Néel transition
into a (π,0) antiferromagnet is either preceded by or concomi-
tant with a tetragonal-to-orthorhombic structural transition.
The (π,0) magnetic order by itself can be understood either
by invoking a local moment J1 − J2 model4–11 or an itinerant
model with nearly nested electron and hole pockets.12–14

The experimentally observed “bad metal” behavior, the
Drude-weight suppression,15,16 and the temperature-induced
spectral-weight transfer16–18 place these materials near to a
Mott transition;4,9,19,20 a Mott insulator can emerge when
the iron square lattice either expands21 or contains ordered
vacancies.22 In a metallic system close to a Mott transition,
quasilocal moments are expected to arise; this picture is further
supported by the experimental observation of zone boundary
spin wave excitations in the magnetically ordered state at low
temperatures.23 The inelastic neutron scattering experiments
demonstrated the need for an anisotropic J1 − J2 model with
J1x �= J1y , which may reflect an orbital ordering24–26 while
pointing to the relevance of magnetic frustration from the
extracted ratio (J1x + J1y)/2J2 ∼ 1.23 Therefore, results in
the tetragonal, paramagnetic phase of the parent compounds
are of great importance for understanding the relevance of an
isotropic J1 − J2 model as well as the strength of the under-
lying magnetic frustration. Recent inelastic neutron scattering
measurements of Diallo et al.27 on the tetragonal, paramag-
netic phase of CaFe2As2 represent a first step in this direction.
Even above the concomitant first-order structural and Néel
transition temperature, they have observed anisotropic spin
dynamics around the (π,0) wave vector, and the inferred ratio
J1/J2 ∼ 0.55 is similar to that of the ordered phase.

Motivated by these experimental results we study the
spin dynamics of a two-dimensional J1 − J2 antiferromagnet.
While theoretical studies exist on the order-from-disorder
phenomenon and phase diagram of the J1 − J2 model,28,29

the spin dynamics in the paramagnetic phase of the model

in the (π,0) collinear regime has not yet been systematically
studied. We carry out the calculations using a modified spin
wave theory,30 which incorporates the 1/S corrections that are
important for capturing the order-from-disorder phenomenon
and the associated dynamical properties. We discuss the
implications of our results for the iron pnictides, including
the role of itinerant electrons.

Our paper is organized as follows. In Sec. II we introduce
the relevant J1 − J2 model and describe the modified spin
wave theory calculations. In Sec. III we analyze the excitation
spectrum obtained from the modified spin wave theory, and
associated behavior of the spin-spin correlation length. In
Sec. IV we analyze the dynamic structure factor calculated
by using the modified spin wave theory results. In Sec. V we
consider the fluctuation effects due to itinerant electrons within
a Ginzburg-Landau framework. In Sec. VI we describe the
relation between our theoretical results and the experimental
data obtained in the paramagnetic phase of iron pnictides. We
provide a summary of our work in Sec. VII. The technical
details of fitting the experimental data and consideration of in-
terplanar exchange coupling using modified spin wave theory
are respectively relegated to Appendix A and Appendix B.

II. MODEL AND MODIFIED SPIN WAVE THEORY

The model is defined by the Hamiltonian

H = J1

∑
〈ij〉

Si · Sj + J2

∑
〈〈ij〉〉

Si · Sj , (1)

where J1 and J2 respectively denote the antiferromagnetic
exchange couplings between spins located in the nearest (〈ij 〉)
and next-nearest neighbor (〈〈ij 〉〉) sites on a square lattice.
Classically, for J2/J1 > αc = 0.5, the lattice decouples into
two independently Néel ordered, interpenetrating lattices, and
the angle φ between the staggered magnetizations of these
two sublattices, as illustrated in the Fig. 1 inset, is arbitrary.
An order-from-disorder transition at temperature Tσ breaks
the fourfold rotational symmetry of the square lattice down to
a twofold rotational symmetry of the rectangular lattice, and
φ = 0,π emerge as degenerate ground states at T = 0.28 Since
quantum fluctuations make αc > 0.5, for definiteness we will
focus on J2/J1 > 1.
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FIG. 1. (Color online) The temperature dependence of the mean-
field parameters, for S = 1 and J1/J2 = 0.8. The decoupled Néel
sublattices are illustrated in the upper right corner, which also defines
the angle φ.

We define a local spin quantization axis along the classical
ordering direction at each site (�cl

i ), as illustrated in an inset
to Fig. 1. We then introduce the corresponding Dyson-Maleev
(DM) boson representation for the spin operators at each site:
Si · �cl

i = S − a
†
i ai , as well as S+

i = √
2S(1 − a

†
i ai/2S)ai

and S−
i = √

2Sa
†
i . The modified spin wave theory30 treats

the self-energy of the a bosons as a static quantity, which
renormalizes their dispersion; in this respect, it is similar to
the large-N Schwinger boson mean-field theory.31 Following
Takahashi,30,32 we express the Hamiltonian, Eq. (1), in terms

of the DM bosons in momentum space. The procedure
is to minimize the free energy F = 〈H 〉 − T S under the
constraint of zero magnetization, 〈S − a

†
i ai〉 = 0, with re-

spect to variational parameters which enter F . These are
the boson dispersion εk, the angle φ, and the Bogoliubov
angle θk. The latter enters in a Bogoliubov transformation
that mixes the operators of the two interpenetrating Néel
sublattices and renders the nonzero temperature density matrix
diagonal.30 The equal time correlators 〈Si · Sj 〉 can be written
in terms of expectation values like 〈a†

i aj 〉. Therefore, we
define ferromagnetic and antiferromagnetic bond correlations
fij = 〈a†

i aj 〉 = 〈aia
†
j 〉 and gij = 〈aiaj 〉 = 〈a†

i a
†
j 〉. The explicit

expressions for the bond correlations are given by

fij = 1

N

∑
k

cosh 2θk

(
nk + 1

2

)
exp(−ik · rij ), (2)

gij = 1

N

∑
k

sinh 2θk

(
nk + 1

2

)
exp(−ik · rij ), (3)

where nk = [exp(εk/T ) − 1]−1 is the Bose occupation factor.
In terms of fij and gij the equal time spin correlator 〈Si · Sj 〉

can be expressed as

〈Si · Sj 〉 = cos2 φij

2

[
S + 1

2
− f (0) + fij

]2

− sin2 φij

2

[
S + 1

2
− f (0) + gij

]2

, (4)

where φij = φ, π − φ, π , for horizontal, vertical, and diag-
onal bonds, respectively (see Fig. 1). Using the expression
for 〈Si · Sj 〉 for different bonds, the total energy can be
written as

E = J1N

2

∑
δ1=±x̂

[
cos2 φ

2

(
S + 1

2
− f (0) + fx

)2

− sin2 φ

2

(
S + 1

2
− f (0) + gx

)2]

+J1N

2

∑
δ2=±ŷ

[
sin2 φ

2

(
S + 1

2
− f (0) + fy

)2

− cos2 φ

2

(
S + 1

2
− f (0) + gy

)2]

−J2N

2

∑
δ3=±x̂±ŷ

(
S + 1

2
− f (0) + gx+y

)2

. (5)

Notice that the expression for total energy only contains the
nearest and next-nearest neighbor bond correlation parameters
fx , fy , gx , gy , and gx+y . The constraint of zero magnetization,
appropriate for T > TN (for the two-dimensional problem
TN = 0), is enforced by the Lagrange multiplier μ. Minimizing
E − T S − μf (0) with respect to εk, φ, θk, we obtain
tanh 2θk = Ak/Bk, εk =

√
B2

k − A2
k and sin φ(f 2

y + g2
y − f 2

x −
g2

x) = 0, where

Ak = 2J1

(
sin2 φ

2
gxCx,k + cos2 φ

2
gyCy,k

)
+ 4J2 gx+yCx+y,k, (6)

Bk = 2J1

(
sin2 φ

2
(gx − fy) + cos2 φ

2
(gy − fx)

)

+ 2J1

(
cos2 φ

2
fxCx,k + sin2 φ

2
fyCy,k

)
+ 4J2 gx+y−μ,

(7)

and we have introduced the form factorsCx,k = cos kxa,Cy,k =
cos kya, and Cx+y,k = cos kxa cos kya. Now using tanh 2θk =
Ak/Bk in Eq. (3), we obtain the following set of self-consistent
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equations:

fα = 1

N

∑
k

Bk

εk

(
nk + 1

2

)
Cα,k, α = x,y, (8)

gα = 1

N

∑
k

Ak

εk

(
nk + 1

2

)
Cα,k, α = x,y,x + y, (9)

S + 1

2
= f (0) = 1

N

∑
k

Bk

εk

(
nk + 1

2

)
. (10)

We identify two important temperature scales T0 and Tσ0

such that T0 > Tσ0, by solving the self-consistent equations.
The temperature T0 = J2(S + 1/2)[log(1/S + 1)]−1 marks the
onset of the largest bond correlation gx+y , while Tσ0 marks
the onset of nearest-neighbor bond correlations. For T > T0,
all the bond correlations vanish and we have decoupled
local moment behavior. The first-order transition from the
correlated to decoupled moment state at T0 is an artifact of the
mean-field theory.30 In the temperature range Tσ0 < T < T0,
the sublattice angle φ remains arbitrary, and the system has C4v

rotational symmetry. For T < Tσ0 there are two degenerate
solutions φ = π , with gy = fx = 0,gx �= 0,fy �= 0,gx �= fy ,
and φ = 0, with x ↔ y switching. An Ising order parame-
ter, which is defined classically as σ = �1 · �2 = cos φ, is
modified to σ ∝ 2( cos2 φ

2 (f 2
x + g2

y) − sin2 φ

2 (f 2
y + g2

x)), and
becomes nonzero below Tσ0. We identify this temperature as
the mean-field “Ising transition” temperature; fluctuations will
reduce the actual transition to Tσ < Tσ0. In the following,
we will focus on the state with φ = π . The spectrum is
gapped at any nonzero temperature, but becomes gapless at
T = 0 giving rise to (π,0) antiferromagnetic order via a Bose
condensation.

III. LOW-ENERGY SPECTRUM AND
CORRELATION LENGTH

The boson dispersion εk is shown in Fig. 2. For φ = π

and T 	 Tσ0, the low-energy physics is governed by the
excitations in the vicinity of the ordering vector (π,0), where
the absolute minimum of the dispersion is located. Near (π,0),
the dispersion can be approximated by

εk = [
v2

1x(π − kx)2 + v2
1yk

2
y + 
2

1

]1/2
, (11)


1 = [−μ(8J2gx+y + 4J1gx − μ)
]1/2

, (12)

v1x = a(4J2gx+y + 2J1gx), (13)

v1y = a[(4J2gx+y + 2J1gx)(4J2gx+y − 2J1fy)

+2J1fyμ]1/2. (14)

Similarly in the vicinity of (0,π ), the excitation can be
approximated as

εk = [
v2

2xk
2
x + v2

2y(π − ky)2 + 
2
2

]1/2
, (15)


2 = [(8J2gx+y − 4J1fy − μ)(4J1gx − 4fy − μ)]1/2,

(16)

v2x = a(4J2gx+y − 2J1gx), (17)

FIG. 2. (Color online) The dispersion εk along high symmetry di-
rections in the paramagnetic Brillouin zone for different temperatures
and S = 1, J1/J2 = 0.8. The curves from top to bottom viewed at the
left end are for T/J2 = 0.5,1.0,2.0,2.1,2.2. The plotted directions in
the Brillouin zone are displayed in the upper right corner.

v2y = a[4J2gx+y(4J2gx+y − 2J1gx) + 2J1fy(4J2gx+y

+ 2J1gx − 4J1fy − μ)]1/2. (18)

At low temperatures T 	 Tσ0, the Lagrange multiplier μ is
exponentially small, and 
1 	 
2. Therefore the spin-spin
correlation length at low temperatures will be dominated by the
smallest gap 
1 = T exp[−
J /T ], where 
J = 2πρ is the
Josephson energy, with ρ = m0v1y being the stiffness and m0

the staggered magnetization at T = 0. The velocity anisotropy
yields two correlation lengths, ξx = v1x/
1 and ξy = v1y/
1.

The low-energy excitations around (π,0) can also be
described in terms of an anisotropic O(3) nonlinear sigma
model. Ignoring the 1/S corrections and weak temperature
dependence of the bond parameters, we can take gx =
fy = gx+y = S, and obtain bare parameters of the sigma
model χ−1

⊥0 = 4(2J2 + J1)a2, ρx0 = (2J2 + J1)S2, and ρy0 =
(2J2 − J1)S2. The spatial anisotropy is captured by two
direction-dependent spin stiffness constants ρx0 and ρy0, and
χ⊥0 is the bare uniform transverse susceptibility. The spin
wave velocities before 1/S corrections are given by v1x =√

ρx0/χ⊥0 and v1y = √
ρy0/χ⊥0. The temperature dependence

of the gap is determined by the bare Josephson energy scale


J0 = 2πρ0 = 4πJ2S
2

√
1 − J 2

1

4J 2
2

, (19)

where ρ0 = √
ρx0ρy0 is the bare, geometric mean stiffness

constant. For parameter values S = 1 and J1/J2 = 0.8, we
find 
J0 = 11.5J2. After solving the mean-field equations,
we obtain the Josephson energy scale


J = πmv1y

a
= πm[(4J2gx+y + 2J1gx)(4J2gx+y − 2J1fy)

+ 2J1fyμ]1/2, (20)

where m is the staggered magnetization at zero temperature
and captures the 1/S corrections to 
J . For S = 1, J1/J2 =
0.8, we have found the zero-temperature parameters m = 0.83,
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gx = 0.96, fy = 0.91, gx+y = 1.07, and 
J = 10.54J2. Note
that at T = 0, our calculation is consistent with that of Ref. 11.
More details regarding the renormalized ρ and 
J obtained
from a sigma model calculation will be discussed in Sec. V.
Above Tσ0, the nearest-neighbor bond correlations vanish, and
two gaps become equal, 
1 = 
2 = √−μ(8J2gx+y − μ). As
the C4v symmetry is restored above Tσ0, the velocity anisotropy
disappears and v1x = v1y = v2x = v2y = 4J2gx+ya.

IV. DYNAMIC STRUCTURE FACTOR

The dynamic structure factor is calculated in the modified
spin wave theory through the average of the longitudinal and
transverse spin structure factors. It is expressed as

S(q,ω) = 1

N

∑
k

∑
s,s̄=±1

[cosh(2θk+q − 2θk) − ss̄]

× δ(ω − sεk+q − s̄εk)ns
k+qn

s̄
k, (21)

where n+
k = nk + 1 and n−

k = nk.
Consider first ω 	 T , and low temperatures T 	 
J . The

dominant contribution to S(q,ω) comes from the vicinity of
the (π,0) wave vector. In the limit |π − qx | 	 λ−1

x = T/vx

and qy 	 λ−1
y = T/vy , we can analytically31,33,34 calculate

S(q,ω), which satisfies a dynamic scaling relation

S(π − qx,qy,ω) = τS0(π − qx,qy)�(z,ωτ ), (22)

where S0(π − qx,qy) is the equal time structure factor, and
τ = 
−1

1 is the scaling time. S0 also satisfies a scaling
form S0(π − qx,qy) = ξxξy/(4πλ2

y)�(z), where z = [ξ 2
x (π −

qx)2 + ξ 2
y q2

y ]1/2/2. The scaling functions are given by

�(x,y) = 1

2�(x)|y|
√

x2 + (x2 − y2)2

(
�(x2 − y2)

2

π

× arctan

[
|y|

√
x2 − y2

x2 + (x2 − y2)2

]

+�(y2 − x2 − 1)

)
,

�(z) = log[z + √
1 + z2]

z
√

1 + z2
. (23)

When z → 0, �(z) → 1, and for z � 1, �(z) → log(z)/z2.
The second limit corresponds to momentum scales between
inverse correlation length and inverse thermal length, where
the system appears to have long-range order (Goldstone mode
behavior). The results for S0 are in agreement with one loop
scaling results of a quantum nonlinear sigma model.35,36

A number of features follow from Eqs. (22) and (23). As
a function of energy for a fixed q with z � 1, S(q,ω) has a
broad peak around ω ∼ z/τ . As a function of q for a fixed
ω, S(q,ω) sharpens as temperature is reduced reflecting the
increase of correlation length; this is also seen from the results
of direct numerical calculations (Fig. 3). In the numerical
calculations of S(q,ω) in Eq. (21), a Lorentzian broadening
of the delta functions has been employed, and consequently
the gap between ωτ < z and ωτ >

√
z2 + 1 is not observed in

Fig. 3 but is instead left as shoulders. The processes beyond the

 10

 100

 0.85  0.9  0.95  1  1.05  1.1  1.15

S
(q

x,
0,

ω
)

qx/π

ω/J2=0.3

T/J2=0.5
T/J2=1.0
T/J2=1.5
T/J2=2.0

FIG. 3. (Color online) The sharpening of the dynamic structure
factor around (π,0) with decreasing temperature for ω = 0.3J2, S =
1, and J1/J2 = 0.8.

modified spin wave theory are expected to smear the two-peak
structure and also modify the scaling time τ to the phase
coherence time ∼ (
J /T )1/2/
1.35,36

Beyond the ω 	 T limit, we focus on the distribution of
spectral weight in momentum space. Figures 4(a) and 4(b)
illustrate the behavior at low energies. Provided T < Tσ0, the
anisotropy of the correlation lengths gives rise to an elliptic
feature centered around (π,0). The overall size of the ellipses is
reduced as the temperature is decreased, reflecting increasing
correlation lengths. On the other hand, the ellipticity has only
weak temperature dependence; the ratio of two correlation
lengths is almost unaffected by temperature variations for T 	
Tσ0, due to the weak temperature dependence of the velocity
ratio v1x/v1y .
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FIG. 4. (Color online) Distribution of the dynamic structure factor
in the momentum space for different temperatures and energies.
The temperatures and frequencies corresponding to panels (a)–(d)
are respectively given by (a) T/J2 = 0.5, ω/J2 = 2.0; (b) T/J2 =
2.1, ω/J2 = 2.0; (c) T/J2 = 2.1, ω/J2 = 3.0; (d) T/J2 = 2.1,
ω/J2 = 4.5.
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With increasing energy, the evolution of the spectral weight
distribution is illustrated in Figs. 4(b)–4(d). At intermediate
energies, when ω is comparable to the peak energy in the dis-
persion εk (see Fig. 2), there are features near ((1 ± 1/2)π,0),
whose spectral weight is relatively small at the temperature
shown in Fig. 4(c) but will increase with lowering temperature.
The most visible spectral feature, however, is associated with
the expanding ellipses surrounding (±π,0) and (0, ± π ), as is
clearly seen in the high-energy spectrum shown in Fig. 4(d).

V. THE ROLE OF ITINERANT ELECTRONS AND
GINZBURG-LANDAU CONSIDERATIONS

A. Antiferromagnetic fluctuations

The description of the iron pnictides in terms of bad metals
invokes quasilocalized moments coupled to itinerant electrons
whose spectral weight depends on the proximity of the system
to the Mott transition.9 For the parent compounds, the low-
energy spin dynamics can be described in terms of a Ginzburg-
Landau functional9 S = S2 + S4 + · · · , where

S2 =
∫

dqdω
[
(r + wAQ + cq2 + ω2 + γ |ω|)(m2 + m′2)

+v
(
q2

x − q2
y

)
m · m′], (24)

where m and m′ are O(3) vectors respectively for the
magnetizations of the two decoupled sublattices, qx and qy

are measured with respect to (±π,0) or (0, ± π ), w < 1 is
the coherent fraction of the single-electron spectral weight,
and γ is the strength of spin damping caused by the coupling
to the itinerant electrons. S4 contains not only terms of the
form m4, m′4 and m2m′2, but also an order-from-disorder term
(m · m′)2 with a negative coefficient.28 Equation (24) implies
that elliptic features will occur in the dynamical responses even
in the regime where the Ising order is not static but fluctuating
and short ranged; the primary role of the itinerant electrons,
beyond shifting r through the positive wAQ term, is to provide
damping effects to such features.

Well below the mean-field Ising transition temperature,
the thermal fluctuations of the Ising order parameter σ =
±〈m · m′〉/|m||m′| in the effective action of Eq. (24) can
be ignored. The choice of σ = ± respectively correspond to
short-range (π,0) or (0,π ) order. For short-range (π,0) order,
m − m′ becomes gapped and we find that order parameter
dynamics can be approximately determined in terms of a single
O(3) order parameter field M = m + m′. The effective action
for this field at quadratic order is given by

S2 ≈ T

∫
dq

∑
l

[
r + wAQ + q2

xv
2
x

+ q2
yv

2
y + ω2

l + γ |ωl|
]
M2, (25)

where v2
x/y = (c ± v/4), and ωl = 2πT l is the Matsubara

frequency. With the further assumption of small-amplitude
fluctuations, we can write M = M0n, where M0 is the constant
amplitude, and n is the unit vector field. Thus low-energy dy-
namics is now determined by a damped, anisotropic nonlinear

sigma model. We consider the following damped nonlinear
sigma model action:

Seff = T

2vg

∫
d2q

∑
l

[
v2q2 + ω2

l + γ |ωl|
] |n(q,ωl)|2.

(26)

In writing the above equation we have rescaled
√

vy/vxqx →
qx , and

√
vx/vyqy → qy , and v = √

vxvy , to write the action
in spatially isotropic form, and g = v/ρ = v−1χ−1

⊥ is the
coupling constant with dimension of length. The scaling
behavior of the correlation length in the quantum disorder
phase and quantum critical regime for this damped nonlinear
sigma model has been analyzed in Ref. 44. Here we will only
consider the thermally disordered or renormalized classical
regime. In the large-N limit, the gap in the excitation spectrum

 can be determined from the saddle-point equation

T
∑

l

∫
�̄

d2q

(2π )2

1

v2q2 + ω2
l + γ |ωl| + 
2

= 1

vg
, (27)

where �̄ ∼ π/a is the momentum cutoff. The Matsubara sum
can be performed in terms of digamma functions, and after
the momentum integration the left-hand side can be expressed
in terms of the logarithm of the gamma function. Here we
consider two extreme limits of γ /(2πT ) 	 1 and γ /(2πT )
� 1.

In the limit γ /(2πT ) 	 1, we obtain the z = 1 nonlinear
sigma model result

sinh



2T
= sinh

v�̄

2T
exp

(
2πv

gT

)
. (28)

In the limit of small temperatures, such that v�̄ � T , and

 	 T , we obtain the result for the small γ limit,


 = T exp

(
−2πv

T

(
1

g
− 1

gc1

))
= T exp

(
−2πρ

T

)
,

(29)

where gc1 = 4π/�̄ is the coupling strength for the zero-
temperature z = 1 quantum critical point, and ρ is the
renormalized spin stiffness constant. From this expression we
find ξ = v/T exp( 2πρ

T
) in the renormalized classical regime

described by T 	 2πρ. For 2πρ � T , one obtains z = 1
quantum critical behavior ξ ∼ v/T . If we go beyond the
N → ∞ limit, or perform a two loop renormalization group
calculation in the renormalized classical regime, we will find
the correct classical result ξ ∼ exp( 2πρ

T
).34,35

For γ /(2πT ) � 1, the physical properties are governed
by a z = 2 nonlinear sigma model. The frequency sum is
performed after imposing a frequency cutoff ωc = v2�̄2/γ ,
and after performing the momentum integration we obtain

2πv

gT
= log

v�̄



+ log �

(
1 + 2v2�̄2

2πγT
+ 
2

2πγT

)

−2 log �

(
1 + v2�̄2

2πγT
+ 
2

2πγT

)
+ log �

(
1 + 
2

2πγT

)
.

(30)

155108-5



PALLAB GOSWAMI, RONG YU, QIMIAO SI, AND ELIHU ABRAHAMS PHYSICAL REVIEW B 84, 155108 (2011)

Now in the limit 2v2�̄2/(2πγT ) � 1 and 
2/(2πγT ) 	 1,
we can use the asymptotic behavior of the log �(1 + x) to
obtain the gap 
 at large Landau damping,


 = v�̄ exp

(
−2πv

T
(1/g − 1/gc2)

)
= v�̄ exp

(
−2πρ

T

)
,

(31)

with 1/gc2 = (v�̄2)(2 log 2 − 1)/(4π2γ ). Notice that correct
renormalized classical behavior of the correlation length for
large Landau damping is found from the saddle-point equation.
For 2πρ 	 T we find z = 2 quantum critical behavior 
 ∼√

2πγT , augmented by logarithmic corrections. From the
expressions of gc1, gc2 we find that the stiffness for the z = 2
case is smaller than the z = 1 case. This reflects the role of
Landau damping.

To summarize, in the limits of both small and large Landau
damping, the correlation length has an exponential temperature
dependence in the renormalized classical regime. This will be
the basis of our fitting the correlation length, which is described
in Appendix A.

If we consider the effects of the interlayer antiferromagnetic
exchange coupling Jz in addition to the J1 − J2 model by
using modified spin wave theory (see Appendix C), we obtain
a finite mean-field antiferromagnetic transition temperature
TN0. Within the Ginzburg-Landau framework this corresponds
to setting r(T ) = 0. The fermion contribution wAQ being
positive will decrease the transition temperature from the
mean-field value TN0 to a smaller value TN . However there
will be a significant amount of three-dimensional antiferro-
magnetic fluctuations up to the mean-field Néel temperature
TN0. Above TN0 the magnetic fluctuations are essentially two
dimensional.

B. Ising fluctuations

Since the Ising order parameter breaks C4v symmetry,
and in particular corresponds to B1g representation of the
tetragonal lattice, it will couple to all the singlet fermion
bilinears, which correspond to B1g representation. Without
the loss of generality if we consider a two-orbital model of
fermions including only dxz and dyz orbitals, the Ising order pa-
rameter σ will couple to (cos kx − cos ky)�†

ks�ks , �
†
ksτ3�ks ,

(cos kx + cos ky)�†
ksτ3�ks , and cos kx cos ky�

†
ksτ3�ks , etc.,

where �
†
ks = (c†xz,ks ,c

†
yz,ks) describes the orbital and spin

dependent fermion creation operators and the Pauli matrix τ3

acts on the orbital basis. Among the various B1g bilinears,
the conventional nematic order parameter and the ferro-
orbital order parameter respectively correspond to (cos kx −
cos ky)�†

ks�ks and �
†
ksτ3�ks . Notice that we can couple

other d orbitals, following the same symmetry-based criterion.
When we integrate out the itinerant fermions, the contributions
to the Ising order parameter σ will arise from generalized
B1g particle-hole susceptibilities, and the quadratic part of the
low-energy action for σ will have the form

S2[σ ] =
∫

dq
∑

l

[
rσ + wA0 + q2 + γσ

|ωl|
q

]
|σ (q,ωl)|2.

(32)

In the above equation γσ is the Landau damping strength,
and rσ is the mass term arising from the localized model,
and wA0 > 0 is the fermion contribution to the Ising mass.
This fermionic contribution will suppress the Ising transition
temperature from its mean-field value Tσ0 to Tσ . But, the
correlation length of the Ising order parameter will remain
appreciable up to the mean-field temperature Tσ0. Since the
Ising transition occurs due to in-plane magnetic fluctuations,
consideration of interlayer coupling does not significantly
modify the Ising correlations.

When we consider the magnetic and Ising order parameter
fluctuations on the same footing, further changes in the
transition temperatures will arise from the self-interaction
of σ , m, m′, and their mutual interaction σm · m′. The
interplay of Ising and magnetic order parameters and their
self-interactions are crucial to determining whether there
will be a concomitant first-order transition or two separate
second-order phase transitions. Despite the suppression of
actual transition temperatures and the possible complexity
regarding the actual nature of the transitions, we still expect
that the correlation lengths of the magnetic and the Ising order
parameters will remain sizable up to their respective mean-field
transition temperatures.

VI. IMPLICATIONS FOR IRON PNICTIDES

Our detailed theoretical studies provide the basis to
understand the anisotropic spin responses that have been
observed in the paramagnetic phase of the parent iron pnictides
CaFe2As2.27 These observations, made at temperatures above
the first-order antiferromagnetic/structural transition, can be
understood if the transition temperature is assumed to be
considerably lower than the mean-field Ising transition temper-
ature by the effects of fluctuations and coupling to phonons. To
compare our theoretical results with the experiments of Ref. 27
we have fitted the low-frequency experimental data with the
dynamic structure factor calculated within the saddle-point
approximation of an anisotropic, damped nonlinear sigma
model, which follows from the action of Eq. (24). Within the
saddle-point approximation the imaginary part of the staggered
susceptibility is given by

χ ′′(q − Q,ω) = χ−1
⊥ γω

γ 2ω2 + [
ω2 − v2

x(qx − π )2 − v2
yq

2
y − 
2

]2 .

(33)

The velocities of the effective model are taken from the
modified spin wave calculations. The details of our procedure
are provided in Appendix A.

The comparison of our results with those of Ref. 27 is
shown in Fig. 5. The calculated elliptic features of S(q −
Q,ω) [Fig. 5(a)] is compatible with that seen experimentally
[Fig. 5(b)] at low frequencies. This continues to be the case
at higher frequencies, as shown in Figs. 5(c) and 5(d). The
experimental results in the paramagnetic phase are consistent
with our conclusions that as temperature is lowered, the peaks
in the momentum space sharpen but the ellipticity is only
weakly affected. Our estimated values of exchange constants
are consistent with those of Ref. 27. When ω is smaller than
the excitation gap 
, the dynamic structure factor is peaked at
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FIG. 5. (Color online) Panels (a) and (b) respectively demonstrate
S(q − Q,ω = 12 meV) at T = 180 K obtained from our theory and
data of Ref. 27. Panels (c) and (d) respectively demonstrate S(q −
Q,ω = 39 meV) at T = 180 K obtained from our theory and data of
Ref. 27. We have used J1/J2 = 0.55 (Ref. 27), J2 = 9.8 meV, and
γ = 47 meV. To facilitate the comparison with experimental result,
we have plotted here in the Brillouin zone corresponding to the two-Fe
unit cell instead of that for the one-Fe unit cell used in the rest of the
paper.

q = Q. For ω > 
, the intensity peak gets shifted to |q − Q| =√
ω2 − 
2/v as shown in Fig. 5(c), and the ω2 term in the

dynamics is important to capture this feature also observed in
the experiment as shown in Fig. 5(d).

Interlayer magnetic couplings in the parent iron arsenides
vary considerably among the materials, but are always
relatively weak. In Ref. 27, the interlayer coupling Jz in
paramagnetic CaFe2As2 was shown to be very weak, with
Jz/J2 = 0.1, being smaller than its counterpart in the mag-
netically ordered phase at low temperature. Consideration
of such a weak interlayer coupling does not appreciably
change the estimated exchange constants and the in-plane spin
dynamics. An estimation of the spin stiffness constant using
a renormalized classical approximation for the correlation
length shows that both fermion-induced moment reduction
and Landau damping can sufficiently renormalize the stiffness
constant (see Appendix A). In Appendix B we have considered
the effects of the weak interlayer exchange coupling Jz using
the modified spin wave theory. For Jz/J2 = 0.1 the mean-field
Néel temperature TN0 and the mean-field Ising transition
temperature Tσ0 become very close. However as we have
discussed in Sec. V, despite the suppression of the actual
transition temperature due to various fluctuation mechanisms,
the magnetic and the Ising correlation lengths remain sizable
up to the mean-field transition temperatures. In the temperature
regime TN < T < TN0, there are three-dimensional antifer-
romagnetic fluctuations. However if we consider the ratio
of the in-plane and interplane correlation lengths (measured
in units of corresponding lattice spacing), we find ξz/ξx ≈
[Jz/(2J2 + J1)]1/2. This ratio is of course material dependent.
For weak inter-layer coupling of Ref. 27, this ratio is

∼0.2, and magnetic fluctuations are indeed quasi-two-
dimensional.

Finally our discussion regarding the effect of itinerant
electrons is most pertinent to the parent systems, but is consis-
tent with the experimental observation of similar low-energy
anisotropic responses in the carrier-doped iron pnictides.37–39

VII. SUMMARY AND CONCLUSIONS

We have addressed the spin dynamics in the paramag-
netic phase of a two-dimensional J1 − J2 antiferromagnet
on a square lattice at a finite temperature, using modified
spin wave theory. Within the modified spin wave theory
we have identified a mean-field Ising transition temperature
Tσ0, below which the C4v symmetry of the square lattice
is spontaneously broken. In the Ising ordered phase the
system demonstrates short-range (π,0) or (0,π ) antiferro-
magnetic order. In order to systematically understand the
finite-temperature spin dynamics in the paramagnetic phase
of iron pnictides, we have described the fermionic contri-
butions and self-interaction effects of the order parameter
fields within a Ginzburg-Landau framework. We have found
that the fermion contribution and the self-interaction effects
can considerably decrease the Néel and the Ising transition
temperatures from their corresponding mean-field values.
However the correlation lengths of the magnetic and Ising
order parameters can remain appreciable up to the mean-
field transition temperatures. Based on this assumption, we
have fitted the experimental data of Ref. 27, using our
theoretical results. The calculated anisotropic features of the
spin response are compatible with experiments for different
frequencies.

Finally, our calculations of the spin fluctuations at high
energies should help understand future experiments. The
high-energy spin spectrum at the low-temperature ordered
state of CaFe2As2 (Ref. 23) has already provided valuable
information on the x-y anisotropy of the exchange interactions.
Similar experiments have recently been reported in BaFe2As2

(Ref. 40) and SrFe2As2 (Ref. 41), including at temperatures
just above the Néel transition where strong orbital anisotropy
has developed.42,43 It will be instructive to experimentally map
out the high-energy spectrum at higher temperatures in the
paramagnetic phase.
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APPENDIX A: PROCEDURE FOR COMPARING WITH
THE EXPERIMENTAL DATA

We analyze the experimental data of Ref. 27 by using the
imaginary part of the staggered susceptibility χ (q − Q,ω),
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FIG. 6. (Color online) Comparison between the correlation
lengths ξ = √

ξxξy extracted from our fitting and that of Ref. 27.
The fitted spin stiffness constants are shown in the inset.

which is calculated within the saddle-point approximation for
Eq. (26). From the saddle-point calculation we find

χ ′′(q − Q,ω) = χ−1
⊥ γω

γ 2ω2 + [
ω2 − v2

x(qx − π )2 − v2
yq

2
y − 
2

]2 .

(A1)

At q = Q, we have

χ ′′(0,ω) = χ−1
⊥ γω

γ 2ω2 + (ω2 − 
2)2
, (A2)

where χ⊥ is the uniform transverse susceptibility. We calculate
the velocities vx and vy using Eq. (13) and Eq. (14), and
for the exchange constants we choose J2 = 10 meV and
J1 = 0.55J2 = 5.5 meV, as determined by Diallo et al.27 By
fitting the experimental data we determine the temperature-
independent Landau damping strength γ and the temperature-
dependent gap 
. By fitting the data for χ ′′(0,ω) at T = 180 K
with the formula from Eq. (A2), we find the Landau damping
strength γ and the gap 
 at 180 K. At low frequencies, Eq.
(A2) can be further approximated by a Lorentzian with a width
�T ≈ 
2/

√
γ 2 − 2
2. At the relatively low temperature of

180 K, the Lorentzian form is a good fit to Eq. (A2) up to
frequencies of about 40 meV, and �T = 7 meV. At the high
temperature of 300 K, the Lorentzian form, which becomes a
poorer fit to Eq. (A2) over the same frequency range, yields
�T = 44 meV. The definition of the energy linewidth as �T

is the same notation as used in Ref. 27, but the constant

γ used in Ref. 27 is not the conventional Landau damping
strength and has a different meaning from ours. Our estimation
is γ = 47 meV. For the available data at nonzero q − Q at
different temperatures, we use the value of γ so determined,
and find the 
 at different temperatures. Using the values of
vx , vy , and 
, we find the correlation length ξx and ξy . The
comparison of our theoretically calculated dynamic structure
factor with the fitted parameter values, and the experimental
results at low frequency 12 meV, is shown in Fig. 5(a) and
Fig. 5(b). Even at higher energy ω = 39 meV our results
for the dynamic structure factor are in reasonable agreement
with experimental data, and the comparison for this frequency
is shown in Fig. 5(c) and Fig. 5(d). The consideration of
the ω2 term in the effective action leads to an interesting
feature of the dynamic structure factor. For low frequencies
such that ω < 
, χ ′′(q − Q,ω) is peaked at q = Q. But
at higher frequencies such that ω > 
, the intensity peak
occurs away from the antiferromagnetic wave vector and
its location is determined by |q − Q| = √

ω2 − 
2/v. This
shift in the intensity peak can clearly seen by comparing
Fig. 5(a) and Fig. 5(c). Similar shift in the intensity peak
can also be seen in the experimental results by comparing
Fig. 5(b) and Fig. 5(d). For the correlation length we have
compared our and experimental results in Fig. 6 by plotting the
temperature dependence of the geometric mean of ξx and ξy .
By fitting the correlation length with the renormalized classical
formula, we have obtained an estimation for the stiffness
constant. The fermion-induced reduction of the magnetic
moment M0 and Landau damping are found to significantly
reduce the stiffness constant in comparison to a pure J1 − J2

model.

APPENDIX B: EFFECTS OF INTERLAYER EXCHANGE
COUPLING

The quasi-2D nature of the spin dynamics was clearly
shown in Ref. 27. To explain the observed (π,0,π ) antifer-
romagnetic order, an interlayer antiferromagnetic coupling Jz

was assumed and Jz was estimated to be ∼ 0.1J2. To assess
the effects of Jz on the spin dynamics we first incorporate the
three-dimensional effects in our modified spin wave theory
calculations. For simplicity we assume the sublattice angle
φ = π . The modification to our discussion in Sec. I comes
through an additional interlayer antiferromagnetic bond corre-
lation parameter gz. The Ising transition will be determined by
the vanishing of in-plane nearest neighbor bond correlations
gx and fy . In the presence of Jz, there is a finite, mean-field
antiferromagnetic transition temperature TN0, corresponding
to Bose condensation of a’s. The expression for total energy
in Eq. (5) changes into

E = −J1N

2

∑
δ1=±x̂

(
S + 1

2
− f (0) + gx

)2

+ J1N

2

∑
δ2=±ŷ

(
S + 1

2
− f (0) + fy

)2

− J2N

2

∑
δ3=±x̂±ŷ

(
S + 1

2
− f (0) + gx+y

)2

− JzN

2

∑
δ1=±ẑ

(
S + 1

2
− f (0) + gx

)2

, (B1)
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FIG. 7. (Color online) Panel (a) shows the comparison between
the mean-field Néel temperature TN0 and mean-field Ising transition
temperature Tσ0, as a function of the interplanar coupling Jz, for
J1/J2 = 0.8 and S = 1. Panel (b) shows the temperature dependence
of different mean-field parameters for Jz/J2 = 0.1.

and the expressions for Ak and Bk are modified according to

Ak = 2J1gxCx,k + 4J2 gx+yCx+y,k + 2JzgzCz,k, (B2)

Bk = 2J1(gx − fy) + 2J1fyCy,k + 4J2 gx+y − μ + 2Jzgz,

(B3)

where Cz,k = cos kzc, and c is the interlayer separation.
After accounting for the possibility of a finite staggered
magnetization below TN0, the mean-field equations are given
by

fy = m0 + 1

N

′∑
k

Bk

εk

(
nk + 1

2

)
Cy,k; (B4)

gα = m0 + 1

N

′∑
k

Ak

εk

(
nk + 1

2

)
Cα,k, α = x,x + y,z;

(B5)

S + 1

2
= m0 + 1

N

′∑
k

Bk

εk

(
nk + 1

2

)
. (B6)

For S = 1, J1/J2 = 0.8, c = a, the dependence of TN0

and Tσ0 on Jz/J2 are shown in Fig. 7(a). The temperature
dependence of the mean-field bond parameters for Jz/J2 = 0.1
are shown in Fig. 7(b). With increasing Jz, the Néel tem-
perature gradually increases and asymptotically approaches
Tσ0. Since the mean-field Ising transition is a consequence
of the two-dimensional magnetic fluctuations, Tσ0 is not
modified by the finite interlayer coupling Jz. For Jz/J2 = 0.1
and J2 ∼ 10 meV we obtain TN0 ≈ Tσ0 ∼ 240 K, which is
much higher than the actual Néel and structural transition
temperature. Therefore the fluctuating anisotropy effects will
be important over a wide range of temperature, and the finite
Jz does not change this conclusion.

Below Tσ0, by expanding the dispersion around Q =
(π,0,π ), we obtain

εk = [
v2

x(π − kx)2 + v2
yk

2
y + v2

z (π − kz)
2 + 
2

]1/2
, (B7)


 = [−μ(8J2gx+y + 4J1gx + 4Jzgz − μ)]1/2,

μ = 0, for T < TN, (B8)

vx = a[(4J2gx+y + 2J1gx)(4J2gx+y + 2J1gx

+2Jzgz)]
1/2, (B9)

vy = a[(4J2gx+y + 2J1gx + 2Jzgz)(4J2gx+y − 2J1fy)

+2J1fyμ]1/2, (B10)

vz = c[(4J2gx+y + 2J1gx + 2Jzgz)2Jzgz]
1/2. (B11)

We further notice that the velocities are well approximated by

vx ≈ 2Sa(J1 + 2J2)

√
1 + Jz

J1 + 2J2
, (B12)

vy ≈ vx

√
2J2 − J1

2J2 + J1
, (B13)

vz ≈ vx

c

a

√
Jz

2J2 + J1
, (B14)

and even in the presence of finite Jz, the ratio vy/vx remains
unchanged. For Jz/J2 = 0.1 and c/a ≈ 3.026,27 we obtain
vz/vx ∼ 0.6, and this leads to smaller interplanar correlation
length (ξz < ξx,

√
ξxξy). In our comparison with experiments

we have looked at the data that correspond to in-plane
dynamics, i.e., q − Q = (qx − π,qy,0), and consequently all
the formulas remain unaffected. We also note that the effects
of interplanar coupling inside the magnetically ordered phase
have been considered in Refs. 45–47 using similar tech-
niques. However our results are derived for the paramagnetic
phase and are essentially different from those described in
Refs. 45–47.
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25F. Krüger, S. Kumar, J. Zaanen, and J. van den Brink, Phys. Rev. B

79, 054504 (2009).
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