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Transient behavior of full counting statistics in thermal transport
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The generating function of energy counting statistics is derived for phononic junction systems. It is expressed
in terms of the contour-ordered self-energy of the lead with shifted arguments, �A(τ,τ ′) = �L[τ + h̄x(τ ),τ ′ +
h̄x(τ ′)] − �L(τ,τ ′), where �L(τ,τ ′) is the usual contour-ordered self-energy of the left lead. The cumulants of
the energy transferred in a given time from the lead to the center are obtained by taking derivatives. A transient
result of the first four cumulants of a graphene junction is presented. It is found that measurements cause the
energy to flow into the lead.
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Phonon heat conduction in the ballistic quantum regime
possesses special features, such as the quantized universal ther-
mal conductance1,2 and wavelike coherent transport described
by a Landauer-like formula.3,4 A typical setup of such a system
consists of two infinite heat baths maintained at different
temperatures with a finite junction part forming the scattering
region. The focus in the last decade has been on steady-state
thermal currents. Since the heat baths are stochastic in nature,
it is natural to ask a statistical question: what is the distribution
of the energy Q transferred in a given time? Such questions
have been raised in electron transport, where it is known as the
full counting statistics. Levitov and Lesovik have presented
their celebrated formula, which forms the definitive answer to
this question.5 Many works followed in electronic transport.6–9

With the physics of noninteracting electrons well understood,
the full counting statistics of strongly interacting systems
is actively pursued.10–14 The electron counting statistics has
been experimentally measured in quantum-dot systems.15,16

No such measurements have been carried out for thermal
transport, but it is potentially possible, e.g., in a nanoresonator
system.

In contrast to the electron case, much less attention is given
to phonon transport. The counting statistics for a two-level
system was obtained by Ren et al.17 Also, Saito and Dhar18

treated the full counting statistics for heat transport in a
one-dimensional (1D) chain. Such inquiries also have deep
connections with the nonequilibrium fluctuation theorems.19,20

The result obtained by Saito and Dhar was only for the long-
time limit. In this Brief Report, we present a formulation based
on two-time measurements, treating the transient behavior and
long-time limit on an equal footing. A central result of our
derivation is that the generating function can be concisely
expressed by the contour-ordered self-energies of the lead,
making contact with the nonequilibrium Green’s function
(NEGF) method4 of quantum transport. A more general
expression for the long-time limit of a general junction system
with any number of degrees of freedom is also derived, and
numerical results for the transient behavior of the first few
cumulants of a graphene junction are presented.

We consider initially decoupled harmonic systems de-
scribed by the Hamiltonians

Hα = 1
2pT

α pα + 1
2uT

α Kαuα, α = L,R,C, (1)

for the left and right leads and a central region. The leads are
assumed semi-infinite, while the center has a finite number
of degrees of freedom. Masses are absorbed by defining
u = √

m x. uα and pα are column vectors of coordinates
and momenta. Kα is the spring constant matrix of region
α. Couplings of the center region with the leads are turned
on either adiabatically from time t = −∞, or switched
on abruptly at t = 0. The interaction term takes the form
Hint = uT

LV LCuC + uT
RV RCuC . The total Hamiltonian is H =

HL + HC + HR + Hint.
Focusing on the left lead, we define the energy current

operator by the rate of decrease of energy of the lead (in the
Heisenberg picture) as

I (t) = −dHL(t)

dt
= i

h̄
[HL,HH ] = pL(t)T V LCuC(t), (2)

where HH is the Hamiltonian in the Heisenberg picture. We
define the “heat” operator as

Q̂ =
∫ t

0
I (t ′) dt ′ = HL − U (0,t)HLU (t,0), (3)

where HL [=HL(0)] is the Schrödinger operator of the free
left lead, and U (t,t ′) is the evolution operator under H (t). U

satisfies the Schrödinger equation

ih̄
∂U (t,t ′)

∂t
= H (t)U (t,t ′). (4)

What we would like to calculate are the moments of the
heat energy transferred in a given time t . To this end, we look
at the generating function of the moments instead. Since Q̂ is
a quantum operator, there are subtleties as to how exactly this
generating function should be defined. Naı̈vely, we may use
〈eiξQ̂〉. But this definition fails the fundamental requirement
of positive definiteness of the probability distribution,

P (Q) =
∫

e−iξQZ(ξ )
dξ

2π
, (5)

for a classical quantity Q. The correct definition is9,21

Z = 〈eiξHLe−iξHL(t)〉′, (6)

based on measurements at time 0 and t , where each time a
measurement of the energy of the left lead is carried out, the
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wave function collapses into an eigenstate of the operator HL.
Thus, to take care of this process, the average is defined by

〈· · ·〉′ = Tr

[ ∑
a

Pa ρ(0)Pa · · ·
]
, (7)

where Pa is the projector onto the eigenstate of HL with
eigenvalue a. ρ(0) is the steady-state density operator obtained
by adiabatically evolving from a product state at t = −∞ to
t = 0.

To calculate the generating function Z, we use the following
strategies. First, the projector is represented by Fourier
transform, Pa = δ(a − HL) = ∫ ∞

−∞ e−iλ(a−HL)dλ/(2π ). Then,
the products of the exponential factors in Z, combined with
the exponential factors in the projectors, are written in terms
of an evolution operator Ux(t,t ′) of an effective Hamiltonian
with a parameter x, given by

Z(ξ ) = 〈eiξHL/2e−iξHL(t)eiξHL/2〉′

∝
∫

dλ

2π
Tr[ρ(0)Uξ/2−λ(0,t)U−ξ/2−λ(t,0)]

=
∫

dλ

2π
Z(ξ,λ). (8)

The proportionality constant will be fixed later by the condition
Z(0) = 1. The evolution operator Ux is associated with the
Hamiltonian,

Hx(t) = eixHLH (t)e−ixHL

= H (t) + (uL(h̄x) − uL)T V LCuC, (9)

where uL(h̄x) = eixHLuLe−ixHL is the free left lead “Heisen-
berg” evolution to time t = h̄x. We can give a more explicit
form for the Hamiltonian,

Hx(t) = H (t) + [
uT

LC(x) + pT
LS(x)

]
uC, (10)

where

C(x) = [cos(h̄x
√

KL) − 1]V LC, (11)

S(x) = (1/
√

KL) sin(h̄x
√

KL)V LC. (12)

Next, we represent Ux using path integrals. The Lagrangians
associated with the path integrals (ignoring the right lead for
the moment) are

LL = 1
2 u̇2

L − 1
2uT

LKLuL, (13)

LC = 1
2 u̇2

C − 1
2uT

C(KC − ST S)uC, (14)

LLC = −u̇T
LSuC − uT

L(V LC + C)uC. (15)

Following Feynman and Vernon,22 we can eliminate the leads
by performing Gaussian integrals. Since the coupling to the
center is linear, the result will be a quadratic form in the
exponential, i.e., another Gaussian. The influence functional
is given by23

I [uC(τ )] ≡
∫

D[uL]ρL(−∞)e
i
h̄

∫
dτ (LL+LLC )

= Tr

[
e−βLHL

ZL

Tce
− i

h̄

∫
dτVI (τ )

]

= e− i
2h̄

∫∫
dτdτ ′uT

C (τ )�(τ,τ ′)uC (τ ′), (16)

VI (τ ) = uT
L[τ + h̄x(τ )]V LCuC + 1

2
uT

CST SuC. (17)

In the above expressions, the contour function uC(τ ) is not
a dynamical variable but only a parametric function. Tc is
the contour-order operator. Note that VI is the interaction-
picture operator with respect to HL, and as a result,
eitHL/h̄uL(h̄x)e−itHL/h̄ = uL(t + h̄x). We define the contour
function x(τ ) as 0 whenever t < 0 or t > tM . Otherwise it is
x+(t) = −ξ/2 − λ on the upper branch, and x−(t) = ξ/2 − λ

on the lower branch. The important influence of functional
self-energy on the contour is

�(τ,τ ′) = �A
L + �L + ST Sδ(τ,τ ′), (18)

�A + �L = V CLgL[τ + h̄x(τ ),τ ′ + h̄x(τ ′)]V LC

= �L[τ + h̄x(τ ),τ ′ + h̄x(τ ′)], (19)

where �L is the usual lead contour self-energy, and δ is the
Dirac delta function defined on the contour. Equation (19) is
the most important equation defining the self-energy of the
problem. The generating function Z can be expressed in terms
of the usual Green’s function, G = GCC , of the central region
and this particular self-energy. The self-energy �A is obtained
from the lead self-energy �L by appropriately shifting the
contour time arguments and taking a difference. With this
result, infinite degrees of freedom (due to the semi-infinite
nature of the leads) reduce to finite degrees of freedom.

The generating function is obtained by another Gaussian
integral, given by

Z(ξ,λ) =
∫

D[uC]ρC(−∞)e(i/h̄)
∫

dτLC I [uC]

=
∫

D[uC]ρC(−∞)e
i
h̄
Seff ∝ det(D)−1/2, (20)

where

Seff = 1

2

∫
dτ

∫
dτ ′uT

C(τ )D(τ,τ ′)uC(τ ′), (21)

D(τ,τ ′) = − ∂2

∂τ 2
δ(τ,τ ′) − KCδ(τ,τ ′)

−�(τ,τ ′) − �A(τ,τ ′) = D0 − �A, (22)

with � = �L + �R . We define the Green’s function G by
D0G = 1, or, more precisely,∫

D0(τ,τ ′′)G(τ ′′,τ ′)dτ ′′ = δ(τ,τ ′). (23)

In the above formula for Z, we imagine that the differential
operator or integral operator, D and D−1

0 , are represented
as matrices indexed by space j and contour time τ . We
can make a systematic expansion in term of �A by noting
the following formulas for matrices: det(M) = eTr ln M , and
ln(1 − y) = −∑∞

k=1
yk

k
. Using these, we can write

ln Z(ξ ) = lim
λ→∞

∞∑
k=1

1

2k
Tr(j,τ )[(G�A)k]. (24)

This formula is the central result of this Brief Report. The
expression is valid for any transient time tM embedded in the
self-energy �A. The notation Tr(j,τ ) means trace both in space
j and contour time τ , i.e., integrating over the Keldysh contour.
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The projection to the eigenstates of HL results in an integration
over λ. Since the range of the integration is from −∞ to +∞,
and the two-parameter generating function Z(ξ,λ) approaches
a constant as |λ| → ∞, the value of the integral is dominated
by the value at infinity. Our choice of the proportionality factor
satisfies the required condition of Z(0) = 1.

For NEGF notations and relations among Green’s functions,
we refer to Ref. 4. It is more convenient to work with a
Keldysh rotation for the contour-ordered functions, keeping
Tr(AB · · · C) invariant. For any Aσσ ′

(t,t ′), with σ,σ ′ = ±
for branch indices, the effect of the Keldysh rotation is to
change to

Ă =
(

Ar AK

AK̄ Aa

)

= 1

2

(
At − At̄ − A< + A>, At + At̄ + A< + A>

At + At̄ − A< − A>, At − At̄ + A< − A>

)
.

(25)

We should view the above as defining the quantities Ar , Aa ,
AK , and AK̄ . For the usual Green’s function G, we get

Ğ =
(

Gr GK

0 Ga

)
. (26)

The GK̄ component is 0 due to the standard relation among the
Green’s functions. But the K̄ component is nonzero for �A.

In the long-time limit, translational invariance is restored
for the self-energies. Convolution in the time domain simply
becomes multiplication in the frequency domain. The shifts
given to the arguments in �L become independent of time t ,
and only depend on the branches. We have

�t
A = �t̄

A = 0, (27)

�<
A (t) = �<

L (t − h̄ξ ) − �<
L (t), (28)

�>
A (t) = �>

L (t + h̄ξ ) − �>
L (t). (29)

Fourier transforming the lesser and greater self-energies,
we obtain �<

A [ω] = �<
L [ω](eih̄ωξ − 1), �>

A [ω] =
�>

L [ω](e−ih̄ωξ − 1). We can now compute the matrix
product Ğ�̆A. Finally, the generating function for large tM is

ln Z(ξ ) = −tM

∫ +∞

−∞

dω

4π
Tr ln(1 − Ğ�̆A)

= −tM

∫ +∞

−∞

dω

4π
ln det{1 − Gr�LGa�R[(eiξh̄ω−1)fL

+ (e−iξh̄ω−1)fR + (eiξh̄ω+e−iξh̄ω−2)fLfR]},
(30)

where Ğ, �̆A, and �α = i(�r
α − �a

α) are in the frequency
domain and fα = 1/(eβαh̄ω − 1), βα = 1/(kBTα), is the Bose
distribution function. This result generalizes that of Saito
and Dhar.18 It satisfies the steady-state fluctuation theorem,24

Z(ξ ) = Z[−ξ + i(βR − βL)].
The long-time result does not depend on how the initial

states are prepared before measurement. This is not the case
for transience. The generating function, given by Eq. (24), is
for the case where the system is prepared in a steady state.
A measurement at time 0 disturbs the system, and similarly
at time tM . Instead of a steady state, we can also prepare the

FIG. 1. (Color online) The structure of a graphene junction with
six degrees of freedom and with two carbon atoms as the center.

system in a product state, ρ(−∞) ∝ exp(−∑
α βαHα). This

means that the coupling Hint is switched on suddenly. Then the
projector Pa commutes with the density matrix with no effect
on ρ(−∞). This simplifies the problem. We use the Feynman
diagrammatic technique to obtain the result. Omitting the
details, we have

ln Z0 = − 1
2 Tr(j,τ ) ln(1 − G0�

A). (31)

This expression looks formally the same as before, except that
G0 satisfies a Dyson equation defined on the contour from 0 to
tM and back, while G is defined on the Keldysh contour from
−∞ to tM ,

G0(τ,τ ′) = gC(τ,τ ′)+
∫∫

dτ1dτ2gC(τ,τ1)�(τ1,τ2)G0(τ2,τ
′),

(32)

where gC is the contour-ordered Green’s function of the
isolated center.

We now present some numerical results. Figure 1 is the
structure of our graphene junction system. The center region
consists of two atoms, while the two leads are symmetrically
arranged as strips (with periodic boundary conditions in the
vertical direction). We obtained the force constants using the
second-generation Brenner potential. To compute the transient
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FIG. 2. (Color online) The cumulants 〈〈Qn〉〉 for n = 1, 2, 3, and
4. The curves show the product initial state; the circles show the
steady-state initial state. The dotted line shows the classical limit
(h̄ → 0, keeping λ finite) for the steady-state initial condition. The
temperature of the left lead is 330 K and that of the right lead is 270 K.
For the product initial state, the center temperature is 300 K.
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results, we need to perform convolution integrations in the
time or frequency domain many times. This is handled by
treating the convolutions as matrix multiplications. Then the
expression of the derivatives, 〈〈Qn〉〉 = ∂n ln Z/∂(iξ )n|ξ=0, is
calculated. Note that the ξ dependence only enters through
�A. We also note that a power series in Ğ�̆A terminates after
n terms for 〈〈Qn〉〉 for the product-state initial condition, but it
is an infinite series for the steady-state case. The computational
effort required for convergence is huge for the graphene
junction. We also obtained the result for a 1D chain, which
will be presented elsewhere.

Figure 2 shows the first four cumulants. The first cumulant,
which is also the first moment, is the total amount of energy
entering the center from the left lead during time 0 to tM . Its
derivative gives the current. Such transient currents have been
calculated25 for the product initial states for 1D chains. The
second cumulant gives the variance of Q. The higher-order
cumulants are small but not zero, thus the distribution of Q is
not Gaussian. For large times, all the cumulants become linear
in tM , and are in agreement with the long-time prediction.

One striking feature of the results is that the product initial
state and the steady-state initial state behave in a qualitatively
similar manner. The heat transferred, 〈Q〉, starts from 0 and

goes down to negative values. This means whether we start
from a decoupled system or a steady state, the effect of
measurement is always to feed energy into the measured (left)
lead, even if the temperature of the left lead is lower than that
of the right lead. If the system were classical, the measurement
could not disturb the system. We should expect the current to be
constant once the steady state is established. The nonlinear tM
dependence observed here in 〈Q〉 is fundamentally quantum
mechanical in origin.

In summary, the generating function for phononic junction
systems is obtained, which can be written compactly using
Green’s function as ln Z = −(1/2)Tr ln(1 − G�A). A central
quantity is the self-energy �A, which is expressed in terms of
the usual lead self-energy with shifted arguments. This is a very
general result valid for steady-state initial states or product
initial states in a two-time measurement. Numerical results
for a graphene junction system are presented. An intriguing
feature is that a measurement, even in the steady state, causes
energy to flow into the leads. We hope that such robust features
can be verified experimentally.
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