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Quantum Hall effect in narrow Coulomb channels
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Proposed is a scenario for the development of magnetic-field-induced electron states (MESs) in finite charged
systems. These states arise due to incomplete screening of external electrostatic fields governing the electron
density distribution and therefore exist within a certain static skin layer of width λ along the edge of a two-
dimensional (2D) charged system (either classical or degenerate). In the magnetic field normal to the 2D system
the electrons in the skin layer are dragged along the MES orbits by the Lorentz force in both classical and
degenerate 2D systems. Details of the λ scenario for MESs in the narrow-channel quantum Hall effect problem
are reported.
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Edge electron states arising in the presence of a magnetic
field (magnetic edge state; MES) in finite two-dimensional
(2D) charged systems frequently occur in finite conducting
systems and have been studied in a variety of experimental
setups. They can be traced back to Khaikin resonances1–3

and, further, to the so-called transverse magnetic focusing in
3D metals and the 2D counterpart of this problem4, effects
of edge states on the magnetocapacity of 2D systems5,6,
and a Halperin-Büttiker formalism7–10 treating the quantum
Hall effect (QHE) as a manifestation of quantum properties
in edge channel conduction. Edge states were also used in
attempts aimed at detecting Luttinger liquid behavior in edge
channels formed near sharp boundaries as well as within
smooth domains of 2D systems11–13. In most cases, sufficient
for qualitative analysis of experimental data is the very fact
of the existence of MESs or the interesting property of
the universality of their quantum conductivity. As to the
details of the channel structure, they have almost never been
discussed. Except for the isolated integer filling stripes14 in
2D Hall samples, generally arising far from the 2D system
boundary, the existence of even the simplest skipping orbit
MES1–4 requires a very natural but still hypothetical specular
reflection of magnetized electrons from the ideal metal
boundary.

The problem becomes even more interesting due to the
current discussion in the literature on the physical essence
of topological invariants heavily based on the existence of
edge states (involving charge or spin) at the interface of
two media with different topological indexes following from
the most general analysis15,16. On the one hand, general
theorems16 do not require any knowledge of the boundary
structure (in particular, the presence of a sharp infinite barrier
is not required) and are sufficient to deduce the existence
of MESs in semi-infinite magnetized 2D systems. On the
other hand, the formalism considering MESs on the basis
of electron (spin) behavior in homogeneous density domains
far from the 2D system boundaries encounters difficulties
when applied to strongly inhomogeneous problems (e.g.,
narrow Coulomb channels) where the electron density n(x) is
everywhere inhomogeneous, i.e., n′(x) �= 0. At the same time,
numerous experiments on narrow-channel transport17,18 (the
list of relevant references could easily be extended) certainly
reveal the presence of the QHE, thus providing a serious
indication of the existence of quasi-1D states. In other words,

topological arguments are sufficient, but in no case necessary,
for the existence of MESs.

Proposed in the present paper is an alternative (compared
with Refs. 1–3 and 16) scenario of the MES development
which is free, as far as possible, of any model simplifications
(major virtue of the approach employed in Ref. 16) and does
not fail under the conditions where n′

x,y(x,y) �= 0 throughout
the entire sample area. The scenario is based on the incomplete
screening of external electrostatic fields shaping the electron
density profile n(x,y). Thus, the incompletely screened field
is present in a ceratin static skin layer of width λ along the
edge of a 2D charged system (either classical or degenerate).
If a magnetic field normal to the 2D system is applied, the
electrons in the skin layer are dragged along the MES orbits.
Details of the λ scenario for development of MESs applied to
available experimental data on the QHE in narrow channels
are gathered at the end of this report (we consider the channel
to be narrow if its typical transverse size w is less than the skin
layer width λ).

(1) Let V (x) be the external potential governing the channel
electron density distribution n(x). The so-called classical
Coulomb equilibrium inside the 2D system with the density
n0(x) and fixed number of electrons per unit channel length N

is described by the equation

V (x) + eϕ̂[n0(x)] = const,
∫ +b

−b

n0(x)dx = N, (1)

where ϕ̂[n0(x)] is the electrochemical potential of electrons
in the channel, which is actually a functional of the density
n0(x) (the subscript 0 here stresses the Coulomb nature
of the equilibrium) with the boundaries ±b satisfying the
normalization condition, (1), still to be found; the axis OX

is directed across the channel and its origin lies at the channel
symmetry axis.

Equation (1) is an integral equation for local electron
density n0(x). Its solution can be explicitly written as

e2

κ
n0(x) = − 1

π2

√
b2 − x2

∫ +b

−b

dsV ′(s)√
b2 − s2(s − x)

, (2)

where κ is the ambient medium dielectric constant. Making
use of Eq. (2), one can easily express 2b in terms of the fixed
total number of electrons N and potential energy V (x).
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Formally, Eq. (1) describes equilibrium in a system of
Coulomb interacting particles with infinitely high masses
m → ∞ placed in the confining potential V (x). The situation
is different if m �= ∞ and the general equilibrium condition
at low temperatures T � εF should involve other terms, in
addition to the usual Coulomb contribution. In particular, these
additional terms can contain zero-oscillation energy in the
Thomas-Fermi approximation (which, in the language em-
ployed in general schemes for electron density calculations19,
corresponds to the random phase approximation in zero
magnetic field):

V (x) + eϕ̂ + h̄2

2m∗
n(x) = μ,

∫ +∞

−∞
n(x)dx = N. (3)

Here μ is the electrochemical potential, and m∗ is the effective
electron mass.

Just as in the Coulomb case, (1), the equilibrium condition,
(3), results in a certain density distribution n(x) generalizing
Eq. (2). It is easily seen that the channel edges (i.e., the
neighborhoods of points ±b) contain areas with incomplete
[in the sense of Eq. (1)] screening of the external field, or
static skin layers. We apply this term to the intervals of length
λ filled with electrons where U (x) = V (x) + eϕ(x) �= const.
In these areas the one-particle excitations feel the potential
U (x)

U (x) = const − h̄2n(x)/2m, (4)

with n(x) from (3), which, in the presence of a magnetic field H

normal to the 2D electron plane, is capable of pushing electrons
along the MES trajectories. Applications of this formalism to
narrow channels in the absence of a magnetic field can be found
in Refs. 19 and 20 [we use the term “narrow” for channels with
b � λ, where 2b is the effective channel width, as defined, for
example, by Eq. (2)].

The equation set (1)–(4) solves the problem of the existence
and structure of the static skin layer where a nonzero field, (4),
and an electron density n(x) from (3) coexist, allowing the
appearance of filled MESs.

(2) Now let us turn to the details of the λ scenario under
the conditions of QHE. In the range of εF � h̄ωc, the basic
requirement, just as in the problem, (3), in the absence of a
magnetic field, is the general equilibrium condition μ = const
across the channel. The extreme case of strong magnetic fields
modifies the “chemical” part of the electrochemical potential,
so that instead of Eq. (3), we have (first retaining, for simplicity,
only the first two Landau levels and neglecting electron spin,
similarly to Ref. 14)

μ(H,ν(x)) = h̄ωc + U (x) + ζ (H,ν) = const, (5)

ζ = −T ln S(H,ν), ε = exp

(
−h̄ωc

T

)
� 1 (6)

S(H,ν) = 1/2(1/ν − 1) +
√

(1/4) · (1/ν − 1)2 + ε(2/ν − 1),

where ν(x) = πl2
Hn(x) is the corresponding filling factor

for the equilibrium electron density n(x), l2
H is the squared

magnetic length, and U (x) = V (x) + eϕ(x) �= const.
Following Ref. 14 and assuming that the fields of neighbor-

ing stripes do not overlap, one can subtract condition (1) from

Eq. (5) and consider this difference in the vicinity of one of
the points x = xl satisfying the condition

πl2
Hn(xl) = νl, νl = 1,2,3,4 . . . , (7)

which defines the position xl of integer filling factor points in
the density profile. This procedure yields

2e2

κ

∫ +al

−al

ds
n(s) − n0(s)

x − s
	 −∂ζl

∂n

∣∣∣∣
n=nl

∂n(x)

∂x
, (8)

where 2al is the width of one of the integer shelves calculated
according to the algorithm proposed in Ref. 14 [one such
formula is given below; see Eq. (13)], and ζl(H,ν), defined in
Eq. (6), is the chemical part of the electrochemical potential
in the vicinity of the points xl , where nl = νl/(πl2

H ).
In the areas where x �= xl the derivative ∂ζl/∂n [as well

as the whole right part of Eq. (8)] is small. In these areas the
external potential is almost completely screened, i.e., [n(x) −
n0(x)] → 0. On the contrary, at points where πl2

Hn0(xl) = νl

the quantity ∂ζl/∂n is sharply enhanced since the function
ζl , (6), has steep jumps here. Thus, an expected failure of
screening occurs in areas with nearly integer filling factors,
resulting in nonzero difference n(x) − n0(x) �= 0. We omit the
details and only report the following approximate formula for
the derivative n′

l(0) at the integer points which can be derived
from Eq. (8):

n′
l(0) 	 n′

0(0)

1 + (
πl2

Hκ/ale2
)
∂ζl/∂νmax

. (9)

For ∂ζl/∂νmax 
 1, the derivative n′(0) � n′
0(0) is small, thus

symbolizing the development of required shelves [the well-
known paper14 employs the inequality n′(0) � n′

0(0) as an
assumption].

The information contained in Eqs. (5)–(9) allows us to
examine the details of QHE in narrow channels by employing
the data from Ref. 18 as a guide for our analysis. In this brief
report we only comment on the initial stage of the ballistic
conductivity development studied in Ref. 18. By employing the
formulas from Ref. 21, which take into account the geometry
of Ref. 18, one obtains, through Eqs. (10) and (11) the electron
density profile n(x) for external parameters used by the authors
of Ref. 18 (see Fig. 1):

n(x) = ns

√
(b2 − x2)/(d2 − x2), − b � x � +b, (10)

κVg = 2πensd[E(
√

1 − t2) − t2K(
√

1 − t2)]. (11)

Here t = b/d, ns is the electron density in the gap between the
electrodes for gate voltage Vg → 0 [which is easily checked by
employing the asymptotic behavior of elliptic integrals K(s)
and E(s) of the first and second kind in the limit b/d → 1], 2d

is the nominal spacing between the electrodes, and 2b is again
the Coulomb channel width, governed by Vg . The position of
points xl is defined by Eq. (7), and the reduced dimensionless
effective voltages vi

g are calculated as vi
g = V i

g/(V min
g − V max

g )
by taking advantage of the fact that all the necessary values of
V i

g as well as the lowest gate voltage (V min
g at which the point

contact is formed together with the highest gate voltage V max
g )

at which electrons are completely forced out of the contact
area are also reported in Ref. 18.
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FIG. 1. Various density profiles ni(x) [(10), (11)] normalized to
ns for reduced values of vi

g = V i
g /(V min

g − V max
g ) together with integer

filling factor points xl , (7), corresponding to the field H = 0.6 T.

It is natural to assume that the appearance (disappearance)
of a new ballistic channel as well as their total number
correlate with the behavior of the points xl in the electron
density profiles ni(x) in Fig. 1 as the magnetic field is varied.
Bearing in mind these heuristic considerations and employing
the formalism outlined by Eqs. (7), (10), and (11), let us now
turn to the general situation depicted in Fig. 2, which displays
both the calculated and the measured18 values of the channel
conductivity σi(H−1). The calculations obviously reproduce
correctly the constant step length at each of the σi(H−1)
branches, the gradual increase in these lengths with growing
vi

g , and a rather large range of magnetic fields (especially for
top, relatively small vi

g) where the linear behavior σi(H−1) ∝
H−1 typical of the strong field [(5) and (6)] limit holds.
On the whole, our numerical results presented in Fig. 2 are
consistent with the calculations of the contact conductivity
reported in Ref. 18, which involved two adjustable parameters:
(i) the actual width of a channel with infinitely high walls and
(ii) the Fermi level for each value of vi

g . On the contrary, our
calculations contain a single adjustable parameter ns , which
was assumed to be 4.5 × 1011 cm−2, which is close to the
density of 3.56 × 1011 cm−2 reported in Ref. 18.

Compared with a rather satisfactory general agreement
between the calculations and the experimental data18, there are
considerable deviations of the predicted positions of the first
steps in the σi(H−1) staircases from the observed conductivity
behavior. In principle, the first step position in every staircase
should determine the width of all the shelves in that staircase,
while experiment reveals that the width changes from shelf to
shelf. In our opinion, the indicated deviations may be due to
the fact that actually the split-gate channel18 has a rather poorly
controlled saddle shape. The electron density distribution
n(x,y) in the vicinity of the saddle point should reach higher
values at the contact input and output areas compared with the
density at the saddle point itself. Hence the same mechanism,
(9), which results in the development of integer-filling shelves
in a 1D problem, should force the electrons to flow from
the hills toward the saddle points, shifting the observed
conductivity thresholds to higher magnetic fields. This effect

FIG. 2. Conductivity σ‖(H ) in units of σ0 = e2/h as a function
of inverse magnetic field for appropriate values of reduced effective
gate voltages. Solid lines: calculations according to the self-consistent
model outlined in the text. Squares: experimental data from Ref. 18.
Curve (a) connects the calculated threshold points where the nonzero
conductance should arise for the 1D channel with d = const. Dashed
line: the same thresholds calculated with a weak dependence of d on
y taken into account.

should be enhanced (and it is actually shown in Fig. 2) as the
electron density at the saddle point is reduced.

To obtain an order-of-magnitude estimate of the saddle-
point corrections to the ideal 1D picture, in the present paper
we employ a quasi-1D approach. This means that we still use
Eqs. (10) and (11) in the situation where the nominal gap
2d(y) appearing in these formulas has a weak dependence on
y. Under these conditions we also use Eq. (8), assuming that
the relevant integer filling points in the electron density profile
n(x,y) now reside on the curves

αx2 − βy2 = c, α = n′′
x,x(0,0), β = n′′

y,y(0,0). (12)

In the limit c → 0, Eq. (12) defines the separatrix of the saddle-
like density distribution n(x,y) 	 n(0,0) − αx2 + βy2.

The calculations performed consisted in finding the widths
2a0 of the shelves hanging over the saddle point from the two
sides of the contact,

e2a2
0∂n(0,y0)/∂y 	 κh̄ωc, (13)

in the direction of the OY axis. The shelf wings extend toward
the center of the contact, overlap there, and thus enhance the
electron density at the saddle point. Therefore, the integer fill-
ing factor ν at the saddle point is reached at a higher magnetic
field compared with the situation where the curvature of d(y) is
neglected. The solid line (a) in Fig. 2 depicts the conductivity
threshold positions calculated for the latter case [curvature
of d(y) is neglected]. The overlapping condition y0 = a0 in
Eq. (13) allows one to derive an estimate for the correction to
the magnetic field strength at which a new channel is opened
(i.e., a new integer filling factor ν is reached at the saddle
point). The corresponding conductivity thresholds obtained
by employing Eqs. (10)–(13) for the case where β ∼ 0.2α are
indicated in Fig. 2 by open circles connected by the dashed line
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(b) in Fig. 2. It is clearly shown in the figure that accounting
for the shelves’ overlapping results in a qualitatively correct
shift of thresholds toward higher magnetic fields.

In this report we have discussed a scenario for development
(and, further, evolution with the magnetic field) of MESs
arising near the boundary of finite 2D electron systems due
to the existence of a static skin layer of width λ along
the system boundary. The formalism is efficient over a
wide range of parameters λ/w. For λ � w, where w is the
typical system size, the results obtained within the proposed
formalism practically coincide with other available approaches
(Refs. 1,3–18) to a description of the MES behavior. However,
in the interesting limit λ � w, our scenario currently has

practically no alternatives. Within this approach we propose
a systematic description of the QHE in ballistic conduction
of narrow Coulomb channels based on the analysis of the
so-called integer stripes naturally arising in the study of
inhomogeneous 2D charged system. Calculations are worked
out to the level allowing comparison with available data on
QHE under appropriate conditions.
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