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Absence of topological insulator phases in non-Hermitian PT -symmetric Hamiltonians
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In this work, we consider a generalization of the symmetry classification of topological insulators to non-
Hermitian Hamiltonians, which satisfy a combined PT symmetry (parity and time reversal). We show via
examples and explicit proofs from separate bulk and gapless boundary-state perspectives that the typical paradigm
of forming topological insulator states from Dirac Hamiltonians is not compatible with the construction of
non-Hermitian PT -symmetric Hamiltonians. The topological insulator states are PT -breaking phases and have
energy spectra that are complex (not real) and, thus, are not consistent quantum theories.
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With recent interest generated in the field of topological
insulators and superconductors,1–8 the symmetry classification
of (primarily free-fermion) Hamiltonians has resurfaced.9–13

The first example of a topological insulator (TI), the integer
quantum Hall effect (IQHE), is gapped in the bulk and exhibits
gapless, robust states on its boundaries. Most other exam-
ples of topological insulators1,3–8 share these characteristic
features. One interesting distinction between the IQHE and,
for example, the quantum spin Hall effect (QSHE) is that
the IQHE is completely robust to any type of Hamiltonian
perturbation, while the QSHE is only robust to perturbations
that preserve time-reversal symmetry T . A full symmetry-
protected classification of topological insulators11,12 and
superconductors11 based on charge conjugation, time reversal,
and chiral symmetries was then unified into a periodic table.13

In addition to the classification theory of TI’s, Hamil-
tonian symmetries are important in the theory of non-
Hermitian Hamiltonians,14–18 where it has been shown that
non-Hermitian Hamiltonians can still describe viable quantum
systems as long as PT symmetry is unbroken. By PT we
mean the combined operation of a parity-inversion symmetry
P and T . Given a non-Hermitian Hamiltonian H that satis-
fies [H,PT ] = 0, one can provide necessary and sufficient
conditions that the energy spectrum of H be real.16 It is
thus natural to attempt to extend the periodic table of TI’s
to non-Hermitian Hamiltonians that satisfy PT symmetry.
Although our initial hope was to find non-Hermitian examples
of TI states, we instead show that TI phases are incompatible
with the PT -symmetric construction of (at least a large
class of) non-Hermitian Hamiltonians. The TI states are PT

breaking and exhibit imaginary eigenvalues even when H has
been constructed to preserve PT symmetry.

In this Brief Report, we start by showing a few pedagogical
examples of PT -symmetric Dirac Hamiltonians that are per-
turbed away from being Hermitian. We offer these examples to
show how the construction of non-Hermitian PT -symmetric
TI states fails. Our focus is on Dirac Hamiltonians because
they are the minimal models for topological insulators. An
extension to generic insulator Hamiltonians with many bands
is straightforward. After the examples, we provide more proof
of necessary conditions for the bulk spectra of such Dirac
Hamiltonians to have a fully real spectrum (i.e., eigenvalues
are real for all values of the momenta). Finally, we give some
arguments about the properties of the gapless boundary states

that show that PT symmetry, non-Hermiticity, and topological
insulator states do not seem to be compatible.

Before we begin with the examples, let us list the relevant
symmetry properties we will use in this Brief Report. The
T operator is represented by T = UK , where U is a unitary
operator and K is complex conjugation. Depending on U ,
we can have T 2 = ±1. For a Bloch Hamiltonian H (p) to be
invariant under T , we must have T H (p)T −1 = H (−p). The
P symmetry, which we will call parity when needed, is a
unitary operator with P 2 = +1. There is no requirement on
which spatial coordinates the P operator inverts, and for now
we will leave it unspecified for generality. The condition that
a Bloch Hamiltonian be P invariant is PH (p)P −1 = H (p̄),
where p̄ is a symbol characterizing a given P by indicating
which coordinates are inverted and which remain unaffected.
As an example, if all the coordinates are inverted, then p̄ =
−p. Finally, the condition that a Bloch Hamiltonian be PT

symmetric is PT H (p)(PT )−1 = H (−p̄) and, equivalently,
requires that H (p) is either both odd or both even under P

and T separately. We occasionally mention charge-conjugation
symmetry C, which requires CH (p)C−1 = −H ∗(−p).

I. 1D DIRAC HAMILTONIANS

We will begin the examples in one dimension (1D) with the
gapped continuum Dirac Hamiltonian

H1D(p) = vF pσy + mσz, (1)

which is P , T , and PT symmetric with the symmetry operators
T = K, P = σ z, and p̄ = −p. This Hamiltonian also satisfies
a C symmetry with C = σx and provides an example of a Z2

topological insulator protected by C symmetry.12 We can add
an additional term to the Hamiltonian to get

H ′
1D(p) = pσy + mσz + i�σx, (2)

which is P -odd, T -odd, C-even, PT -even, and non-Hermitian,
and where we set vF = 1. Since we have not broken C

symmetry, the Z2 classification naively should remain intact.
1D Dirac Hamiltonians with non-Hermitian potentials have
been studied, for example, in Ref. 19. The energy spectrum of
this Hamiltonian is simple to calculate:

E± = ±
√

p2 + m2 − �2, (3)

153101-11098-0121/2011/84(15)/153101(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.84.153101


BRIEF REPORTS PHYSICAL REVIEW B 84, 153101 (2011)

which is real as long as |m| > |�|. So, we see it is possible
to add a non-Hermitian perturbation to the Dirac Hamiltonian
and keep the spectrum to be entirely real for values of m both
<0 and >0. Note that the perturbation has the special property
{i�σx,H1D(p)} = 0, which will become important later.

Although it is promising that there is a regime where
this non-Hermitian Hamiltonian will have a real spectrum,
there is already something worrying about the spectrum.
With � = 0, this model has a gap-closing phase transition
at m = 0, which separates a trivial insulator phase from a
topological insulator phase.12 We see here that, if � �= 0, this
phase transition becomes destabilized when 0 < |m| < |�|.
To properly describe the TI phase, we need to use a lattice
version of this Dirac Hamiltonian with a Bloch form

H ′
1D,lattice(p) = (sin p)σy + (1 + m − cos p)σ z + i�σx,

(4)

where we have set the lattice constant a = 1. When
� = 0, the lattice Hamiltonian is in a trivial insulator
phase when m < −2 or m > 0, and a topological insulator
when −2 < m < 0. With nonvanishing �, we have E± =
±

√
1 + (1 + m)2 − �2 − 2(1 + m) cos p. To be a viable spec-

trum, this must be real for all −π � p � π. In Fig. 1(a), we
show the spectrum for � = 0 as a function of m with open
boundary conditions. This clearly shows the boundary-state
zero modes, which persist when −2 < m < 0. In Figs. 1(b)
and 1(c), we show the real and imaginary parts of the energy
spectrum when � = 0.1. This shows that, as soon as the system
nears the phase boundary to the topological insulator state,
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FIG. 1. (Color online) Energy spectrum of H ′
1D,lattice [Eq. (4)]

with open boundaries vs m. (a) � = 0 gives a real spectrum with
zero modes for −2 < m < 0. (b) Real part of energy spectrum and
(c) imaginary part of energy spectrum for � = 0.1. Complex
eigenvalues exist in the former topological phase.

the spectrum develops imaginary pieces and thus generates
a PT -breaking phase. This is a common feature and shows
that the 1D topological insulator state here can not be reached
when � �= 0.

II. 2D DIRAC HAMILTONIANS

Two dimensions (2D) become more complicated because of
two reasons. (i) There are two natural definitions of P : parity
(x,y) → (x, − y) and inversion (x,y) → (−x, − y), which
both satisfy P 2 = 1. (ii) From the conventional classification
theory of topological insulators, it is natural to look at both
two-band and four-band models. We will not exhaust all these
cases, but only provide some instructive examples.

Two-band models: Let us consider the Hamiltonian that
represents the continuum model of a Chern insulator:20

H
(2)
2D (p) = pxσ

x + pyσ
y + mσz (5)

with T = K and P = σx. This P corresponds to a parity
symmetry and sends py → −py , so p̄ = (px, − py). Unfortu-
nately, this Hamiltonian can not be made PT symmetric even
before we perturb it because the mass term breaks PT . Next,
let us consider the same Hamiltonian with T = K and P = σ z,
where this P is an inversion symmetry with p̄ = −p. Again,
even the base Hamiltonian is not PT symmetric because the px

term breaks PT . Finally, if we consider the same Hamiltonian
with T = iσ yK and P = σ z and p̄ = −p, the mass term
breaks PT . From these few attempts, it seems like we can not
get any interesting non-Hermitian TI Hamiltonians with two
bands. We will see why this is so in the general proof section,
but the basic idea is that there are no additional matrices M

that anticommute with H
(2)
2D (p).

Four-band models: Let us start with a continuum QSH
Hamiltonian1,3

H
(4)
2D (p) = px�

1 + py�
2 + m�0 (6)

with �1 = τ x ⊗ σx, �2 = τ x ⊗ σy, �3 = τ y ⊗ I, �4 =
τ x ⊗ σ z, and �0 = τ z ⊗ I. This has symmetry generators
T = iσ yK and P = �0 and p̄ = −p. We can perturb this
Hamiltonian with the non-Hermitian PT -symmetric matrices
{iτ x ⊗ I, iτ y ⊗ σ i, iτ z ⊗ σ i, iI ⊗ σ i}, but none of these
anticommute with the Hamiltonian and will lead to imaginary
bulk eigenvalues as we will see in the following section.

We can write down another Hamiltonian in 2D:

H
(4)
2DB(p) = px�

2 + py�
3 + m�0. (7)

This has symmetry operators T = K and P = �0 with p̄ =
−p. There are two interesting terms with which we can perturb
the Hamiltonian:

�H
(4)
2D = i�1�

1 + i�4�
4. (8)

Adding these terms to the Hamiltonian gives us an energy
spectrum

E± = ±
√

p2
x + p2

y + m2 − �2
1 − �2

4, (9)

which is real as long as m2 � �2
3 + �2

4. However, this model
with T = K is not known to exhibit a robust topological
insulator state anyway, but we see that there is the same
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problem with the gap-closing transition leading to a PT -
breaking region.

III. NECESSARY CONDITIONS FOR REAL
BULK EIGENVALUES

The generic features of the example models are that if there
is a PT -symmetric, non-Hermitian matrix that anticommutes
with H (p), then we can have real eigenvalues, but the
topological insulator phase is PT breaking. If the only PT -
symmetric non-Hermitian matrices commute with at least one
term of H (p), then even the bulk eigenvalues will not be real
for all of momentum space. We formalize this statement now.

Theorem. For a PT -symmetric Hamiltonian of the Dirac
form H = p� + mQ + i�S, where p,m,� are real parame-
ters, S,Q,� are Hermitian (linear) matrices with S2 = Q2 =
�2 = 1 and {Q,�} = 0, the quantities {Q,S} and {�,S} must
vanish to have a real bulk spectrum.

Proof. Assume we have a Hamiltonian

H (p) = p� + mQ + i�S. (10)

By contradiction, let us assume that [S,Q] = 0 so that the anti-
Hermitian term commutes with the mass term. For the point
p = 0, the Hamiltonian reduces to H (0) = mQ + i�S. Since
S and Q commute, they can be simultaneously diagonalized.
Since S2 = Q2 = +1, the eigenvalues of these matrices are
±1. Thus, the eigenvalues of H (0) can only be ±m ± i� and
are always imaginary if � �= 0. This is a contradiction and so
we know that {S,Q} = 0 must hold if the spectrum is to be
real for all allowed p.

Now, we want to prove the second necessary condition
by contradiction. Assume that {S,Q} = 0, which we now
know must hold, but [S,�] = 0. The Hamiltonian at finite
p is as above and H 2(p) = (p2 + m2 − �2)I + ip�{�,S}.
From our assumptions {�,S} = 2�S and (�S)2 = +1, so the
eigenvalues of {�,S} are ±1. Thus, the eigenvalues of H 2(p)
are

E2
± = (p2 + m2 − �2) ± 2ip�

⇒ ±E± = ±
√

(p ± i�)2 + m2. (11)

This means that, for all nonzero p, the eigenvalues will be
imaginary. This is a contradiction and thus we have proven
that both {S,Q} = {S,�} = 0 are necessary conditions for the
bulk spectra to be real. �

Corollary. For Hamiltonians of the form H (p) = pa�
a +

mQ + i�S, where {�a,Q} = 0 and (�a)2 = Q2 = S2 = 1,
we must have {S,�a} = {S,Q} = 0 for all values of a.

Proof. The case involving the mass term is unchanged from
above. For the momentum term, by contradiction, assume that
there is a value a = a0 such that [S,�a0 ] = 0. We can then set
all pa = 0 for a �= a0 and use the same theorem as above to
prove the result. �

Thus, we see that, to give a real spectrum, we must have an
S that is a Clifford algebra generator along with the generators
�a and Q. To satisfy PT symmetry, we need

(PT )iS(PT )−1 = −i(PU )S∗U−1P −1 = iS

⇒ (PU )S∗ + S(PU ) = 0; (12)

this means that, if S = S∗, then PT symmetry requires
{PU,S} = 0. If S = −S∗, then PT symmetry requires
[PU,S] = 0. The form of the energy spectrum for such an
anticommuting S will be E± = ±√∑

a p2
a + m2 − �2.

IV. BOUNDARY AND INTERFACE STATES

Let us return back to the 1D Hamiltonian specified in
Eqs. (1) and (2). There is a region of the TI phase (i.e., where
−2 < m < 0) where |m| could be greater than |�| and thus
could have a real bulk spectrum, but from Figs. 1(b) and 1(c),
we see that the phase is still PT breaking. To illustrate why
the TI state is PT breaking, we need to consider the gapless
boundary states. We will do this in the simplest possible way
and capture the essential details by considering two interfaces
between regions described by Dirac Hamiltonians with m(x) =
−m0 for x < −x0 next to a region with m(x) = m0 > 0 for
−x0 < x < x0, and, finally, with m(x) = −m0 for x > x0. We
assume that |m0| � |�| so that the bulk energy spectrum is
real in each region, and that 2x0 � h̄vF /m0 so that, for our
purposes, the interfaces are independent of each other. Note
that this potential satisfies m(x) = m∗(−x) and is thus PT

symmetric. The 1D Hamiltonian is

H = −i
d

dx
σ y + m(x)σ z. (13)

This Hamiltonian has two zero-energy bound states,21 one per
interface domain wall given by

�±
0 (x) = 1√

2
exp

[
±

∫ x

±x0

m(x ′)dx ′
] (

1

∓1

)
. (14)

We see something interesting that occurs here:

PT �+
0 (x) = P�+∗

0 (x) = σ z�+∗
0 (−x) = �−

0 (x). (15)

This means that �0 is not an eigenstate of PT and, thus,
we do not expect it to have a real eigenvalue if we add a
non-Hermitian PT -symmetric term.15,16 The PT symmetry
transforms one boundary state into the other one. This is not
so strange since the P symmetry should interchange the two
ends of the 1D system, or in this case the states on each domain
wall.

Now, let us perturb the Hamiltonian by i�σx, as in the
1D example above, and focus near a single domain wall. The
unperturbed system has �0 as a zero-energy state. Adding
the perturbation is trivial since �0 is already an eigenstate
of σx. Thus, we see that perturbing the domain-wall states
changes the energies of the states from E = 0 to ±i�, which
is obviously imaginary. Thus, the domain wall, and by analogy,
TI boundary states, break the PT symmetry and are not
compatible with a real energy spectrum.

To show that this is not a pathological case for the 1D
Hamiltonian, let us consider the 2D Hamiltonian in Eq. (7),
which will still have (unprotected) bound states on mass
domain walls. We will assume the domain walls are in the
y direction this time. The Hamiltonian is then

H
(4)
2D = px�

2 − i
d

dy
�3 + m(y)�0, (16)

where px is a number. For px = 0, we can use the same ansatz
as in the 1D case, but this time there are two zero-energy
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solutions per wall. For an upward-stepping domain wall, we
find

�0A = 1√
2

⎛
⎜⎜⎜⎝

1

0

−1

0

⎞
⎟⎟⎟⎠ , �0B = 1√

2

⎛
⎜⎜⎜⎝

0

1

0

−1

⎞
⎟⎟⎟⎠ . (17)

For px �= 0, these solutions do not automatically diagonalize
�1 and we are left with a reduced 2 × 2 problem

H
(eff)
ij = 〈�0i |px�

2|�0j 〉 = pxσ
y

ij , (18)

where i,j = A,B. Now, if we add the allowed, anticommuting
non-Hermitian terms i�1�

1 + i�4�
4, the effective Hamilto-

nian of the edge states becomes

H
(eff)
ij = pxσ

y

ij + 〈�0i |i�1�
1 + i�4�

4|�0j 〉
= pxσ

y

ij + i�1σ
x
ij + i�4σ

z
ij . (19)

This Hamiltonian is simple to diagonalize and has energies

E± = ±
√

p2
x − �2

1 − �2
4, (20)

which are imaginary at least at px = 0 if either of the �i �= 0.

Thus, again the boundary spectrum is imaginary. The states
�0A/B are not eigenstates of the PT operator and will be
transformed into the allowed states on the opposite wall by
PT . These arguments generalize to the other topological
insulator classes and show that such a phase is always PT

breaking.

With this proof in place, one can immediately begin to
search for exceptions. The first place to look would be
topological superconductors, the boundary states of which
have weight on both boundaries. We performed a cursory
test of some classes of topological superconductors and
were not able to construct an interesting non-Hermitian
PT -symmetric phase. The presence of Majorana boundary
fermions, which are nonlocal, may provide a way around the
boundary state problem, but we leave this open for future work.
Also, our result does not immediately apply to topological
insulator states protected by point-group symmetries such as
inversion22–24 or even C4 symmetry.25 In this case, however,
we believe that our result can easily be adapted to at least
a large class of these models since again they can usually
be expressed using minimal Dirac-type models where our
results would immediately carry over. This does leave open
the possibility of finding non-Hermitian topological phases,
but without Dirac-type Hamiltonians at their foundation.

Recently, a preprint appeared with overlapping results.26

Where the papers overlap, the results agree. The motivation
behind the two works is quite different and our interpretation
of the appearance of complex energy eigenvalues as an
inconsistency in the quantum theory is strict compared to that
work.
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