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Majorana fermions in semiconductor nanowires
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We study multiband semiconducting nanowires proximity coupled with an s-wave superconductor and calculate
the topological phase diagram as a function of the chemical potential and magnetic field. The nontrivial topological
state corresponds to a superconducting phase supporting an odd number of pairs of Majorana modes localized at
the ends of the wire, whereas the nontopological state corresponds to a superconducting phase with no Majoranas
or with an even number of pairs of Majorana modes. Our key finding is that multiband occupancy not only
lifts the stringent constraint of one-dimensionality, but also allows having higher carrier density in the nanowire.
Consequently, multiband nanowires are better suited for stabilizing the topological superconducting phase and for
observing the Majorana physics. We present a detailed study of the parameter space for multiband semiconductor
nanowires focusing on understanding the key experimental conditions required for the realization and detection
of Majorana fermions in solid-state systems. We include various sources of disorder and characterize their effects
on the stability of the topological phase. Finally, we calculate the local density of states as well as the differential
tunneling conductance as functions of external parameters and predict the experimental signatures that would
establish the existence of emergent Majorana zero-energy modes in solid-state systems.
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I. INTRODUCTION

The search for Majorana fermions has become an active
and exciting pursuit in condensed-matter physics.1–4 Majorana
fermions, particles which are their own antiparticles, were
originally envisioned by Majorana in 19375 in the context of
particle physics (i.e., the physics of neutrinos). However, the
current search for Majorana particles is mostly taking place in
condensed-matter systems,6,7 where Majorana quasiparticles
appear in electronic systems as a result of fractionalization
and as emergent modes occupying nonlocal zero energy
states. The nonlocality of these modes provides the ability
to exchange and manipulate fractionalized quasiparticles and
leads to non-Abelian braiding statistics.8–14 Hence, in addition
to being of paramount importance for fundamental physics,
this property of the Majoranas places them at the heart of
topological quantum computing schemes.13,15–29 We mention
that solid-state systems, where the Majorana mode emerges
as a zero-energy state of an effective (but realistic) low-
energy Hamiltonian, enable the realization of the Majorana
operator itself, not just of the Majorana particle. Consequently,
Majorana physics in solid-state systems is, in fact, much
more subtle than originally envisioned by Majorana in 1937.
For example, in condensed-matter systems the nonlocal non-
Abelian topological nature of the Majorana modes that are of
interest to us is a purely emergent property.

About 10 years ago, Read and Green9 discovered that
Majorana zero-energy modes can appear quite naturally in
two-dimensional (2D) chiral p-wave superconductors where
these quasiparticles, localized at the vortex cores, correspond
to an equal superposition of a particle and a hole. A year
later, Kitaev11 introduced a very simple toy model for a 1D
Majorana quantum wire with localized Majorana zero-energy
modes at the ends. Both these proposals involve spinless
p-wave superconductors where one can explicitly demonstrate
the existence of Majorana zero-energy modes by solving
the corresponding mean-field Hamiltonian. Recently, several

groups30,31 suggested a way to engineer spinless p-wave
superconductors in the laboratory using a combination of
strong spin-orbit coupling and superconducting proximity
effect, thus opening the possibility of realizing Majorana
fermions in solid-state systems to the experimental field. The
basic idea of the semiconductor/superconductor proposal31

is that the interplay of spin-orbit interaction, s-wave super-
conductivity and Zeeman spin splitting could, in principle,
lead to a topological superconducting phase with localized
zero-energy Majorana modes in the semiconductor. Since
then, there have been many proposals for realizing solid-state
Majoranas in various superconducting heterostructures.30–45

Among them, the most promising ones involve quasi-1D
semiconductor nanowires with strong spin-orbit interaction
proximity-coupled with an s-wave superconductor.37,38,40 The
main advantage of this proposal is its simplicity: It does
not require any specialized new materials but rather involves
a conventional semiconductor with strong Rashba coupling
such as InAs or InSb, a conventional superconductor such
as Al or Nb, and an in-plane magnetic field. High-quality
semiconductor nanowires can be epitaxially grown (see, for
example, Ref. 46 for InAs and Ref. 47 for InSb) and are known
to have a large spin-orbit interaction strength α as well as large
Lande g factor [gInAs ∼ 10–25 (Ref. 48) and gInSb ∼ 20–70
(Ref. 47)]. Furthermore, these materials are known to form
interfaces that are highly transparent for electrons, allowing
one to induce a large superconducting gap �.49–51 Thus,
semiconductor nanowires show great promise for realizing and
observing Majorana particles.6,7 It is important to emphasize
that in the superconductor-semiconductor heterostructures the
Majorana mode is constructed or engineered to exist as a
zero-energy state, and as such, it should be experimentally
observable in the laboratory under the right conditions.

In a strictly 1D nanowire in contact with a superconductor,
the condition for driving the system into a topological
superconducting phase37,38 is |Vx | >

√
�2 + μ2, where Vx is
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the Zeeman splitting due to the in-plane magnetic field, μ is
the chemical potential, and � is the proximity-induced super-
conducting gap. Thus, the key to the experimental realization
of Majorana fermions in this system is the ability to satisfy
a certain set of requirements that ensures the stability of the
Majorana bound states. The challenging task here is the ability
to suppress effects of disorder and control chemical potential
fluctuations as well as fluctuations of other parameters. Given
that realizing single-channel (or one-subband) nanowire is
quite challenging, it is natural to consider semiconductor
nanowires in the regime of multi-subband occupancy. It
was shown in Ref. 40 that this is a promising route and
the existence of Majorana fermions does not require strict
one-dimensionality. In fact, the stability of the topological
superconducting phase is enhanced in multiband nanowires
due to the presence of “sweet spots” (multicritical points in
the topological phase diagram; see Ref. 52 for details) in
the phase diagram where the system is most robust against
chemical potential fluctuations.40 In this paper, we expand on
these ideas and explore effects of various perturbations such as
disorder in the superconductor and semiconductor, fluctuations
in the tunneling matrix elements, etc., on the stability of the
topological phase. Our goal is to identify parameter regimes
favorable for the exploration of the Majorana physics in the
laboratory. We therefore use realistic physical models and
realistic values of the parameters throughout this work so that
our theoretical results are of direct relevance to experiments
looking for Majorana modes in nanowires.

The paper is organized as follows. We begin in Sec. II
by introducing a tight-binding model for the semiconductor
nanowires and derive the superconducting proximity effect.
We show that electron tunneling between semiconductor and
superconductor leads to important renormalization of the
parameters in the semiconductor. In Sec. III, we calculate the
low-energy spectrum in the regime of multiband occupancy
and identify the topological phase diagram. In Sec. IV, we
study disorder effects on the stability of the topological phase.
We consider several sources of disorder: short-range impurities
in the superconductor, short-range and long-range impurities
in the semiconductor, as well as fluctuations in the tunneling
matrix elements across the interface. In Sec. V, we present
results for experimentally observable quantities (e.g., local
density of states and tunneling conductance) calculated using
realistic assumptions. Finally, we conclude in Sec. VI with the
summary of our main results.

II. TIGHT-BINDING MODEL FOR SEMICONDUCTOR
NANOWIRES

A. Spin-orbit interaction and Zeeman terms

Single-channel semiconductor (SM) nanowires have been
recently proposed37,38 as a possible platform for realizing and
observing Majorana physics in solid-state systems. Obtain-
ing strictly 1D nanowires would raise significant practical
challenges,49,50 but this requirement can be relaxed to a
less stringent quasi-1D condition corresponding to multiband
occupancy.40 The physical system proposed for studying
Majorana physics consists of a strongly spin-orbit interacting
SM, for example, InAs and InSb, proximity-coupled to an

s-wave superconductor (SC). The quasi-1D SM nanowire
is strongly confined in the ẑ direction, so that only the
lowest corresponding subband is occupied, while the weaker
confinement in the ŷ direction is consistent with a few
occupied subbands. Consequently, the linear dimensions of
the rectangular nanowire satisfy the relation Lz � Ly � Lx ,
which is the usual physical situation in realistic SM nanowires.
The low-energy physics of the SM nanowire is described by
the Hamiltonian

Hnw = H0 + HSOI =
∑
i, j ,σ

ti jc
†
iσ c jσ − μ

∑
i,σ

c
†
iσ ciσ

+ iα

2

∑
i,δ

[c†i+δx
σ̂yci − c

†
i+δy

σ̂xci + H.c.], (1)

where H0 includes the first two terms and describes hopping
on a simple cubic lattice with lattice constant a and the
last term represents the Rashba spin-orbit interaction (SOI).
We include only nearest-neighbor hopping with ti i+δ = −t0,
where δ are the nearest-neighbor position vectors. In Eq. (1),
c
†
i represents a spinor c

†
i = (c†i↑,c

†
i↓), with c

†
iσ being electron

creation operators with spin σ , μ is the chemical potential,
α is the Rashba coupling constant and σ̂ = (σx,σy,σz) are
Pauli matrices. In the long wavelength limit, k → 0, our
model reduces to an effective mass Hamiltonian with t0 =
h̄2a−2/2m∗ and Rashba spin-orbit coupling αR(kyσ̂x − kxσ̂y),
where αR = αa. In the numerical calculations we use a set of
parameters consistent with the properties of InAs, a = 5.3 Å,
m∗ = 0.04m0, and αR = 0.1 eV Å. The position within the
cubic lattice is described by i = (ix,iy,iz) with 1 � ix(y,z) �
Nx(y,z). In the calculations we have used Nz = 10, Ny = 250,
and Nx between 104 and 2 × 104, which corresponds to a
nanowire with dimensions Lz = 5 nm, Ly = 130 nm, and Lx

between 5 and 10 μm.
A brute force diagonalization of Hamiltonian (1) on a lattice

containing more than 107 sites would be numerically very
expensive. More importantly, the relevant energy scales in
the problem are of the order of a few meV, thus allowing
to construct a low-energy model, as we show below, and to
significantly reduce the Hilbert space. The largest energy scale
is given by the gap between the lowest subbands, which, for
example, for the first and second subband and the parameters
used in our calculation is �Esb ≈ 1.6 meV. Consequently,
we are only interested in the low-energy eigenstates of the
Hamiltonian (1). To obtain these states, we take advantage of
the fact that the eigenproblem for H0 can be solved analytically
and notice that HSOI can be treated as a small perturbation.
Explicitly, the eigenstates of H0 are

ψnσ (i) =
3∏

λ=1

√
2

Nλ + 1
sin

πnλiλ

Nλ + 1
χσ , (2)

where n = (nx,ny,nz), with 1 � nλ � Nλ, and χσ is an eigen-
state of the σ̂z spin operator. The corresponding eigenvalues
are

εn =−2t0

(
cos

πnx

Nx +1
+ cos

πny

Ny +1
+ cos

πnz

Nz+1
− 3

)
−μ,

(3)
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where the chemical potential in the SM μ is calculated from
the bottom of the band. We project the quantum problem into
the low-energy subspace spanned by the eigenstates ψnσ with
energies below a certain cutoff value, εn < εmax, where the
cutoff energy εmax is typically of the order 15 meV, that is, one
order of magnitude larger than the inter-subband spacing. The
number of states in this low-energy basis is of the order 103 and
thus the numerical complexity of the problem is significantly
reduced. The matrix elements of the SOI Hamiltonian are

〈ψnσ |HSOI|ψn′σ ′ 〉

= αδnzn′
z

{
1 − (−1)nx+n′

x

Nx + 1
(iσ̂y)σσ ′

×
sin πnx

Nx+1 sin πn′
x

Nx+1

cos πnx

Nx+1 − cos πn′
x

Nx+1

δnyn′
y
− [x ⇔ y]

}
, (4)

where the second term in the parentheses is obtained from the
first term by exchanging the x and y indices.

To realize nontrivial topological states that support Majo-
rana modes, it is necessary that an odd number of subbands be
occupied.40 In the simplest case of a single subband nanowire,
this can be achieved with the help of a Zeeman field (i.e., a
spin splitting)

HZeeman = �
∑
i,σ,σ ′

c
†
iσ (σ̂x)σσ ′ciσ ′ , (5)

which opens a gap at small momenta and removes one of the
helicities that characterize the spectrum of a Rashba-coupled
electron system. In the multiband nanowires the situation is
more complicated (see below) but the Zeeman term is essential
to avoid fermion doubling. The Zeeman term can be obtained
using an external magnetic field applied along the x̂ axis,
� = gμBBx/2. When the chemical potential lies within one
of the Zeeman gaps at k = 0, the condition for odd subband
occupation is satisfied and thus fermion doubling is avoided,
which allows for the existence of Majorana modes at the ends
of the nanowire. Note that in SM with a large g factor, for
example, gInAs ∼ 10 and gInSb ∼ 50, relatively small in-plane
magnetic fields can open a sizable gap without significantly
perturbing superconductivity. This is a crucial ingredient of the
present proposal which is particularly important in the context
of the effect of disorder on the topological phase, as we discuss
in Sec. IV. For example, in InAs a magnetic field Bx ∼ 1 T
corresponds to � ∼ 1 meV. Finally, we note that in the basis
given by Eq. (2) the Zeeman term has the simple form

〈ψnσ |HZeeman|ψn′σ ′ 〉 = �δnn′δσ̄σ ′, (6)

where σ̄ = −σ .

B. Proximity-induced superconductivity

In addition to SOI and Zeeman spin splitting, the only
other physical ingredient necessary for creating the Majorana
mode is ordinary s-wave superconductivity, which can be
induced in the SM by proximity effect through coupling to
an s-wave SC. A model of the full system that supports the
Majorana modes contains, in addition to the nanowire and
Zeeman terms [Eqs. (1) and (5), respectively], the Hamiltonian
for the SC, HSC, and a term describing the nanowire-SC

tunneling, Hnw-SC. We note that, to account quantitatively for
the superconductivity induced in the nanowire, one should
also include possible electron-phonon and electron-electron
interactions within the SM itself, Hint. These interactions may
enhance or inhibit the induced effect, depending on the details
of the SM material.53,54 In this paper we do not take into
account effect of interactions in the SM on the proximity
effect and use a simple model for the proximity effect using
a tunneling Hamiltonian approach55 which is appropriate for
the sample geometry considered here (thin SM lying on top
of the SC). The effects of interactions on the topological
superconducting phase were recently considered in Refs. 52
and 56– 58. In addition to affecting the proximity-induced
SC gap, the repulsive Coulomb interactions among the SM
electrons lead to an effective enhancement of the Zeeman
splitting which might be favorable for inducing topological
superconductivity.58

Thus, the total Hamiltonian for our model of SM/SC
heterostructure is given by

Htot = Hnw + Hint + HZeeman + HSC + Hnw-SC, (7)

where the tunneling term reads

Hnw-SC =
∑
i, j ,σ

[̃ti, jc
†
iσ a jσ + H.c.], (8)

with ciσ and a jσ being electron destruction operators acting
within the SM and SC, respectively. We assume that the matrix
elements t̃i, j couple the sites of the SC located at the interface,
j = (r‖,zinterface)/a, where r‖ is a position vector in a plane
parallel to the interface and zinterface is the coordinate of the
interface layer in a slab geometry, to the first layer of the SM
wire, i = (ix,iy,1).

The proximity effect can be now derived by integrating out
superconducting degrees of freedom in Eq. (7) and considering
the resulting effective low-energy theory for the SM. To
identify the form of the effective low-energy Hamiltonian,
we consider first the case of a single-band SM coupled to an
s-wave SC through an infinite planar interface, then we address
the specific issues related to multiband nanowires.

1. Infinite planar interface

Within the tunneling Hamiltonian approach, the proximity-
effect induced by an s-wave SC can be captured by integrating
out the superconducting degrees of freedom and calculating the
surface self-energy due to the exchange of electrons between
SC and SM.39 We briefly review this approach here and use
these results later when discussing the disordered s-wave SCs.
The interface self-energy is given by

�σσ ′(r,r ′,ω) = Trr1,r2 t̃(r,r1)Gσσ ′(r1,r2,ω)t̃†(r2,r ′), (9)

where t̃(r,r1) is the matrix describing tunneling between
SM and SC. To illustrate the basic physics, we use here
the simplest form for tunneling matrix elements t̃(r,r1) =
t̃ δ(z)δ(z1)δ(r || − r ||

1) with r || and z denoting in-plane and
out-of-plane coordinates. After some algebra, the surface
self-energy �(r−r ′,ω) is given by

�(r − r ′,ω) = |t̃ |2δ(z)δ(z′)
∫

d3 p
(2π )3

ei p(r−r ′)G( p,ω), (10)
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and finally becomes in the momentum space

�( p||,ω) = |t̃ |2
∫

dpz

2π
G( p,ω) (11)

= |t̃ |2
∫ �

−�

dε

∫
dpz

2π
δ(ε − ξ p)G(ε,ω), (12)

where � is half bandwidth. The density of states ν(ε, p||) =∫
dpz

2π
δ(ε − ξ p) is usually a weakly dependent function of

momenta and energy ν(εF , p||) ≈ ν(εF ) = 2
√

1 − ζ 2/�, with
ζ = (� − εF )/� and εF being the Fermi level in the SC. With
these approximations, the surface self-energy becomes

�(ω) = |t̃ |2ν(εF )
∫

dεG(ε,ω) (13)

= −|t̃ |2ν(εF )

⎡⎣ωτ0 + �0τx√
�2

0 − ω2
+ ζ

1 − ζ 2
τz

⎤⎦ . (14)

In the homogeneous case the last term in Eq. (13) represents
a shift of the chemical potential and can be neglected as the
chemical potential should be determined self-consistently by
solving the appropriate equation for the fixed total electron
density.

We can now include the surface self-energy �(ω) into the
SM Hamiltonian and study the effective low-energy model for
the SM. This can be done by investigating the poles of the SM
Green’s function

G−1(k,ω) = ω

⎛⎝1 + γ√
�2

0 − ω2

⎞⎠ − �σ̂z

− [ξk + αR(kyσ̂x − kxσ̂y)]τz − γ�0√
�2

0 − ω2
τ̂x ,

(15)

where ξk = h̄2k2/2m∗ − μ, αR is the Rashba coupling, � is
the strength of a Zeeman field oriented perpendicular to the
interface, �0 is the value of the superconducting gap inside the
SC, and γ is the effective SM-SC coupling. In the calculations,
in addition to the values specified in Sec. II A, that is,
m∗ = 0.04m0 and αR = 0.1 eV Å, we have �0 = 1 meV. The
effecting coupling γ = t̃ 2|ψ(iz = 1)|2ν(εF ) depends on the
transparency of the interface, t̃ , the amplitude of the SM wave
function at the interface, ψ(iz = 1), and the local density of
states of the nonsuperconducting metal at the interface, which
can be expressed in terms of the half-bandwidth � and the
Fermi energy εF of the metal.39 Note that the Green’s function
(15) is written in the Nambu spinor basis (u↑,u↓,v↓, − v↑)T

using the Pauli matrices τ̂λ and σλ that correspond to the
Nambu and spin spaces, respectively. The identity matrices
τ0 and σ0 are omitted for simplicity.

Explicit comparison between the effective theory described
by Eq. (15) and microscopic tight-binding calculations39 has
shown remarkable agreement. A similar effective description
has proven extremely accurate in describing the proximity
effect induced at a topological insulator-SC interface.59 Can
the low-energy physics contained in Eq. (15) be captured by
an effective Hamiltonian description? To address this question,
we determine the poles of the Green’s function at frequencies

within the superconducting gap, ω < �0; that is, we solve
the Bogoliubov–de Gennes (BdG) equation det[G−1] = 0.
Explicitly, we have

ω2

⎛⎝1 + γ√
�2

0 − ω2

⎞⎠2

= ξ 2
k + λ2

k + �2 + γ 2�2
0

�2
0 − ω2

− 2

√
ξ 2

k

(
λ2

k + �2
) + γ 2�2

0�
2

�2
0 − ω2

. (16)

Note that we have considered only the lowest energy mode. In
Eq. (16) dynamical effects are generated by the frequency
dependence of the proximity-induced terms containing the
expression γ /

√
�2

0 − ω2, with a relative magnitude that
depends on the SM-SC coupling strength. In general, we
distinguish a weak-coupling regime characterized by γ � �0

and a strong coupling regime, γ � �0. In the weak coupling
regime we expect negligible dynamical effects at all energies
that are not very close to the gap edge, ω = �0. Neglecting
the frequency dependence in the proximity-induced terms, the
solution of Eq. (15) becomes

Ek = Z

√
ξ 2

k + λ2
k + �2 + γ 2 − 2

√
ξ 2

k

(
λ2

k + �2
) + γ 2�2,

(17)

where Z = (1 + γ /�0)−1 < 1 is the quasiparticle residue at
zero energy.

To evaluate the dynamical effects, we compare the BdG
spectrum given by Eq. (17) with the full solution of Eq. (16).
The results are shown in Fig. 1 for a weak coupling regime
characterized by γ = 0.25 meV (top panel) and at large
coupling, γ = 2 meV (bottom panel). Notice that, even for
effective couplings larger than the gap, for example, γ =
2�0, Eq. (17) represents a very good approximation of the
low energy spectrum. What about couplings that are much
larger than �0? To answer this question, let us consider
the dependence of the low-energy spectrum on the coupling
constant γ , and the Zeeman field �. For � = 0 the spectrum
is gapped and the minimum of the gap is located at k = 0
(see Fig. 1). Applying a Zeeman field reduces this minimum
gap continuously and at the critical value �c =

√
γ 2 + μ2 the

spectrum becomes gapless (see Fig. 1). For � > �c a gap
opens again with a minimum at k = 0 for � � �c and at a
finite wave vector for large values of the Zeeman field. The
dependence of the minimum gap on the Zeeman field is shown
in Fig. 2 for three different values of the SM-SC coupling.
The vanishing of the gap at the critical point � = �c marks
a quantum phase transition from a normal SC at low Zeeman
fields to a topological SC (when � > �c).37,39 The change in
the location of the quasiparticle gap from k = 0 to a finite
wave vector is marked in Fig. 2 by a discontinuity in the slope
at �∗ � �c. The optimal value of the excitation gap in the
topological phase is obtained for � ≈ �∗. This optimal value
depends weakly on the effective coupling γ , but varies strongly
with the spin-orbit coupling.
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FIG. 1. (Color online) (Top) Low-energy BdG spectrum of a
SM with proximity-induced superconductivity. The effective SM-SC
coupling is γ = 0.25 meV and the chemical potential is μ = 0.
The induced gap vanishes at k = 0 in the presence of a Zeeman
field � = √

γ 2 + μ2 = 0.25 meV. The full lines are obtained by
solving Eq. (16), while the symbols represent the spectrum given
by Eq. (17). (Bottom) Low-energy BdG spectrum for γ = 2 meV,
μ = 0, and three different values of the Zeeman field. The filled
area corresponding to energies above �0 = 1 meV represents the SC
continuum. Note that for energies Ek < �0/2, Eq. (17) represents
a very good approximation of the BdG spectrum even in the
strong-coupling regime.

From the above analysis we conclude that the
strong-coupling regime characterized by γ � �0 is not
experimentally desirable, as it would require extremely
high magnetic fields to reach the topologically nontrivial
phase, that is, � >

√
γ 2 + μ2 � �0. In addition, it would be

difficult to tune the chemical potential and drive the system
into a topological superconducting phase for a large SM-SC
coupling. Also, as follows from Eq. (17), the quasiparticle
excitation spectrum decays with increasing γ /�0, which
leads to the reduced stability of the topological phase
against thermal fluctuations. Hence, an experimentally useful
interface should be characterized by an effective coupling γ of
order �0 or less, that is, in the intermediate to weak-coupling
regime. As shown above, in these regimes the BdG spectrum
is accurately approximated by Eq. (17). Consequently, we can
model the low-energy spin-orbit coupled SM with proximity
induced superconductivity using an effective tight-binding

FIG. 2. (Color online) Dependence of the minimum quasiparticle
excitation gap in the BdG spectrum given by Eq. (16) on the Zeeman
field � for different SM-SC couplings. The chemical potential is
μ = 0 and the Rashba coefficient is αr = 0.15 eV Å for the curve
represented by small (green) circles and αr = 0.1 eV Å for the other
three curves. The system becomes gapless at �c = √

γ 2 + μ2. The
superconducting state with � < �c is topologically trivial, while for
� > �c one has a topological SC that supports Majorana bound states.
Note that the optimal quasiparticle gap for the topological SC has a
weak dependence on the SM-SC coupling but varies strongly with
the strength of the spin-orbit coupling.

model given by the Hamiltonian

Heff = HSM + HZeeman + H�, (18)

where the SM term HSM has the same form as the Hamiltonian
Hnw for the nanowire given by Eq. (1) but with Nx → ∞ and
Ny → ∞ and the Zeeman term HZeeman is given by Eq. (5) with
σ̂x → σ̂z. In addition, all the energy scales are renormalized
by a factor Z = (1 + γ /�0)−1 < 1, that is, t0 → Zt0, α →
Zα, etc. The physical meaning of the factor Z written as
Z = γ −1/(γ −1 + �−1

0 ) is intuitively clear; it corresponds to
a probability to find an electron in the SM. The induced
superconductivity is described by the effective pairing term

H� =
∑

i

(�c
†
i↑c

†
i↓ + H.c.), (19)

with an effective SC order parameter � = γ�0/(γ + �0).
With these choices, Heff given by Eq. (18) has the same low
energy spectrum as the one described by Eq. (17).

2. The multiband case

To account for the specific aspects that characterize the
proximity effect in finite-size systems, we return to the details
of deriving the effective low-energy Green’s function descrip-
tion [e.g., Eq. (15)], starting with the microscopic Hamiltonian
(7). After integrating out the SC degrees of freedom, the
effective SM Green’s function acquires a self-energy,

�SC(n,n′)

=
∑

ix ,iy ,jx ,jy

ψn(ix,iy,1)̃t(ix,iy)

×GSC(ω,r‖,zinterface)̃t(jx,jy)ψn′(jx,jy,1), (20)
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where ψn(ix,iy,1) are the orbital components of the eigenstates
described by Eq. (2) and GSC(ω,r‖,zinterface) is the SC Green’s
function, both evaluated at the interface. In Eq. (20) r‖ =
(ix − jx,iy − jy) and t̃(ix,iy) are matrix elements that couple
two sites with in-plane coordinates (ix,iy) across the interface.
In the discussion of the planar interface we implicitly assumed
translational invariance for the SM-SC coupling, that is,
t̃(ix,iy) = t̃ . Here we consider position-dependent couplings
and argue that engineering interfaces with a transparency
that varies across the wire, that is, t̃(ix,iy) = t̃(iy), generates
off-diagonal components of the effective SC order parameter
that help stabilize the Majorana modes.40 We note that
variations of the coupling matrix element along the wire, that
is, in the x direction, act as an effective disorder potential. We
address this issue below in Sec. IV C.

The SC Green’s function integrated over momenta can be
written explicitly as [see Eq. (13)]

GSC = −ν(εF )

⎡⎣ωτ0 + �0τx√
�2

0 − ω2
+ ζ

1 − ζ 2
τz

⎤⎦ , (21)

where ζ = (� − εF )/�, with � being the half bandwidth, εF

being the Fermi energy and �0 = 1 meV being the s-wave
SC gap. In the numerical calculations we have εF = �/2, that
is, ζ = 0.5. Using the expression of the SC Green’s function
given by Eq. (21), the self-energy (20) becomes

�SC(n,n′) = −γnyn′
y

⎡⎣ ω + �0τ̂x√
�2

0 − ω2
+ ζ τ̂z√

1 − ζ 2

⎤⎦ δnxn′
x
, (22)

with the implicit assumption that the wire is very thin, Lz �
Ly , and nz = n′

z = 1. The coupling matrix in Eq. (22) is

γnyn′
y

= 〈ny |γ |n′
y〉

= 2

Ny + 1

∑
iy

γ (iy) sin

[
nyiyπ

Ny + 1

]
sin

[
n′

yiyπ

Ny + 1

]
, (23)

γ (iy) =
4
√

1 − ζ 2 sin2
[

π
Nz+1

]
(Nz + 1)�

t̃2(iy). (24)

We note that for position-independent SM-SC couplings,
t̃(iy) = t̃ , the matrix γ is proportional to the unit matrix
and the effective low-energy Hamiltonian can be obtained
along the lines of Sec. II B 1. However, for nonuniform
couplings, γnyn′

y
acquires off–diagonal elements that generate

normal and anomalous inter-subband terms in the effective
Hamiltonian via the self-energy (22). The relative magnitude
of the off-diagonal terms depends on the nonhomogeneity of
the SM-SC coupling. To quantify this property, we consider a
fixed profile p(y) with the property p(0) = 0 and p(Ly) = 1
and the position-dependent tunneling t̃(y) = t̃0[1 − θp(y)],
where 0 � θ � 1 is a parameter that measures the degree of
nonuniformity of the coupling. Shown in Fig. 3 (top panel) is
t̃(y) for θ = 0.8. As we show below, the nonuniform coupling
induces an effective pairing �nyn′

y
= 〈ny |γ�0/(γ + �0)|n′

y〉,
where γ is given by Eq. (24). The dependence of �nyn′

y

on the coupling asymmetry parameter θ is shown in Fig. 3
(bottom panel). For uniform tunneling (θ = 0) the off-diagonal

0.0
0.0

FIG. 3. (Color online) (Top) Nonuniform SM-SC coupling
t̃(y) = t̃0[1 − θp(y)] with a smooth profile p(y) and θ = [̃t(0) −
t̃(Ly)]/̃t(0) = 0.8. (Bottom) Dependence of the induced gap on the
nonuniformity of the coupling across the wire. The inhomogeneous
proximity effect induces inter-subband pairing with �nyny±1 ≈
�nyny

/2 for θ > 0.7.

elements vanish and the diagonal elements become equal.
By contrast, strongly nonhomogeneous tunneling (θ → 1)
generates off-diagonal terms �nyn′

y
that reach about 50% of the

diagonal contributions for neighboring subbands, n′
y = ny ±1,

and are much smaller for |n′
y − ny | > 1.

The low-energy effective Hamiltonian for the nanowire can
be derived following the scheme described in Sec. II B 1.
As before, at low energies (ω � �0) we can neglect the
frequency dependence of the dynamically generated terms,
that is, 1/

√
�2

0−ω2≈1/�0. However, due to the inter-subband
coupling induced by nonhomogeneous proximity effect, one
cannot simply renormalize the energy by a factor Z. This is
due to the fact that the Green’s function for the proximity
coupled nanowire, (G−1)nn′ = ωδnn′ − (Hnw + HZeeman)nn′ −
�SC(n,n′), contains a frequency-dependent term ω(1 +
γnyn′

y
/�0) that is not proportional to the unit matrix. However,

we notice that we can define a matrix Z1/2 with the property
Z1/2G−1Z1/2 = ω − Heff . Explicitly, we have

(Z1/2)nyn′
y
= 〈ny |

√
�0

�0 + γ
|n′

y〉, (25)

where γ (iy) is given by Eq. (24) and 〈iy |ny〉 =√
2/(Ny + 1 sin[iynyπ/(Ny + 1)]. Because det[Z1/2] > 0, the

renormalized Green’s function satisfies the same BdG equation
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as the original Green’s function, that is, det[ω − Heff] =
det[G−1] = 0. We conclude that the low-energy physics of a
nanowire proximity coupled to an s-wave SC can be described
by an effective Hamiltonian Heff that can be conveniently
characterized by its matrix elements in the Nambu basis
||nσ 〉〉 = (ψnσ , − σψ

†
nσ )T provided by the eigenstates of H0

given by Eq. (2). Considering only the lowest band, that is,
n = (nx,ny,1), we can write explicitly

〈〈nσ ||Heff||n′σ ′〉〉
= (Z1/2)nymy

〈mσ |Hnwτ̂z + HZeeman|m′σ ′〉(Z1/2)m′
yn

′
y

− δnxn′
x
δσσ ′

ζ�nyn′
y√

1 − ζ 2
τ̂z − δnxn′

x
δσ̄σ ′�nyn′

y
τ̂x, (26)

where σ̄ = −σ , m = (nx,my,1), m′ = (n′
x,my ′,1), and sum-

mation over the repeating indices my , m′
y is implied. In Eq. (26)

the matrix Z1/2 is given by Eq. (25), the Hamiltonian for the
nanowire is Hnw = H0 + HSOI, and the matrix elements of H0,
HSOI, and HZeeman are given by Eqs. (3), (4), and (6), respec-
tively. We note that for a homogeneous SM-SC interface the
normal contribution proportional to �nyn′

y
becomes diagonal

and can be absorbed in the chemical potential, but in general
it generates inter-subband mixing. These induced off-diagonal
terms can be significant in the strong-coupling limit. Finally,
the effective SC order parameter is

�nyn′
y
= 〈ny | γ�0

�0 + γ
|n′

y〉, (27)

where γ is given by Eq. (24) and |ny〉 has the same significance
as in Eq. (25).

The effective low-energy BdG Hamiltonian given by
Eq. (26) is the main result of this section. In the remainder
of this work we study the low-energy physics of a nanowire
with proximity-induced superconductivity by diagonalizing
numerically this effective Hamiltonian (26).

III. LOW-ENERGY SPECTRUM, MAJORANA BOUND
STATES, AND PHASE DIAGRAM

A. General properties of the BdG spectrum

The effective BdG Hamiltonian (26) can be written as

Heff = H̃nwτ̂z + H̃Zeeman + H̃�τ̂x, (28)

where H̃nw and H̃Zeeman are renormalized nanowire and
Zeeman Hamiltonians, respectively, and H̃� is the effective
pairing with matrix elements −δnxn′

x
δσ̄σ ′�nyn′

y
. We note that

the normal contribution proportional to �nyn′
y

from Eq. (26)

is included in H̃nw. As mentioned above, for homogeneous
SM-SC coupling the only effect of this term is to generate an
overall shift of the energy. For convenience, we eliminate this
shift by adding a term δnxn′

x
δσσ ′�ζ/

√
1 − ζ 2τ̂z to the effective

Hamiltonian (26), where

� = �0

Ny

∑
iy

γ (iy)

�0 + γ (iy)
(29)

is the “average” effective pairing. Note that �nyny
→ � for

ny � 1 and the diagonal contribution to the energy-shifting
term is partially canceled even in the nonhomogeneous case.

Finally, to be able to compare results corresponding to various
degrees of inhomogeneity in the coupling, that is, different θ

parameters, we define the average coupling strength as

γ = 1

Ny

∑
iy

γ (iy). (30)

To obtain better insight into the properties of the BdG
Hamiltonian, we start with a nonsuperconducting system
described by the Hamiltonian H̃nw + H̃Zeeman and Lx → ∞,
that is, an infinitely long renormalized nanowire placed into
an effective magnetic field. The spectrum of the renormalized
wire is shown in Fig. 4 for a chemical potential μ/Eα = 5 and
a Zeeman field �/Eα ≈ 15, where Eα = m∗αR ≈ 0.6K is the
characteristic spin-orbit coupling energy. Here and below we
systematically use Eα an as energy unit. The bare nanowire
spectrum is renormalized due to a weak inhomogeneous
coupling with a profile given in Fig. 3, θ = 0.8, and γ =
0.25�0. For � = 0 the subbands with a given value of
ny are double degenerate at kx = 0, but this degeneracy is
removed by the Zeeman field. However, for special values
of �, subbands corresponding to different values of ny may
become degenerate at kx = 0 (see Fig. 4). If the chemical
potential has a value such that the degeneracy point occurs at
zero energy, (�,μ) represent a so-called sweet spot.40 Adding
superconductivity will now open a gap in the spectrum near
E = 0. In the weak-coupling limit, one can determine the
topological nature of the induced superconductivity by simply
counting the number of subbands crossed by the chemical
potential: An odd number corresponds to a topologically
nontrivial SC, while an even number results in a standard
SC.40 Within this simplified picture, the sweet spots represent
critical points. As is shown below, the properties of the system
in the interesting parameter regimes near the sweet spots are

FIG. 4. (Color online) Spectrum of an infinite nonsuperconduct-
ing wire in the presence of a Zeeman field. The energies are obtained
by diagonalizing the Hamiltonian H̃nw + H̃Zeeman for μ = 5Eα and
� ≈ 15Eα and are measured relative to the chemical potential. Due
to the presence of the Zeeman field, each ny band is split into two
subbands marked {ny−} and {ny+}. Note that, for this value of �, the
subbands {1+} and {2−} are degenerate at kx = 0.
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FIG. 5. (Color online) (Top) BdG energy spectrum for a finite
superconducting wire obtained by numerical diagonalization of Heff .
The parameters μ and � are the same as in Fig. 4 and n labels
the eigenvalues of Heff staring with the lowest energy and has the
same sign as En. The in-gap states are Majorana zero-energy modes.
(Bottom) The particle-component of the wave-function amplitude for
the lowest energy states. The Majorana modes (n = 1) are localized
at the ends of the wire, while the finite energy states extend over the
entire wire.

determined by the effective interband pairing, that is, by the
nonhomogeneity of the SM-SC proximity effect.

Next, we diagonalize numerically the full effective Hamil-
tonian (26) for a finite wire using the same set of control
parameters, μ/Eα = 5 and �/Eα ≈ 15. The corresponding
low-energy spectrum is shown in the top panel of Fig. 5. The
eigenstates are labeled by an integer number n that has the
same sign as the corresponding eigenvalue En. The spectrum
is characterized by a gap �∗ ≈ 1.8Eα and a pair of zero-energy
Majorana bound states. To prove the localized nature of these
states, we calculate the wave function amplitude and show that
the Majorana modes are localized near the ends of the wire
(Fig. 5, bottom panel). By contrast, finite energy states extend
over the entire system. The oscillations of the wave function
amplitudes is associated with the Fermi momentum kF ≈
0.02/a, as shown in Fig. 4. We note that amplitudes shown
in Fig. 5 represent the particle component of the BdG wave
functions, that is, |un↑|2 + |un↓|2. For a finite-energy state,
for example, n = 2, the corresponding total spectral weight is
about 1/2, with the other half coming from from n = −2. The
Majorana modes have a total weight of one, which corresponds
to one physical particle, but this weight is spatially separated
into two contributions localized near the ends of the wire.
Removing the Majorana pair would require overlapping the
two components, which cannot be done by local perturbations.
This is, of course, the topological immunity of the Majorana

modes, which is crucial for topological quantum computation.
The characteristic length scale for the localized modes is
controlled by the minimum value of the quasiparticle gap in
a wire with no ends, for example, with periodic boundary
conditions, �∗

∞. As is shown below (see Sec. III C), in a finite
wire it is possible that bound states localized near the ends of
the system have energies within the gap. When in-gap states
are present, the lowest-energy localized state sets the value of
the minigap, �∗ < �∗

∞. We emphasize that for a set of control
parameters (�,μ) corresponding to a nonvanishing minimum
quasiparticle gap �∗

∞, the minigap �∗ is always nonzero. The
characteristic length scale for the localized modes diverges in
the limit �∗ → 0. Hence, the topological phase is protected as
long as the quasiparticle gap remains finite. Consequently, to
determine the stability of the Majorana bound states, our key
task is to determine the dependence of �∗

∞ on various physical
parameters and experimentally relevant perturbations, for
example, chemical potential, Zeeeman field, SM-SC coupling,
and charged impurity and coupling-induced disorder.

At this point in our analysis it is important to clarify the role
played by the parameters that incorporate the SM-SC proxim-
ity effect into the low-energy effective theory. In particular,
we address the following question: How does the low-energy
spectrum depend on the strength of the SM-SC coupling (i.e.,
on γ ), on the nonhomogeneity of the coupling (θ ), and on
the dynamical effects included in the effective description
(Z1/2)? The nonhomogeneity of the coupling is responsible
for generating inter-subband pairing in Eq. (27). These off-
diagonal contributions play a minor role away from the sweet
spots, where they generate a small quantitative change of
the quasiparticle gap. However, in the vicinity of the sweet
spots �∗

∞ vanishes in the absence of inter-subband pairing
and the nonhomogeneity of the coupling (i.e., θ > 0) becomes
crucial. As expected, inclusion of dynamical effects through
Z1/2 renormalizes the energy scales. Without these effects,
the minigap would increase monotonically with the coupling
strength, but dynamical effects limit its maximum value. The
optimal quasiparticle gap obtains in the intermediate coupling
regime γ ∼ �0. Further increase of the coupling leads to
a decrease of the gap. To illustrate the features described
above, we show in Fig. 6 low-energy spectra in the vicinity of
the sweet spot (μ = 14.5Eα , � = 15.3Eα) at weak coupling
(γ = 0.25�0, top panel) and intermediate coupling (γ = �0,
bottom panel). Note that in the absence of interband pairing,
that is, for homogeneous SM-SC coupling, the gap near the
sweet spot collapses. Also, inclusion of dynamical effects at
intermediate and strong coupling is the key for obtaining the
correct energy scales. Finally, the location of the sweet spots
in the �-μ plane depends on the coupling strength and, more
generally, the location of phase boundaries depends on the
strength of the SC proximity effect.

B. Phase diagram for multiband superconducting nanowires

Topological superconductivity and, implicitly, the Majo-
rana bound states are protected by the quasiparticle gap �∗

∞,
as discussed above. The vanishing of �∗

∞ signals a transition
between topologically nontrivial and topologically trivial
superconductivity. In a multiband system, such transitions
can be caused, for example, by varying the Zeeman field
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FIG. 6. (Color online) (Top) Low-energy spectra for weak SM-
SC coupling (γ = 0.25�0) in the vicinity of the sweet spot (μ =
14.5Eα , � = 15.3Eα). The yellow circles correspond to inhomoge-
neous coupling with θ = 0.8 and takes into account dynamical effects,
the black squares are obtained by neglecting dynamical effects, that
is, (Z1/2)nyn′

y
= δnyn′

y
, and the red diamonds are for a homogeneous

coupling. (Bottom) Same as in the upper panel for γ = �0 near
the sweet spot (μ = 14.5Eα , � = 24.2Eα). Note that inclusion of
dynamical effects through Z1/2 renormalizes the energy scales, while
inhomogeneous coupling play a critical role in establishing a finite
gap near the sweet spot. The location of a given sweet spot depends
on the coupling strength.

while maintaining a fixed value of the chemical potential.
The vanishing of �∗

∞ at certain specific values of � reveals a
sequence of alternating SC phases with trivial and nontrivial
topological properties. A natural question is whether different
topologically nontrivial (or trivial) phases have exactly the
same low-energy properties. While topologically identical,
these phases may have some distinct features, at least in certain
parameter regimes.

To address this question, we calculate the low-energy
spectrum for a system with a fixed chemical potential, μ =
30Eα , and different values of �, one from each of four
intervals separated by points characterized by a vanishing gap.
The results are shown in Fig. 7. The distinctive feature of
the spectra in Fig. 7 is their number of zero-energy modes.
In the presence of a very weak Zeeman field, the SC phase

−4

FIG. 7. (Color online) Sequence of low-energy spectra obtained
for four different values of the Zeeman field separated by points with
a vanishing minigap. The spectra with an odd number of pairs of
zero-energy modes (N ) characterize topological SC phases, while
those with an even N correspond to trivial SC phases. Note the
overall decrease of the minigap with the Zeeman field. The system is
characterized by the following parameters: μ = 30Eα , γ = 0.25�0,
and θ = 0.8.

has trivial topology and no zero-energy modes. Increasing �

generates a transition to a topological SC phase characterized
by one pair of Majorana bound states. The further increase of
the applied Zeeman field produces alternating topologically
trivial and nontrivial SC phases with increasing number
of zero-energy bound states. Topological SC phases are
characterized by an odd number of pairs of Majorana bound
states, while trivial SC phases have an even number of pairs.

This type of sequence of alternating SC phases is indepen-
dent of the chemical potential or the strength of the SM-SC
coupling. As discussed above, in the weak-coupling limit
γ → 0 this behavior can be directly related to the number
of subbands of an infinite wire that crosses the chemical
potential: an odd (even) number corresponds to a nontrivial
(trivial) topological SC. At the phase boundary between two
SC phases with different topologies, two subbands become
degenerate at kx = 0. In addition, at certain special values of
the control parameters � and μ two different phase boundaries
intersect, leading to multicritical points. We call these special
crossing points x points. The sweet spots mentioned above
are examples of such x points. The key question is how
the phase boundaries evolve when we turn on the SM-SC
coupling and, in particular, what the physics is in the vicinity
of the x points (see also Ref. 52). To obtain the global
phase diagram in the �-μ plane, we determine the parameters
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FIG. 8. (Color online) Phase diagram of the multiband nanowire
as function of the Zeeman field � and the chemical potential μ.
The quasiparticle gap �∗

∞ of the effective low-energy Hamiltonian
(26) vanishes at the phase boundaries. Superconducting phases
characterized by an odd (even) number of pairs of zero-energy
Majorana modes are topologically nontrivial (trivial). The coupling
of the SM nanowire to the s-wave SC is characterized by γ = 0.25�0

and θ = 0.8. The inhomogeneous coupling induces off-diagonal
pairing �nyn′

y
, which removes the x points, creating regions with

stable nontrivial (near the sweet spots) or trivial SC.

that satisfy the condition �∗
∞(�,μ) = 0; that is, we identify

the phase boundaries for transitions between topologically
trivial and nontrivial phases by imposing the condition of a
vanishing quasiparticle gap. We show below that this approach
is consistent with the calculation of the topological index M
(Majorana number) which distinguishes topologically trivial
and nontrivial SC phases.11,40 The results are shown in Fig. 8
for weak coupling (γ = 0.25�0) and in Fig. 9 for intermediate
coupling (γ = �0).

For γ = 0.25�0 (see Fig. 8), the only significant difference
as compared to the weak-coupling picture presented above is
the disappearance of the phase boundary crossings at the x
points. Instead, the region in the vicinity of these points is
occupied by the phase that is robust against variations of the
chemical potential. Near the sweet spots, this phase is the
nontrivial topological SC. We note that the disappearance
of phase boundary crossings is a direct result of the off-
diagonal pairing induced by a nonuniform SM-SC coupling.
Uniform tunneling (θ = 0) does not eliminate the x points,
independent of the coupling strength, but pushes them to
higher values of the Zeeman field as γ increases. Also, we
note that the characteristic width of the stable phase in a given
avoided crossing region is controlled by a specific off-diagonal
component �ny,n′

y
. For example, the sweet spots inside the

phase characterized by N = 1 (see Fig. 8) are controlled by
the dominant matrix elements �nyny+1 (see Fig. 3), while
the avoided crossings within the N = 2 topologically trivial
phase are controlled by matrix elements �nyny+2, which are

FIG. 9. (Color online) Phase diagram of the multiband nanowire
at intermediate coupling. The SM-SC coupling is γ = �0, while the
other parameters are the same as in Fig. 8. Note that the sweet spots
of the topological phase characterized by N = 1 are significantly
expanded as compared with the weak-coupling case shown in Fig. 8.
As a result, tuning the Zeeman field in the vicinity of � = 30Eα

allows for huge variations of the chemical potential without crossing
a phase boundary, that is, without closing the gap.

typically smaller. Hence, we expect the strongest effect within
the topological phase characterized by one pair of Majorana
bound states. As this phase also requires relatively low Zeeman
fields, it is the experimentally relevant phase for realizing and
observing Majorana fermions. At intermediate couplings, the
N = 1 phase is pushed to slightly higher fields (see Fig. 9).
However, as a result of the effective phase space of the
sweet spots expanding significantly, this regime presents the
remarkable possibility of being able to vary the chemical
potential over energy scales of the order 10 meV without
crossing a phase boundary. As we show below, this feature has
major experimental implications in the sense that the elusive
Majorana mode is most likely to be experimentally realized in
the laboratory in this particular physically realistic parameter
regime. We note that this interesting parameter regime exists
for the multiband situation.

C. Dependence of the gap on the Zeeman field and
the chemical potential

The phase diagram provides information about the topolog-
ical nature of the phase characterized by given sets of control
parameters (�,μ). However, we are ultimately interested in the
stability of the Majorana bound states that occur at the ends of
a nanowire within the topologically nontrivial phase. As the
Majorana zero-energy modes are protected by the quasiparticle
gap, knowing the size of the gap and the dependence of
�∗

∞ on the control parameters is critical. To address this
issue, we determine the dependence of the gap on both the
Zeeman field at fixed chemical potential and on μ at fixed �.
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FIG. 10. (Color online) Dependence of the gap on the Zeeman
field for a fixed chemical potential. The top panel corresponds to
weak SM-SC coupling with γ = 0.25�0 and θ = 0.8, while the
bottom panel is obtained for an intermediate coupling with γ = �0

and θ = 0.8. Within the red (dark gray) regions superconductivity
is topologically trivial, while in the yellow (light gray) regions
the system is topologically nontrivial. These curves correspond to
horizontal cuts in the phase diagrams shown in Figs. 8 and 9,
respectively, through a sweet spot of the phase N = 1. Note that
in the limit θ → 0, that is, for uniform SM-SC coupling, the width
of the lower field topologically nontrivial region shrinks to zero for
both coupling strengths.

The results are shown in Figs. 10 and 11. In general, the
gap is nonzero everywhere except at points corresponding
to phase boundaries. In the vicinity of a point (�c,μc) with
�∗(�c,μc) = 0 the minimum gap in an infinitely long wire
occurs at kx = 0. The dependence of this minimum on the
Zeeman field is approximately linear in the deviation from
the critical field, |� − �c| (see Fig. 10). This generalizes the
single-band results shown in Fig. 2. Note that outside this linear
regime, the minimum gap occurs at finite wave vectors. Finally,
we note that, at intermediate couplings, the Zeeman field can
be tuned so that the gap remains finite over a large range of
chemical potentials (Fig. 11, bottom panel). Such regimes are
extremely stable against fluctuations of the chemical potential
produced by disorder or other perturbations, as we show
explicitly in the next section. We emphasize that the critical
ingredients for realizing this regime are: (i) the off-diagonal
pairing obtained by a nonuniform SM-SC coupling, and
(ii) an effective average coupling γ of the order of the bare SC
gap �0. Note that the coupling strength γ ∝ t̃2/�L3

z can be
controlled by either modifying the tunneling t̃ , or by changing
the width Lz of the nanowire in the direction perpendicular to
the interface with the SC.

As we mentioned above, the value of the gap in a finite
system is, in general, smaller that the minimum gap in a
system with the same parameters but no ends, for example,

FIG. 11. (Color online) Dependence of the quasiparticle gap on
the chemical potential for a fixed Zeeman field. The top panel
corresponds to weak coupling, γ = 0.25�0, and � = 25Eα , while
the lower panel is obtained at intermediate coupling, γ = �0, and
� = 32Eα . The curves represent vertical cuts through the N = 1
topological phase in the phase diagrams shown in Figs. 8 and 9.
At intermediate coupling (bottom panel) the gap is finite over the
entire chemical potential range, making the topological SC phase in
a system with average chemical potential μ̄ ≈ 60Eα robust against
variations of the chemical potential of the order δμ = 5 meV.

with periodic boundary conditions. We emphasize that this
is not a finite size effect, but is due to the appearance of
in-gap states that are localized near the ends of the wire. In the
topologically nontrivial phase, the characteristic length scale
for these states is the same as that of the Majorana zero modes
and, for wires with lengths larger than this scale, their energy
is independent of Lx . To illustrate this behavior, we show in
Fig. 12 (top panel) the spectrum of a system characterized by
μ = 54.5Eα , � = 35Eα , γ = �0, and θ = 0.8. We notice a
pair of zero-energy Majorana modes and a number of states
with almost the same energy that are extended over the entire
length of the wire, as we checked explicitly. In addition,
we notice pair of states with energy within the bulk gap.
An analysis of the position dependence of |ψ(x)|2 reveals
that these states are localized near the ends of the wire.
The minimum energy of the extended states is equal to the
quasiparticle gap �∗

∞, while the lowest energy of the bound
states is equal to the minigap �∗. We can understand these
bound states as precursors of the extra pair of Majorana zero
modes that characterize the topologically trivial phase that
obtains for � > 40Eα . Increasing the magnetic field pushes
down the energy of the bound states until it vanishes at the
transition, when �∗ = �∗

∞ = 0. On the other side of the
transition, an extra pair of localized states will be characterized
by zero energy (see Fig. 7). The evolution of the minigap with
the Zeeman field is shown in the bottom panel of Fig. 12. Note
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FIG. 12. (Color online) (Top) Spectrum of a system characterized
by μ = 54.5Eα , � = 35Eα , γ = �0, and θ = 0.8. The states with
n = ±1 are Majorana zero modes, n = 2,3 correspond to states
localized near the ends of the wire, and states with n � 4 are extended
states. The minigap is �∗ = E2 and the minimum quasiparticle (QP)
gap is �∗

∞ = E4. The finite energy localized states can be viewed
as precursors of the extra pair of Majorana bound states that obtains
for � > 40Eα . (Bottom) Dependence of the quasiparticle (QP) gap
�∗

∞ and minigap �∗ on the Zeeman field for a system with the same
parameters as in Fig. 10. Note that �∗ = �∗

∞ in the vicinity of phase
transition points. The quasiparticle gap �∗

∞ has the same values as in
Fig. 10.

that in the vicinity of the transition points �∗ = �∗
∞, while

deep inside the topological phase �∗ < �∗
∞. Similar behavior

can be observed throughout the phase diagram, including the
topologically trivial phases.

D. Phase diagram for an effective three-band model using the
topological invariant

In this section we consider an effective three-band toy
model which allows one to qualitatively understand several

features observed in the detailed numerical simulations dis-
cussed in the previous sections.

The topological phase diagram for the multiband nanowire
can be obtained analytically using topological arguments
due to Kitaev.11 Namely, the superconducting phase hosting
Majorana fermions has an odd fermion parity, whereas the
nontopological phase has even fermion parity. Thus, the phase
diagram can be obtained by calculating the Z2 topological
index M (Majorana number) defined as

M = sgn[PfB(0)]sgn[PfB(π/a)] = ±1. (31)

The change of M signals the transition between trivial (M =
1) and nontrivial phases (M = −1). The antisymmetric matrix
B in Eq. (31) represents the Hamiltonian of the system in the
Majorana basis11 and can be constructed by the by the virtue
of particle-hole symmetry.37,60 Specifically, the particle-hole
symmetry of the BdG Hamiltonian is defined as

�HBdG(p)�−1 = −HBdG(−p), (32)

where � = UK is an antiunitary operator with U and
K representing unitary transformation and complex con-
jugation, respectively. One can check that the matrix
B(P )=HBdG(P )U calculated at the particle-hole invariant
points where HBdG(P )=HBdG(−P ) is indeed antisymmetric
BT (P )=−B(P ). In 1D there are two such points: P =0,π

a

with π
a

being the momentum at the end of the Brillouin
zone and a being the lattice spacing. The function Pf in
Eq. (31) denotes Pfaffian of the antisymmetric matrix B.
In the continuum approximation, where the lattice spacing
a → 0 and P =π/a→∞, the value of sgn[PfB(π/a)]=+1.
Thus, the topological phase boundary given by the change
in the topological index is determined by PfB(0) and, thus,
is accompanied by the gap closing at zero momentum. Note
that the topological reconstruction of the spectrum is always
accompanied by closing of the bulk gap9 since Det HBdG =
PfB2. Our approach to calculating the TP invariant relies
on translational symmetry. Recently, the expression for the
TP invariant was generalized to a spatially inhomogeneous
case.61,62

We now calculate PfB(0) for a simplified three-subband
model and compare the phase diagram with the numerical one
presented in the previous section. To make progress we assume
that �i,i = �, �i,i+1 = �′ and consider only diagonal in the
subband index spin-orbit coupling terms in Eq. (4). With these
approximations, PfB(0) becomes

PfB(0) = {
δE2

12

[−V 2
x + �2 + (δE13 − μ)2](V 2

x − �2 − μ2) − δE2
13

[
V 2

x (� − �′)2 − μ2][V 2
x − (� + �′)2 − μ2]

+ (
V 2

x − �2 − μ2
)[

V 4
x + (�2 − 2�′2)2 + 2(�2 + 2�′2)μ2 + μ4 − 2V 2

x (�2 + 2�′2 + μ2)
]

+ 2δE13μ
[
V 4

x + �4 − �2�′2 + 2�′4 + (2�2 + 3�′2)μ2 + μ4 − V 2
x (2�2 + 3�′2 + 2μ2)

]
+ 2δE12

[
δE2

13μ
(−V 2

x + �2 + �′2 + μ2
) + μ

(−V 2
x + �2 + μ2

)(−V 2
x + �2 + 2�′2 + μ2

)]
+ δE13

[(
V 2

x − �2)�′2 + (
2V 2

x − 2�2 − 3�′2)μ2 − 2μ4)]}. (33)
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FIG. 13. (Color online) Phase diagram
of the multiband nanowire at different
SM-SC tunneling strengths γ and inter-
band pairing �12 = �23 = �′ calculated
analytically for the effective three-band
model. Panels (a)–(c) correspond to γ =
5,20,40, respectively, and superconducting
gaps �/Eα = 4 and �′/Eα = 0. Panels
(d)–(f) correspond to γ = 5,20,40, respec-
tively, and superconducting gaps �/Eα =
4 and �′/Eα = 1. We used here δE12/Eα =
30 and δE13/Eα = 80.

Here δE12(3) represents the energy difference between first
and second (third) subbands due to the transverse confine-
ment. The superconducting gaps are related to the nominal
bulk gap �0 via relations � = γ�0/(γ + �0) and �′ =
0.25γ�0/(γ + �0), which take into account the dependence
of the induced parameters on tunneling strength. Here we have
chosen a reasonable ratio of �′/� = 0.25. Similarly, all other
energies are renormalized in the following way E → E �0

γ+�0

as explained in the previous sections.
The phase diagram showing a sequence of topological

phase transitions for the three sub-band toy model is shown
in Fig. 13. Panels (a)–(c) represent the phase diagram with
no interband mixing terms (i.e., �′ = 0). One can clearly see
crossings in the phase diagram which represent the sweet spots.
One can also notice the effect of the renormalization due to
SM-SC tunneling as we increase γ ; the superconducting and
normal terms are rescaled in a different way, as explained
above. In the weak-coupling regime γ � �0, the normal terms
are not significantly renormalized since �0

γ+�0
≈ 1, whereas

induced pairing is small � ≈ γ and is entirely determined
by the normal state level broadening γ . On the other hand,
in the strong-coupling regime γ � �0, the normal terms
are decreasing with γ because �0

γ+�0
≈ �0/γ � 1, whereas

� saturates at �0. Thus, strong SM-SC tunneling leads to
an important quantitative effect which should be taken into
account in a realistic model for the proximity effect.

Panels (d)–(f) represent the phase diagram with finite
interband mixing terms �′ �= 0. Here we find qualitative
agreement with the numerical results presented in the previous
sections [compare Figs. 8 and 9 with 13(d) and 13(e)].
Different renormalization of the normal and SC terms has
a twofold effect on the phase diagram: (a) With the increase of
tunneling the topological phase is effectively “pushed” toward
higher magnetic fields; (b) even small interband pairing term
opens a large gap at the sweet spot leading to extended vertical

topological regions. This insensitivity of the topological phase
against chemical potential fluctuations can be exploited for
the protection against disorder in the multi-subband occupied
nanowires with no such situation arising in the single-channel
case.

E. Phase diagram in the presence of a transverse
external potential

A key feature of the phase diagrams shown above is
represented by the hot spots. In the presence of inter-subband
pairing, the topologically nontrivial phases expand in the
vicinity of these hot spots, and, for certain values of the
Zeeman field, become stable over a wide range of values
for the chemical potential. As we show in the subsequent
sections, this property is critical for stabilizing the topological
superconducting phase and, ultimately, for realizing and
observing the Majorana zero modes. The necessary ingredient
for obtaining this expansion of the hot spots is a nonvanishing
inter-subband pairing, which is obtained by a nonuniform SM-
SC coupling characterized by a strong position dependence
along the direction transverse to the wire (see Fig. 3). The
natural question is whether this effect can be obtained by
breaking the symmetry in the transverse direction using an
external field, for example, generated by a gate potential,
instead of a nonuniform coupling. This would constitute an
alternative to engineering nonuniform SM-SC interfaces that
would be much simpler to implement and would allow better
control. To investigate this possibility, we consider an external
potential that varies linearly across the nanowire,

Vext(y) = V0(2y/Ly − 1), (34)

where V0 is the amplitude of the transverse external potential.
The matrix elements for the external potential are strictly off-
diagonal and couple strongly the neighboring subbands, while
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FIG. 14. (Color online) Phase diagram
of a multiband wire in a transverse ex-
ternal field. The strength of the SM-SC
coupling is γ = �0, with uniform coupling
(θ = 0, i.e., �′ = 0) for the top panels
and nonuniform tunneling (θ ≈ 0.4, �′ =
�/4) corresponding to the bottom panels.
The amplitude of the transverse potential
is V0 = 0 for panels (a) and (d), V0 =
50Eα for (b) and (e), and V0 = 100Eα

for (c) and (f). Note that the topologically
nontrivial phase has a vanishing width at the
sweet spots in the absence of inter-subband
pairing (a)–(c) for all values of the external
potential. For nonuniform coupling (e) and
(f), the transverse potential reduces the
width of the topological phase near the
sweet spots.

other contributions are at least one order of magnitude smaller.
Consequently, to a first approximation we have, 〈ny |Vext|n′

y〉 ≈
0.4V0δn′

y ,ny±1. Even in the presence of this interband coupling,
the Pfaffian PfB(0) for the effective three-band model can be
determined analytically and it is given by an expression that
generalizes Eq. (33). The corresponding phase diagrams for
both uniform and nonuniform SM-SC couplings and different
values of the external potential are shown in Fig. 14.

The key conclusion of this calculation is that inter-subband
mixing due to an external transverse potential does not lead
to an expansion of the topological phase in the vicinity of the
sweet spots, but rather determine a shift in their position. This
is illustrated by diagrams (a)–(c) in Fig. 14, which correspond
to homogeneous SM-SC coupling, that is, θ = 0, and different
values of the external field. Notice that, to a first approximation,
the effect of the transverse potential is equivalent to increasing
the inter-subband spacing δEnyn′

y
. If the transverse potential

is applied across a wire that is nonuniformly coupled to
the SC, in addition to shifting the position of the sweet
spots, it reduces the stability of the topological phase in
their vicinity, as illustrated in panels (d)–(f) for θ ≈ 0.4.
In addition, as a consequence of effectively increasing the
inter-subband spacing, the regions between successive sweets
spots occupied by the topological SC phase expands with
increasing the transverse potential, as shown in panels (c) and
(f). Note that, in the presence of nonuniform SM-SC coupling,
the phase diagrams for V0 > 0 and V0 < 0 (not shown in
Fig. 14) are slightly different. The strong dependence of the
phase boundaries on the transverse potential, especially in the
vicinity of the sweet spots, could be used experimentally for
driving the system across the topological phase transition by
tuning a gate potential, instead of changing the magnetic field.

IV. EFFECT OF DISORDER ON THE TOPOLOGICAL
SUPERCONDUCTING PHASE

In this section we consider the effect of disorder on the
stability of the topological superconducting phase harboring

Majorana fermions. In a realistic system, disorder comes in
various ways that affect the topological phase very differently.
In this paper we consider three types of disorder: Impurities in
the s-wave SC, short- and long-range disorder in the SM wire,
and random nonuniform coupling between the SM wire and
the SC, which mimics a rough interface and the imprecision
in engineering inhomogeneous y-dependent couplings. We
begin by considering short-range impurities in the bulk SC,
followed by the consideration of the other two types of disorder
which are both more complex to treat theoretically and more
detrimental to the existence of the Majorana modes.

A. Short-range impurities in the bulk superconductor

In order to understand the effect of nonmagnetic impurities
on the induced superconductivity in the SM, we first review the
results on the proximity effect for the infinite planar interface
presented in the previous section. The basic idea is that the
presence of short-range nonmagnetic impurities in the metal
modifies the bulk Green’s function, which then is used to derive
the appropriate superconducting proximity effect.

We begin our discussion by considering the perturbation
theory in the tunneling t , which is justified in the limit of
low interface transparency. The lowest-order contributions
of the diagrammatic expansion in t are shown in Fig. 15.
One can notice that the self-energy at the second order in
t is determined by the disorder-averaged Green’s function
in the SC. Since typical s-wave SCs are disordered (i.e.,
τ�0 � 1 with τ being momentum relaxation time), the effect
of impurity scattering is nonperturbative. In general, this yields
a nontrivial problem because of the self-consistency condition
which now has to be solved in the presence of disorder.
The problem, however, can be substantially simplified if we
neglect the effect of the in-plane magnetic field on the s-wave
superconductivity. This condition can be justified due to the
vast difference of the g factors in the SC and SM. We also
assume here that the SC is thin enough that we can neglect
orbital effects. At this level of approximation, the problem
reduces to understanding the effect of nonmagnetic impurities
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FIG. 15. (Color online) Diagrammatic perturbation theory in the
tunneling between SM and SC. Disorder averaging is performed at
each order in tunneling t . The thick solid line represents disorder-
averaged Green’s function in the SC Ḡ( p,ω). The bottom diagram
corresponds to irreducible contributions, as far as disorder averaging
is concerned.

on the bulk s-wave superconductivity, which was investigated
a long time ago by Abrikosov and Gor’kov.63 The main result
of Abrikosov-Gor’kov’s theory is that disorder does not affect
s-wave superconductivity; that is, the superconducting gap
is not suppressed by nonmagnetic impurities, in agreement
with Anderson’s arguments invoking time-reversal symmetry.
Specifically, the disorder at the single-particle Green’s function
level merely leads to the renormalization of the parameters
�̃0 = ηω�0 and ω̃ = ηω�0:

Ḡ( p,ω) = ω̃τ0 + ξ pτ3 + �̃0τx

�̃2
0 + ξ 2

p − ω̃2
, (35)

ηω = 1 + 1

2τ

√
�2

0 − ω2
. (36)

Here the bar represents disorder-averaged Green’s function
and the disorder strength is parameterized by the impurity
scattering time τ defined as 1/τ = ν(εF )niu

2
0 with ν(εF ), ni ,

and u0 being the density of states at the Fermi level, the im-
purity concentration, and the scattering potential, respectively.
Thus, at this level of the perturbation theory, the proximity
effect can be included using the formalism developed for the
clean case [see Eq. (13)]. By integrating out the degrees of
freedom corresponding to the SC, one obtains the interface
self-energy:

�(ω) = |t̃ |2ν(εF )
∫

dεḠ(ε,ω) (37)

= −|t̃ |2ν(εF )

⎡⎣ ω̃τ0 + �̃0τx√
�̃2

0 − ω̃2
+ ζ

1 − ζ 2
τz

⎤⎦ . (38)

Finally, upon substituting the expressions for ω̃ and �̃0, we
find that proximity-induced superconductivity is not affected
by disorder in the s-wave SC

�(ω) = −|t̃ |2ν(εF )

⎡⎣ωτ0 + �0τx√
�2

0 − ω2
+ ζ

1 − ζ 2
τz

⎤⎦ . (39)

Moreover, one can see that, unlike impurities in the SM, the
disorder in the SC does not lead to momentum relaxation in
the SM at this order of the perturbation theory.

As the interface transparency is increased, one needs to
consider higher-order terms in tunneling. These terms involve
reducible and irreducible contributions (see Fig. 15). The
former depend only on the disorder-averaged Green’s function,
and, in a sense, are easy to take into account, whereas the
latter involve nontrivial higher-order correlation functions
(i.e., diffusons and Cooperons) and lead to momentum re-
laxation in the SM. In this work, we consider only reducible
contributions and neglect higher-order correlation functions
with respect to disorder averaging which, one can show,
are much smaller than the reducible ones.64 Therefore, our
minimal treatment of the disorder in the SC is justified and
we believe that the superconducting disorder is irrelevant
for the topological superconductivity. However, the disorder
in the SM (and at the interface) is relevant, as we discuss
next.

This conclusion holds as long as we neglect the effect
of external magnetic field on the s-wave superconductivity,
which is allowed as long as the field is not too large to
destroy the superconducting state. This is realistic due to the
large difference between the g factors in SCs (gSC ∼ 1) and
SMs (gSM ∼ 10–70), allowing one to always find a parameter
regime where the magnetic field opens a large spin gap in
the spectrum without destroying superconductivity. Also, note
that our conclusion regarding the short-range impurities in
the SC is valid when the strength of the disorder is much
larger than the superconducting gap: τ�0 � 1 but is small
enough not to affect the density of states. We have restricted
our analysis to the experimentally relevant regime γ � �0. In
the opposite limit γ � �0, electrons spend most of the time
in the s-wave SC where their dynamics is not governed by the
helical Hamiltonian required to have a topological phase and,
thus, this limit is not experimentally desirable (see discussion
in Sec. II B 1).

We emphasize that our finding that short-range impurities
in the bulk SC do not affect the topological superconducting
phase emerging in the SM is quite general since the electrons
in the nanowire, being spatially separated from the bulk SC,
simply do not interact directly with the short-range disorder
in the bulk SC. Our use of the short-range impurity model
to characterize the disorder in the bulk SC is justified,
since strong metallic screening inside the bulk SC would
render all bare long-range disorder as a screened short-range
one. Thus, as long as the applied magnetic field does not
adversely affect the s-wave superconductivity, our conclusion
regarding the validity of the Anderson theorem (i.e., no
adverse effect from nonmagnetic impurities) to the whole
SC-SM heterostructure system applies. In this context, we
mention the recent theoretical analysis of Ref. 65, where it was
explicitly established that, in the structure we are considering,
the proximity-induced superconducting pair potential remains
s-wave in both the topological and the nontopological phase,
in spite of the nonvanishing Zeeman field. The existence of
the s-wave pairing potential, even in the presence of a parallel
magnetic field (provided it is not too large), is the key reason
for the short-range disorder in the SC not having any effect on
the topological phase.
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B. Disorder in the semiconductor nanowire

In sharp contrast to disorder in the SC, disorder in the
nanowire can have significant adverse effects on the stability of
the topological SC phase. There are several different potential
sources of disorder in the SM. We focus on two sources that
are the most relevant experimentally: random variations of
the width of the SM nanowire and random potentials created
by charged impurities. The first type of disorder is generally
long-ranged, while the second type can be either long- or
short-ranged. How to account for the effects of disorder
depends crucially on the type of physical quantity that one
is interested in. Here we focus on the low-energy spectrum,
which carries information about the stability of the Majorana
bound states, and on thermodynamic quantities such as the
local density of states, which are experimentally relevant. The
effect of disorder on these quantities is sample dependent. We
emphasize that averaging over different disorder realizations
is equivalent in this case with sample averaging. As the goal is
to observe stable Majorana fermions in a given nanowire, we
investigate here the spectrum of the system for a given disorder
realization and focus on establishing the general parameter
regimes (e.g., amplitudes and length scales of the disorder
potential) consistent with realistic experimental conditions
that ensure the stability of the topological SC phase. More
specifically, we study several different disorder realizations
characterized by a given set of parameters and extract the
generic features associated with that type of disorder.

For a single-channel Majorana nanowire, one can obtain
some analytical results by performing disorder averaging.66–68

Specifically, for a model of spinless p-wave SC it has been
shown66,67 that disorder drives the transition into nontopo-
logical phase when the impurity scattering rate becomes
comparable with the induced superconducting gap. In more
realistic spinful models involving SM nanowires, the physics
is richer and depends on the strength of the magnetic field. We
refer the reader to Ref. 68 for more details. The generalization
of these results to the case of disordered multiband SM
nanowires is an interesting open problem.

1. Semiconductor nanowires with random edges

The dimensions of the nanowire in the transverse direction
satisfy the relation Ly � Lz. The small thickness Lz is critical
for the effectiveness of the superconducting proximity effect,
as the SM-SC effective coupling γ scales, approximately, as
1/L3

z . On the other hand, the much larger width Ly is required
by the multichannel condition. Atomic-scale variations of Lz

generate huge local potential variations (of the order 500Eα)
that would effectively cut the wire in several disconnected
pieces. Topological SC phases may exist inside each of
these pieces, but the Majorana states will be localized at
the boundaries separating different segments and, in general,
tunneling between them will be nonzero. To realize a single
pair of Majorana zero-energy states localized at the ends of
the wire, Lz should be uniform along the system. (We mention
in passing that modern MBE growth is consistent with very
small variations in Lz as necessary for the realization of the
Majorana.)

Engineering a long wire with constant width Ly may be,
on the other hand, extremely challenging and less relevant for

FIG. 16. (Color online) Broadening of the subbands in a nanowire
with random edges. For ny > 2 the broadening becomes comparable
with the interband gap in the presence of fluctuations �Ly represent-
ing a few percent of the width Ly ; that is, the subbands lose their
identity.

the stability of the topological SC phase. We assume that Ly

varies along the wire randomly in atomic-size steps that extend
along hundreds of lattice sites in the x direction, resulting in
a function Ly(x) that varies over length scales larger than the
width of the wire. These fluctuations generate local variations
of the bare subband energies given by Eq. (3) of the order of

�εny
= −2t0

[
cos

(
nyπa

Ly + �Ly

)
− cos

(
nyπa

Ly

)]
, (40)

where Ly is the average width of the nanowire, �Ly the
value of the local variation, and a the lattice spacing. Note
that different ny subbands are shifted differently; that is, the
random edge is not equivalent to long-range chemical potential
fluctuations. To provide a quantitative measure of this effect,
we show in Fig. 16 the evolution of the nanowire subbands
with the size of the fluctuations �Ly . Note that the subbands
lose their identity in the presence of fluctuations representing
a few percent of the wire width, as the broadening becomes
comparable with inter-subband gaps. The natural question is
how this broadening affects the low-energy physics of the
nanowire and, in particular, the topological SC phase. Intuition
based on the weak-coupling picture would suggest that the
topological phase might become unstable, as the parity of the
number of subbands crossing the chemical potential becomes
an ill-defined quantity.

To quantify the effect of random edges on the low-energy
physics, we first parametrize this type of disorder. We consider
a nanowire of width Ly(x) = Ly + �Ly(x), where �Ly(x) is
a random function characterized by by a certain maximum
amplitude and a characteristic wavelength. Two examples of
random edge profiles are shown in Fig. 17. We note that
the actual width of the wire varies in atomic steps, that is,
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FIG. 17. (Color online) Profile of the variation of the nanowire
width, �Ly , as a function of position along the wire. The characteris-
tic length scale for profile I (top panel) is about 10% of the nanowire
length Lx , while for profile II (bottom panel) it is approximately 5%.
Each profile generates a series of particular disorder realizations char-
acterized by different values of the maximum amplitude |�Ly |max.
Random edge profiles corresponding to a given characteristic length
and having the same maximum amplitude have similar effect on the
low-energy physics of the nanowire.

|�Ly |min = a and we assume that the characteristic length
scale of these variations is much larger than the atomic scale.
For example, for a nanowire with Lx = 5 μm, a random
edge profile like in the top panel of Fig. 17 and a maximum
amplitude of 10%, the atomic edge steps extend over hundreds
of unit cells. In the calculations we explore the effect of random
edges with maximum amplitudes up to 10% of Ly and various
characteristic wavelengths.

The minigap �∗ is reduced by the presence of random
edges. However, for control parameters corresponding to
points in the phase diagram away from phase boundaries,
the amplitude of the variations of Ly required for a complete
collapse of the gap is well above 10%. Examples of spectra
for systems with random edges are shown in Figs. 18 and 19.
Based on a number of similar calculations for different disorder
realizations and control parameters, we have established the
following general conclusions.

(i) The details of the low-energy spectrum of a disor-
dered nanowire depend on the particular disorder realization.
Nonetheless, different disorder profiles characterized by a
given amplitude and having the same characteristic length
scale are likely to generate similar values of the minigap
�∗, with the exception of a few “rare events,” which are
characterized by significantly lower gap values. A calculation
that involves averaging over disorder will capture these rare
events and will predict a value of the gap much lower than
the typical value. Such a calculation would be relevant for
an extremely long wire, that is, in the limit Lx → ∞, or for

FIG. 18. (Color online) Spectrum of a weakly coupled nanowire
(γ = 0.25�0) with random edges in the topological phase with
N = 1 (see Fig. 8). In the presence of disorder the minigap �∗

decreases, but remains finite. The calculation was done using the
random edge profiles shown in Fig. 17 for maximum amplitudes of
2% and 10%. Longer-range disorder (top panel) has stronger effects
than short-range disorder (bottom panel). Small amplitude variations
of the nanowire width of the order 2% generate a reduction of �∗ up
to 30%, but further increasing the amplitude has a weak effect at low
energies.

systems with a very large density of states at the relevant
energies (e.g., a metal). However, in a typical SM wire the
number of states that control the low-energy physics is of the
order of 100. How the energies of these states are modified
in the presence of disorder depends on the specific details
of the disorder profile. Hence, any experimentally relevant
conclusion regarding the low-energy spectrum or the local
density of states of a disordered nanowire should be based
on calculations involving specific disorder realizations. A
direct consequence of these considerations is that nominally
identical samples with the same average disorder (e.g., same
mobility) may have very different Majorana minigaps since
they are likely to have different disorder configurations. The
distribution of the minigaps was recently studied in Ref. 69.

(ii) Long-range disorder has a stronger effect than short-
range disorder. This is a general characteristic of disordered
nanowires, regardless of the source of disorder, and is studied
in more detail in the next section. We note that the effects of
variations of wire width �Ly(x) at atomic length scales are
negligible.

(iii) Intermediate coupling γ ∼ �0 represents the optimal
SM-SC coupling regime. The large gap that characterizes
the topological N = 1 phase in this regime is robust against
fluctuations of the wire width of the order ±10% for any set
of parameters that are not in the immediate vicinity of a phase
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FIG. 19. (Color online) Spectrum of a nanowire with random
edges at intermediate coupling, γ = �0. The control parameters
correspond to a point in the phase diagram inside the topological
phase with N = 1 (see Fig. 9). The random edges are given by the
profiles in Fig. 17.

boundary. Most importantly, this condition can be satisfied for
specific values of the Zeeman field (e.g., of the order 30Eα for
the parameters corresponding to the phase diagram in Fig. 9)
over a large range of chemical potentials.

2. Nanowires with charged impurities

A major source of disorder in the nanowire consists of
charged impurities. Because the carrier density in the SM
nanowire is small, charged impurities are not effectively
screened and their presence can potentially have significant
effects. The nature of these charged impurities, the values of
their effective charge, and their exact locations depend on the
details of the nanowire engineering process and will have to
be determined by future experimental studies. Here we are
interested in the fundamental question regarding the stability
of the topological SC phase. In particular, we address the
following question: Is it possible to realize stable zero-energy
Majorana modes in a nanowire with charged impurities within
a realistic scenario? To answer this general question, we focus
on four key aspects of the problem: (a) the screening of charged
impurities by the electron gas in the SM nanowire, (b) the
dependence of the low-energy physics on the concentration
of impurities, (c) the dependence of the low-energy spectrum
on the Zeeman field, and (d) the effect of long-range random
potentials.

(a) Screening of charged impurities. We start by consider-
ing a single charge q inside or in the vicinity of the nanowire.
For concreteness we assume that the charge is positioned
near the middle of the wire and one lattice spacing away

from its surface, that is, for a wire that occupies the volume
defined by 0 � xj � Lj , with j ∈ {x,y,z}, the position of
the impurity is given by (ximp,yimp,zimp) = (Lx/2,Ly/2, − a).
This corresponds, for example, to a charged impurity localized
at the interface between the SM and the SC. We consider
the extreme case q = ±e, where e is the elementary charge,
although in practice it is likely that the effective charge is only
a fraction of this value due to screening by electrons in the SC.
We neglect the screening due to the presence of the SC, which
may significantly reduce the effective potential created by the
charge. A simple estimate of the screening effects due to the
electrons in the SM within the Thomas-Fermi approximation
is highly inaccurate due to the low carrier density. We checked
this property explicitly by calculating numerically the carrier
density induced by a given effective potential V (r), for
example, a screened Coulomb potential. We find that the
relationship between the induced local carrier density δn(r)
and the local effective potential is highly nonlinear. In addition,
the density is characterized by strong Friedel-type oscillations
(see Fig. 20). Hence, solving quantitatively the screening
problem for the nanowire would require a self-consistent
calculation that includes electron-electron interactions at the
Hartree-Fock level. This calculation is beyond the scope of
the present study and will be addressed elsewhere. Here we
address a more limited question: What is the characteristic
length scale over which the external charge q is screened? We
define this length scale λ as the characteristic length of the
volume that contains 63% (i.e., a fraction equal to 1 − 1/e) of
the induced charge. Specifically, the potential created by the
charge q at a point r inside the SM is

V (r − r imp) = −eq

4πε0εr |r − r imp| , (41)

where r imp = (ximp,yimp,zimp) is the position of the impurity
and εr is the relative dielectric constant of the SM. For InAs
εr = 14.6. Next, we take into account the fact that the nanowire

FIG. 20. (Color online) Induced carrier density as a function
of distance from the impurity. The two curves, corresponding to
different external sets of parameters for the nanowire, have been
shifted for clarity. The upper curve corresponds to a system with a
single occupied subband and is characterized by λ ≈ 45a (i.e., 63%
of the induced charge is in a disk of radius 45a), while the lower
curve is for a system with three occupied subbands and has λ ≈ 30a.
Note that the effective impurity potentials that generate these density
profiles are given by Eq. (42) with the corresponding values of λ.
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is extremely thin in the z direction (Lz ≈ 10a); hence, the wave
function profile along this direction is very little affected by
the presence of the impurity. On the other hand, the induced
charge has a strong dependence on x (the direction along the
wire) and y (the transverse direction). As mentioned above, the
impurity potential is screened by the induced charge outside
a region with a characteristic length scale λ that contains a
fraction equal to 1 − 1/e of the induced charge. We assume
that the screened potential is qualitatively described by an
expression of the form

Vs = V (r − r imp) exp

[
−
√

(x − ximp)2 + (y − yimp)2

λ

]
.

(42)

The parameter λ from Eq. (42) is determined self-consistently
by imposing the condition that 63% of the induced charge
be in a disk of radius λ and thickness Lz centered at
(ximp,yimp,Lz/2). The results for two different sets of parame-
ters are shown in Fig. 20. As expected, nanowires with multiple
occupied subbands provide a more effective screening, which
is reflected in a lower value of the screening length λ. We
emphasize that the present approach is not fully self-consistent
and is therefore only of qualitative validity. An effective
screened potential that includes exactly the contribution of the
induced charge with details (e.g., oscillatory components) that
are not captured by Eq. (42) should give results very similar
to what we obtain here. Nonetheless, we expect these details
to have a weak effect on the final results. We also note that the
self-consistent calculation of the screening length is done for
a nonsuperconducting nanowire, then the effective impurity
potential Vs is added to the total nanowire Hamiltonian before
including the proximity effects due to the SM-SC coupling.

What is the effect of the charged impurity on the low-
energy spectrum of the superconducting nanowire? The
effective potential in the vicinity of the impurity is extremely
large, for example, Vs(Lx/2,Ly/2,Lz/2) ≈ 640 meV (i.e.,
≈ 12 000Eα), much larger than any other relevant energy scale
in the problem; hence, one would naively expect significant
effects. However, the low-energy physics of the SM nanowire
is controlled by single-particle states with low wave numbers
and the matrix elements of the impurity potential between
these state are relatively small. In other words, the impurity
will strongly affect the spectrum at intermediate and high
energies, but will have a relatively small effect at low energies.
To illustrate this property, we show in Fig. 21 a comparison
between the low-energy spectra of a clean nanowire and of a
nanowire with a charged impurity. We note that the presence
of the external charge induces the formation of localized states
in the vicinity of the impurity (see Fig. 21).

Charge impurities in one-dimensional quantum wires pro-
duce weakly long-range disorder since the Coulomb potential
decays as ln |qa| in the momentum space for q → 0 with a

being the short-distance cutoff associated with the transverse
dimensions of the nanowire.70 This is to be contrasted with the
much stronger q−1 (q−2) long wavelength divergence of the
bare Coulomb disorder in two (three) dimensions. The weakly
long-range nature of 1D Coulomb potential suggests that any
regularization of the long-range disorder would be a reasonable
approximation in spite of the fact that Thomas-Fermi screening

FIG. 21. (Color online) (Top) Comparison between the low-
energy spectrum of a clean nanowire (yellow squares) and the
spectrum of a nanowire with a charged impurity with q = e (red
circles). Note that the two spectra are almost on top of each other.
(Bottom) Electron wave function amplitudes for two low-energy
states (marked by arrows in the top panel) in the presence of the
charged impurity. The Majorana zero modes (n = ±1, not shown) and
the in-gap modes (n = ±2, ± 3, see Fig. 12 and the corresponding
discussion) are localized near the ends of the wire and are not affected
by the presence of the impurity. The low-energy bulk states |n| > 4
that are extended in a clean nanowire become localized near the
impurity.

itself is weak in 1D. In particular, the presence of interband
scattering in the multisubband situation would essentially
lead to effective 2D screening in the system, which should
suffice to regularize the singular Coulomb disorder. At very
low densities, where the nanowire is strictly in 1D limit with
only the lowest subband occupied, weak screening will lead
to the formation of the inhomogeneous electron puddles in
the system around the charge impurities due to the failure
of screening. This situation is detrimental to the Majorana
formation and must be avoided. It is clear that higher density
and multisubband occupancy would be favorable for the
experimental realization of the Majorana modes in the SM
nanowires.

(b) Charged impurity disorder. The next question that we
address concerns the dependence of the low-energy spectrum
of a nanowire with charged disorder on the concentration
of impurities. We emphasize that the details of the low-
energy physics depend on the specific disorder realization.
In particular, the low-energy states are localized in the vicinity
of the impurities (see Fig. 21) and their energies depend on
the specifics of the real-space disorder configuration. Hence,
as discussed above, calculations of single-particle quantities,
for example, the local density of states, should involve
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FIG. 22. (Color online) Specific disorder realizations in
nanowires with charged impurities. The dots represent the locations of
the impurities. Each impurity has a charge q = ±e and is positioned
one lattice spacing away from the surface of the nanowire along the z

direction. The linear impurity densities nimp are 1 μm−1 (A), 2 μm−1

(B), 4 μm−1 (C), and 8 μm−1 (D).

specific disorder realizations, rather than disorder averaging.
In Fig. 22 we show four different specific disorder realizations,
corresponding to linear impurity densities ranging from 1
to 8 μm−1, which are reasonably realistic impurity densities
(∼1015 cm−3) in high-quality SM structures. The impurities
carry charge q = e and are positioned at a distance of one
lattice constant away from the SM surface. The effect of these
impurities is incorporated through an impurity potential of the
form

Vimp(r) =
∑

j

Vs(r,rj ), (43)

where Vs is given by Eq. (42) and rj are the impurity position
vectors. We note that in Eq. (43) the screened potential is
characterized by a screening length λ determined as described
above for a single impurity. This approximation does not take
into account the impact of the dependence of the effective
potential associated with a given charged impurity on the
location of the charge and on the presence of other impurities.
It also neglects the effect of screening by the SC itself, which
should strongly suppress the effective disorder.

The low-energy spectra of a nanowire with random
charged impurities distributed as in Fig. 22 are shown in
Fig. 23 for two sets of control parameters. The general
trend is that the minigap decreases with increasing impu-
rity concentration. However, for a given concentration nimp

the exact value of the minigap depends on the specific
disorder realization. As mentioned above, averaging over
disorder includes rare configurations characterized by small
minigaps; hence, the averaged density of states is charac-
terized at low energies by a small weight that does not
correspond to any physical state in a typical disorder real-
ization. The signature of a topological SC phase with N = 1
(i.e., one pair of Majorana fermions) that distinguishes it
from the trivial SC phase with N = 0 is the presence of
zero-energy quasiparticles separated by a finite gap from all
other excitations. One key conclusion of our calculations

FIG. 23. (Color online) Low-energy spectra of a superconducting
nanowire with charged disorder for two different sets of control
parameters and four disorder realizations. The symbols correspond
to the specific disorder realizations shown in Fig. 22. Note that (i) the
minigap �∗ is finite for impurity concentrations nimp � 4 μm−1 and
collapses for nimp = 8 μm−1, and (ii) there is an overall tendency of
the low-energy features to move at lower energies when increasing the
impurity concentration, but the exact value of the minigap depends
on the specific disorder realization, for example, in the lower panel
�∗(nimp = 4) > �∗(nimp = 2).

is that the minigap that protects the topological SC phase
remains finite for a significant range of realistic impurity
concentrations.

(c) Dependence of the low-energy spectrum on the Zeeman
field. As shown in Fig. 23, for certain high-impurity concen-
trations (e.g., configuration D in Fig. 22) it is possible that, in
addition to the Majorana zero mode, another low-energy state
has energy close to zero and is separated by a gap from the rest
of the spectrum. How can one distinguish experimentally this
state from a topological SC characterized by a finite minigap
on one hand from a trivial SC with N = 2, on the other? As the
low-energy spectrum has a strong dependence on �, the key is
to vary the Zeeman field. Tuning � may push the system into
the topological SC phase and the energy of the additional state
will increase. On the contrary, it is possible that varying the
Zeeman field will lead to the appearance of more low-energy
excitations. This is the characteristic signature of the transition
zone between phases with different topologies. To address
this problem more systematically, let us consider a nanowire
with the same parameters as in the bottom panel of Fig. 10:
μ = 54.5Eα , � = �0, and θ = 0.8. The dependence of the
quasiparticle gap on � for the infinite clean system in shown
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in Fig. 10, and the dependence of the minigap on � for a finite
wire is shown in Fig. 12. The transition between the trivial SC
phase with N = 0 and the topological phase with N = 1 is
clearly marked by the vanishing of the gap at � ≈ 21.5Eα .

Let us now add disorder and follow the evolution of the
lowest three energy levels with the Zeeman field. The results
for two different values of the impurity concentration are
shown in Fig. 24. First, we note that the main features are
similar with those observed in a clean system: At low values
of the Zeeman field the system is in a trivial SC phase
characterized by finite gap to all excitations, while for �

above a certain critical value Ec ≈ 22Eα the system has a
Majorana zero mode separated by a minigap from the rest
of the spectrum. The major difference from the clean case
consists of the transition zone, which extends over a finite
range of values of the Zeeman field and is characterized by
multiple low-energy excitations. This transition zone extends
with increasing impurity concentration. Assuming that we
probe the low-energy properties of the system with a certain
finite resolution, for example, �E = 0.2Eα , the topological
phase can be unambiguously distinguished from the trivial SC

FIG. 24. (Color online) Dependence of the lowest three energies
En (n = 1,2,3) on the Zeeman field for a disordered nanowire
with nimp = 4 μm−1 (top) and nimp = 7 μm−1 (bottom). The lowest
energy state is characterized by a gap �1 = E1 (red/dark gray
region) that vanishes for � > 21.6Eα , that is, when the system
enters the topological SC phase. The gap between the first and
the second levels, �2 = E2 − E1 (yellow), becomes the minigap
in the topological phase. The transition zone is characterized by a
high density of low-energy modes and expands with increasing the
impurity concentration.

provided the minigap is larger that the energy resolution. The
trivial N = 0 phase will be characterized by a finite gap and no
zero-energy excitation, while the topological phase will have
the characteristic zero-mode separated from the finite energy
excitations by the minigap. In between the two phases there
will be a transition zone characterized, within our finite energy
resolution, by a continuum spectrum. Starting with low values
of the Zeeman field, that is, deep inside the N = 0 phase, by
increasing � one first reaches the transition zone, then the
topological N = 1 phase. We emphasize that for �∗ < �E

the topological phase becomes indistinguishable from the
transition zone. In addition, at large impurity concentrations
the minigap will collapse completely.

(d) Long range disorder potential. What is the effect of a
long-range disorder potential on the stability of the topological
SC phase? Are there qualitative differences from the short-
range case discussed above? We are not interested here in
the possible source of such long-range disorder, but rather
in identifying the magnitude of the amplitude of the random
potential that would destroy the topological phase.

Let us consider a random potential with a characteristic
length scale λ > Ly . Neglecting the dependence of the
potential on y and z, we have

Vimp(r) = U0vimp(x/Lx), (44)

where U0 is the amplitude of the potential and −1 � vimp � 1
is a random profile. For concreteness we consider the profile
shown in the lower panel of Fig. 17 and a nanowire with Lx =
5 μm and Ly = 0.12 μm. These parameters correspond to
λ ≈ 2Ly . The corresponding low-energy spectra for different
values of the disorder amplitude are shown in Fig. 25. A strik-
ing feature is represented by the significant difference between
the critical disorder amplitudes at which the minigap collapses
for the two slightly different values of the Zeeman field. Note
that both values are near the “center” of the topological N = 1

FIG. 25. (Color online) Low-energy spectra of a nanowire with
long-range disorder. The system in characterized by μ = 54.5Eα and
γ = �0 and the impurity potential is given by Eq. (44) with with a
profile vimp as in Fig. 17 (bottom panel) and different amplitudes U0.
The parameters U0 and � are expressed in units of Eα . For � = 29
the minigap collapses for U0 � 60, while for a Zeeman field � = 32
it survives up to an amplitude U0 ≈ 100.
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phase, as one can see, for example, by inspecting the bottom
panel of Fig. 12. What sets the scale for the critical amplitude?
A hint can be obtained from the phase diagram shown in Fig. 9.
In essence, in the presence of a smoothly varying random
potential topological superconductivity is stable as long as the
local chemical potential at any point within the nanowire has
values within the topological phase. The permissible range
of variation for the local chemical potential depends strongly
on the Zeeman field. From the phase diagram in Fig. 9 and
the chemical potential dependence in Fig. 11 it is clear that
� ≈ 32Eα represents a value of the Zeeman field that allows
for large amplitude chemical potential fluctuations.

We conclude that long-range disorder can be treated as
local chemical potential fluctuations. We emphasize that this
is not the case for short-range disorder. The topological phase is
stable against chemical potential fluctuations up to a maximum
amplitude that depends on the Zeeman field, on the average
chemical potential, and on the SM-SC coupling. Single-band
occupancy necessarily limits the critical amplitude due to the
close proximity of the phase boundary. Multiband systems
avoid this problem and provide a more efficient screening
for the short-range potentials created by charged impurities.
In addition, a strongly nonuniform coupling between the
nanowire and the s-wave SC (with θ ∼ 1) with a coupling
strength in the intermediate regime (γ ∼ �0) provides the
optimal shape of the phase diagram (see Figs. 9 and 12).

C. Disorder at the semiconductor-superconductor interface

The inhomogeneous random coupling at the SM–SC
interface is another significant source of disorder. In principle,
the tunneling matrix elements t̃(ix,iy) between the nanowire
and the s-wave SC are characterized by random real space
variations due to inhomogeneities in the tunneling barrier. For
example, realizing a nonuniform coupling t̃(iy), which is crit-
ical for generating off-diagonal pairing and for stabilizing the
topological phase near the sweet spots, may require the growth
at the interface of an insulating layer with variable thickness
across the wire. Any growth imperfection will translate into
variations of t̃ . While ultimately the details of these variations
will have to be determined by a careful experimental study
of the interface, it is reasonable to assume that a typical
interface is characterized by atomic size variations with a
characteristic length scale of a few lattice spacings, as well
as longer range inhomogeneities with characteristic length
scales comparable to the width of the wire, Ly , or larger. The
short-range inhomogeneities could be generated by impurities
or by point defects present at the interface, while longer-range
inhomogeneities could be due to extended defects. In the
absence of a detailed microscopic description of the SM-SC
interface, it is difficult to estimate the amplitude of these
fluctuations. Here we consider a phenomenological model of
the interface and we assume that the tunneling matrix is given
by

t̃(ix,iy) = t̃(iy) + �̃t(ix,iy), (45)

where t̃(iy) is the smooth component of the nonuniform
coupling, for example, the interface transparency with the
profile shown in Fig. 3, and �̃t(ix,iy) represents the random
component. To model the short-range disorder, we coarse

FIG. 26. (Color online) Random coupling at the SM-SC interface.
The coupling t̃ contains a random component �t̃ that is constant
within patches of length l, but takes a random value within each
patch. The patch sizes are l = 20a (top) and l = 60a (middle). The
strength of �t̃ within the patches is color coded. Note that only part
of the interface is shown, as the typical length of a nanowire used
in the calculations is of the order 104a. (Bottom) Dependence of
the induced gap �11 on the position along the wire for � = 32Eα ,
μ = 54.5Eα , γ = �0, θ = 0.8, and a random coupling with l = 60a

and an amplitude (�t̃)max = 0.25t̃ . The huge local variations of the
coupling are strongly reduced by the integration over y (see main
text) and generate fluctuations of the order of 10% in �11(x).

grain the interface in square patches of side length l and
assume that �̃t is uniform within a patch, but varies ran-
domly from patch to patch with an amplitude (�̃t)max, that
is, with −(�̃t)max � �̃t(ix,iy) � (�̃t)max. In the numerical
calculations we considered patches of sizes l = 20a and
l = 60a ≈ Ly/4 and an amplitude (�̃t)max = 0.25̃t(0), where
t̃(0) is the maximum value of the smooth nonuniform tunneling
component shown in Fig. 3. We note that these are extremely
large fluctuations of t̃(ix,iy), larger that the minimum value
of the smooth tunneling component, t̃(Ly) = 0.2̃t(0), which
result in significant variations of the local effective coupling
γ (ix,iy) ∝ |̃t(ix,iy)|2. Examples of short-range random cou-
plings within the patch model are shown in Fig. 26.

Before we present the results of the numerical calculations,
we would like to emphasize the specific way that interface
disorder enters the effective Hamiltonian. While the effect of
charged impurities can be included through a random potential,
variations in the SM-SC coupling generate randomness in the
effective SC order parameter, �nyn′

y
, as well as fluctuations

of the renormalization matrix Z1/2. From Eqs. (25) and (27)
we notice that the short-range fluctuations of t̃ and, implicitly,
the short-range fluctuations of γ , are significantly reduced
when taking the matrix elements with the eigenstates |ny〉.
As we are mainly interested in systems with only a few
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occupied subbands, integration over y effectively averages out
fluctuations with characteristic length scales l � Ly .

As an illustration of this property, we consider the case of
random coupling with l = 60a and (�̃t)max = 0.25̃t(0) for a
nanowire with μ = 54.5Eα , � = 32Eα , and γ = �0. In spite
of the relatively large length scale of the fluctuation, l = Ly/4,
the variations of the induced gap �11(x) along the wire are only
of the order of 10% of the average value. The dependence of
the induced gap �11 on the position along the wire is shown
in the bottom panel of Fig. 20. The amplitude of the �11

fluctuations is further reduced if we consider shorter-range
coupling fluctuations. A similar behavior characterizes the
renormalization matrix Z1/2. In addition, as the low-energy
properties of the system are determined by single-particle
states with small wave vectors kx , we expect a further reduction
of the effect of short-range fluctuations as a result of the
integration over x. In particular, if the clean, infinite wire
is characterized by a maximum Fermi wave vector kF , we
expect the low-energy physics to be insensitive to random
variations of the SM-SC coupling with characteristic length
scales l < 1/kF .

The effects of a random SM-SC coupling on the low-energy
spectrum of the nanowire are illustrated in Fig. 27. Remark-
ably, short-range fluctuations with amplitudes up to 25% of
the average coupling at y = 0 (i.e., the maximum value of the

FIG. 27. (Color online) Spectra of a nanowire with random SM-
SC coupling. (Top) Nanowire with short-range fluctuations of the
SM-SC coupling. The random coupling is considered within the patch
model described in the text and corresponds to the distributions shown
in Fig. 26. (Bottom) Nanowire with long-range SM-SC coupling
fluctuations. The variations of t̃ along the wire have a profile as
shown in the top panel of Fig. 17 and an amplitude �̃t . Note that for
�̃t = 0.25̃t(y = 0) the gap collapses.

coupling in a nonuniform profile; see Fig. 3) do not destroy
the topological SC phase. The relatively weak effect of these
strong fluctuations is due to the implicit averaging involved in
the calculation of the matrix elements between single-particle
states with low wave vectors. Increasing the characteristic
length l makes this type of disorder more effective, as evident
from the top panel of Fig. 27. Hence, the natural question:
What is the effect of long-range SM-SC coupling fluctuations?
We consider a smooth variation of t̃ along the wire with a
profile as shown in the top panel of Fig. 17. An amplitude
of these fluctuations equal to 25% of t̃(y = 0) results in the
collapse of the gap (see Fig. 27, bottom panel). However,
the topological phase is robust against long-range coupling
fluctuations with amplitudes smaller than 20%. We note that
long-range variations of the coupling strength could result
from the engineering process of the nonuniform interface.
Limiting the amplitude of these fluctuations below a certain
limit of about 10%–15% of the maximum coupling strength
should be a priority of the experimental effort for realizing a
topological SC state using SM nanowires.

V. EXPERIMENTAL SIGNATURES OF MAJORANA
BOUND STATES

Probing unambiguously the presence of Majorana bound
states in the superconducting nanowire represents a critical
task. In this section we show that local spectral measurements
provide a simple and effective tool for accomplishing this task.
We focus on the local density of states (LDOS), which could be
measured using, for example, scanning tunneling spectroscopy
(STS), and on the differential conductance associated with
tunneling into the ends of the wire. We establish that these
measurements should suffice in establishing the existence of
the zero-energy Majorana edge modes in SM nanowires.

A. Local density of states in superconducting nanowires

In the previous section we have shown that disorder gener-
ates low-energy states and reduces the minigap. Nonetheless,
a small minigap does not implicitly mean that the Majorana
bound state cannot be resolved in a spectroscopic measure-
ment. The key observation is that the undesirable low-energy
states are generally localized near impurities and defects (see,
for example, Fig. 21). A local measurement could easily
distinguish between a zero-energy state localized at the end of
the wire and a low-energy state localized somewhere inside
the wire. To clarify the question regarding the real space
distribution of the low-energy spectral weight, we calculate the
LDOS for several relevant regimes and compare the LDOS of a
clean ideal system with that of a disordered realistic nanowire.

We start with a clean nanowire with three occupied sub-
bands (μ = 54.5Eα) coupled nonuniformly to an s-wave SC.
The coupling parameter is characterized by a nonhomogeneity
factor θ = 0.8 and an intermediate coupling strength γ = �0,
where �0 is the SC order parameter of the bulk SC. In the
absence of a Zeeman field (� = 0), the nanowire is a trivial SC.
Increasing the Zeeman field � above a critical value induces a
transition from the trivial SC phase with N = 0 (no Majorana
modes) to a topological SC phase with N = 1 (one pair of
Majorana modes). Further increasing � drives the system
though a series of alternating phases with trivial (N even) and
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FIG. 28. (Color online) Typical spectra for a trivial SC with N =
0 (red squares), a topological SC with N = 1 (orange diamonds), and
a trivial SC with N = 2 (black circles). The system is characterized
by μ = 54.5Eα , θ = 0.8, and γ = �0. The finite energy in-gap states
(for � = 15Eα and � = 45Eα) together with the Majorana zero
modes are localized near the ends of the wire (see also Fig. 12),
while the rest of the states extend throughout the entire system. The
corresponding LDOS is shown in Fig. 29.

nontrivial (N odd) topologies (see the phase diagram in Fig. 9).
Of major practical interest are the first two phases (N = 0 and
N = 1), as stronger Zeeman fields involve smaller gaps (see
Fig. 10) or may destroy superconductivity altogether. Typical
spectra from the first three phases (N = 0,1,2) are shown in
Fig. 28 and the corresponding LDOS is shown in Fig. 29.

The main conclusion suggested by the results shown in
Fig. 29 is that clear-cut evidence for the existence of the
Majorana zero modes can be obtained by driving the system
from a trivial SC phase with N = 0 to a topological SC state
with N = 1 by tuning the Zeeman field. In the trivial SC
phase there is a well-defined gap for all excitations, including
states localized near the ends of the wire. By contrast, the
topological SC phase is characterized by sharp zero-energy
peaks localized near the ends of the wire and separated from
all other excitations (including possible localized in-gap states)
by a well-defined minigap.

Is it possible to clearly distinguish the two phases with
different topologies in the presence of disorder? The answer
is provided by the results shown in Fig. 30 for a nanowire
with charged impurities. In contrast with the clean case, all
the low-energy states are strongly localized. Nonetheless, the
signature features of the two phases (the gaps and the zero-
energy peaks) are preserved. At this point we emphasize two
critical properties:

(i) The features illustrated in Fig. 30 are generic; that is, they
do not depend on the type or the source of disorder. Similar
LDOS can be generated using any other significant type of

FIG. 29. (Color online) LDOS for a clean nanowire in three
different phases: trivial SC phase with N = 0 (� = 15Eα , top),
topological SC phase with N = 1 (� = 25Eα , middle), and trivial SC
phase with N = 2 (� = 45Eα , bottom). The corresponding spectra
are shown in Fig. 28. Notice the finite energy in-gap states localized
near the ends of the wire (top and bottom) and the zero-energy
Majorana modes (middle and bottom). The weight of the zero-energy
modes in the N = 2 phase (bottom) is twice the weight of the
Majorana modes in the topological SC phase with N = 1 (middle).
However, the clearest distinction can be made between the N = 0
and the N = 1 phases. The LDOS is integrated over the transverse
coordinates y and z.

disorder discussed in the previous section or combinations of
different types of disorder. (ii) Observing a zero-energy peak at
a certain value of the Zeeman field does not by itself prove the
realization of a topological SC phase. The trivial SC state with
N = 2 may also have a zero-energy peak separated from all
other excitations by a minigap. To clearly identify the N = 1
phase one must measure the LDOS as a function of the Zeeman
field starting from � = 0, that is, from the trivial SC phase with
N = 0. Continuously increasing � will generate a transition
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FIG. 30. (Color online) LDOS for a nanowire with charged
impurities. The top picture corresponds to a trivial SC state with
N = 0, while the bottom picture is for a system with N = 1. The
linear impurity density is nimp = 7 μm. Notice that all the low-energy
states are strongly localized, but the clear-cut distinction between the
two phases holds.

from a phase characterized by a well-defined gap to a phase
with strong zero-energy peaks localized near the ends of the
wire. However, what is the signature of the transition?

Figure 31 shows the spectrum and the LDOS of a
system with a Zeeman field � = 21.5Eα . In a clean wire
this corresponds to the transition between the N = 0 and
N = 1 phases, which is marked by the vanishing of the
quasiparticle gap, as shown in Figs. 10 and 12. The LDOS
is characterized by a distribution of the spectral weight over
the entire low-energy range of interest. This property holds
at any position along the wire. Adding disorder induces
localization, but does not change this key property. In fact,
based on the analysis of the results shown in Fig. 24, we
know that in disordered systems this type of critical behavior
will characterize a finite range of Zeeman fields. Observing
the transition between the topologically trivial and nontrivial
phases, which is characterized by the closing of the gap and
by a spectral weight distributed over a wide energy range, is
the final ingredient necessary for unambiguously identifying
the Majorana bound states using LDOS measurements.

B. Tunneling differential conductance

An ideal type of measurement that exploits the properties
identified in the previous subsection consists of tunneling
into the ends of the wire and measuring the differential
conductance.71–75 To a first approximation, dI/dV is propor-
tional to the LDOS at the end of the wire, so the general
discussion presented above should apply. Here we focus on
certain specific aspects of a tunneling experiment, for example,
the specific form of the tunneling matrix elements and the role
of finite temperature, that may limit the applicability of our
conclusions. We find that values of the parameters consistent

FIG. 31. (Color online) Energy spectrum and LDOS in the
vicinity a topological phase transition. (Top) The spectra of a
system with � = 21.5Eα without disorder (blue diamonds) and in
the presence of charged impurities (nimp = 0.7/μm, orange squares).
Note the absence of a gap. The corresponding LDOS are shown in
the middle (clean system) and bottom (disordered wire) panels. The
spectral weight is distributed over the entire energy range, including
at positions near the ends of the wire.
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with an unambiguous identification of the Majorana bound
state in the SM nanowire are well within a realistic parameter
regime.

The tunneling current between a metallic tip and the
nanowire can be evaluated within the Keldysh nonequilibrium
formalism.76 In terms of real-space Green’s functions we have

I = e

h

∫
dωReTr

{[
1 − GR

0 (ω)�R(ω − eV )
]−1

× [
(1 − 2fω−eV )GR

0 (ω)�R(ω − eV ) + 2(fω−eV − fω)

×GR
0 �A(ω − eV ) − (1 − 2fω)GA

0 (ω)�A(ω − eV )
]

× [
1 − GA

0 (ω)�A(ω − eV )
]−1}

, (46)

where V is the bias voltage applied between the tip and the
nanowire and fω = 1/(eβω + 1) is the Fermi-Dirac distribu-
tion function corresponding to a temperature kbT = β−1. The
retarded (advanced) Green’s function for the nanowire has the
expression

G
R(A)
0 (r,r ′,ω) =

∑
n

{
u∗

n(r)un(r ′)
ω − En ± iη

+ v∗
n(r)vn(r ′)

ω + En ± iη

}
, (47)

where un and vn are the particle and hole components of the
wave function corresponding to the energy En. The wave
functions and the energies are obtained by diagonalizing
the effective BdG Hamiltonian for the nanowire, including
the contibution from disorder, as described in the previous
sections. The matrices �R(A) contain information about the tip
and the tip-nanowire coupling. Specifically, we have

�R(A)(r,r ′,ω) = γr,r ′

∫
dx

ν(x)

ω − x ± iη
, (48)

where ν(x) represents the density of states of the metallic tip
and γr,r depends on the tunneling matrix elements between the
tip and the wire. We note that in Eq. (46) the trace is taken over
the position vectors. We consider a tunneling model in which
the amplitude of the tunneling matrix elements vary exponen-
tially with the distance from the metallic tip. Specifically, we
have γr,rγ0θrθr ′ , where γ0 gives the overall strength of the
tip-nanowire coupling and the position-dependent factor is

θr = e
− 1

ξ
[
√

(x−xtip)2+(y−ytip)2+(z−ztip)2−xtip]
, (49)

with (xtip,ytip,ztip) being the position vector for the tip and ξ

a characteristic length scale associated with the exponential
decay of the tip-wire coupling. In the numerical calculations
we take ξ = 0.4a and (xtip,ytip,ztip) = (−3a,Ly/2,Lz/2); that
is, the tip is is at a distance equal with three lattice spacings
away from the end of the wire. With these choices, the
differential conductance becomes

dI

dV
∝ −

∑
n

[f ′(En − eV )|〈un|θ〉|2

+ f ′(−En − eV )|〈vn|θ〉|2], (50)

where the matrix elements 〈un|θ〉 and 〈vn|θ〉 involve sum-
mations over the lattice sites of the nanowire system and
provide the amplitudes for tunneling into specific states. Finite
temperature effects are incorporated through the derivatives of
the Fermi-Dirac function, f ′.

FIG. 32. (Color online) Differential conductance for tunneling
into the end of a superconducting nanowire. The curves correspond to
different values of the Zeeman field ranging from � = 11Eα (bottom)
to � = 36Eα (top) in steps of Eα . The curves were shifted vertically
for clarity. The trivial SC phase (� < 21Eα) is characterized by a gap
that vanishes in the critical region (� ≈ 21Eα). The signature of the
topological phase is the zero-energy peak resulting from tunneling
into the Majorana mode. The differential conductance was calculated
at a temperature T ≈ 50 mK for a disordered wire with a linear
density of charged impurities nimp = 7/μm.

The dependence of the tunneling differential conductance
on the bias voltage for a superconducting nanowire with
disorder is shown in Fig. 32. Different curves correspond
to different values of the Zeeman field between � = 11Eα

(bottom) and � = 36Eα (top) and are shifted vertically for
clarity. The temperature used in the calculation is 50 mK,
a value that can be easily reached experimentally. Lower
temperature values will generate sharper features, but the
overall picture remains qualitatively the same. Note that the
closing of the gap in the critical region between the trivial SC
phase and the topological SC phase can be clearly observed.
In this region dI/dV has features over the entire low-energy
range, as discussed in the previous section. The Majorana
bound state at � > 22Eα is clearly marked by a sharp peak at
V = 0, separated by a gap from other finite energy features. We
conclude that measuring the tunneling differential conductance
can provide a clear and unambiguous probe for Majorana
bound states in SM nanowires.
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VI. CONCLUSIONS

In conclusion, we have developed a comprehensive theory
for the realization and the observation of the emergent non-
Abelian Majorana mode in SM (e.g., InAs, InSb) nanowires
proximity coupled to an ordinary s-wave SC (e.g., Al, Nb)
in the presence of a Zeeman splitting induced by an external
magnetic field. The importance of our work lies in the thorough
investigation of the experimental parameter space, which is
required in order to predict the optimal parameter regime to
search for the Majorana mode in nanowires. Since the number
of possible physical parameters in the problem is large (e.g.,
electron density in the nanowire, geometric size of the wire,
chemical potential, the strength of spin-orbit coupling, the
superconducting gap, the hopping matrix elements between
the SM and the SC, the strengths of various types of disorder
in the semiconductor or in the SC or at the interface between
them), theoretical guidance, as provided in this work, is
highly desirable for the success of the experimental search
for the Majorana fermion in solid-state systems. Aside from
the obvious conclusions (e.g., strong spin-orbit coupling and
large Lande g factor in the SM, large superconducting gap in
the SC, and low disorder everywhere stabilize the topological
phase), we have discovered several unexpected results. In
particular, we find somewhat surprisingly that the strict 1D
limit with purely one-subband occupancy for the nanowire,
as originally envisioned by Kitaev11 and later used by many
researchers,14,37,38 is not only unnecessary, but is, in fact,
detrimental to creating Majorana modes. In the presence of
disorder, the optimal system should have a few (three to
five) occupied subbands in the nanowire for the creation
of the Majorana modes with maximal stability. This is, of
course, great news from the experimental perspective, because
fabricating strictly 1D SM nanowires with pure one-subband
occupancy is a challenging task. Another important result of
our analysis is the relative immunity of the Majorana modes
to the presence of disorder in the system. The most dangerous
disorder mechanisms are due to charged impurity centers in
the SM and to inhomogeneous hopping across the SM-SC
interface. Our work suggests that the optimal nanowires for
observing the Majorana mode should not only have as little
charge impurity disorder as possible in the SM, but they should
also have a thin insulating layer separating the SM and SC
(so that the tunneling across the interface is not too strong),
as well as some nonuniformity in the tunneling amplitude
between the SM and the SC across the width (but not the
length) of the nanowire. Our detailed numerical calculations
establish that the zero-energy Majorana modes should clearly
show up in experiments, even in the presence of considerable
disorder in the nanowires. In addition, we establish that the
disorder in the SC has little effect on the Majorana mode

in the nanowire. Another salient aspect of our work is the
detailed calculation of the expected tunneling spectroscopy
spectra for observing the Majorana mode in the nanowire using
realistic physical parameters. Our results establish that the
predicted topological quantum phase transition between the
trivial phase with no Majorana mode to the topological phase
with a well-defined zero-energy Majorana bound state should
be clearly observable as a striking zero-bias anomaly in the
tunneling current when the Zeeman splitting is tuned through
the quantum critical point separating the two phases. More
importantly, we calculate realistic tunneling spectra in the
presence of uncontrolled spurious bound states in the system
which are invariably present in real samples due to the localized
random impurities in the SM environment, clearly showing
how to discern the topological features associated with the
Majorana bound states from the background of contributions
due to trivial bound states caused by impurities in the system.

Our work emphasizes the tunneling measurements, which
would directly establish the existence of a robust zero-energy
mode in the system, providing the necessary condition for
the existence of the Majorana fermion. What we have done
here is to develop a detailed theory for the existence of a
topological phase in the SM-SC heterostructure by taking into
account essentially all of the relevant physical effects. Once the
presence of a robust zero-energy mode is established (hence,
the necessary condition for the existence of the Majorana
is realized) one must move on to establish the sufficient
condition, which would obviously be a harder task. Several
ideas for establishing definitively the existence of the Majorana
mode (and its non-Abelian braiding statistics nature) have
already been suggested in the literature, including experi-
ments involving the fractional Josephson effect,11,14,33,37,77

the quantized differential conductance,75,78 and Majorana
interferometry.79–81

Our work establishes the realistic likelihood of the existence
within laboratory conditions of the non-Abelian Majorana
zero-energy mode in spin-orbit interacting SM nanowires
proximity-coupled to ordinary SCs. We also establish that
tunneling spectroscopy is one of the easiest techniques to
directly observe the elusive Majorana in realistic solid-state
systems. Greater challenges, such as carrying out topological
quantum computation, lie ahead once the laboratory existence
of the Majorana mode is established experimentally.

ACKNOWLEDGMENTS

We would like to thank Leonid Glazman, Matthew Fisher,
and Chetan Nayak for discussions. This work is supported by
the DARPA QuEST, JQI-NSF-PFC, Microsoft Q (SDS), and
WVU startup funds (T.S.).

1F. Wilczek, Nat. Phys. 5, 614 (2009).
2A. Stern, Nature (London) 464, 187 (2010).
3M. Franz, Physics 3, 24 (2010).
4C. Nayak, Nature (London) 464, 693 (2010).
5E. Majorana, Nuovo Cimento 14, 171 (1937).

6B. G. Levi, Phys. Today 64, 20 (2011).
7R. F. Service, Science 332, 193 (2011).
8C. Nayak and F. Wilczek, Nucl. Phys. B 479, 529 (1996).
9N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

10D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).

144522-27

http://dx.doi.org/10.1038/nphys1380
http://dx.doi.org/10.1038/nature08915
http://dx.doi.org/10.1103/Physics.3.24
http://dx.doi.org/10.1038/464693a
http://dx.doi.org/10.1007/BF02961314
http://dx.doi.org/10.1063/1.3563811
http://dx.doi.org/10.1126/science.332.6026.193
http://dx.doi.org/10.1016/0550-3213(96)00430-0
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.86.268


TUDOR D. STANESCU, ROMAN M. LUTCHYN, AND S. DAS SARMA PHYSICAL REVIEW B 84, 144522 (2011)

11A. Y. Kitaev, Phys.-Usp. 44, 131 (2001).
12A. Stern, F. von Oppen, and E. Mariani, Phys. Rev. B 70, 205338

(2004).
13C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma,

Rev. Mod. Phys. 80, 1083 (2008).
14J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher,

Nat. Phys. 7, 412 (2011).
15A. Y. Kitaev, Ann. Phys. (NY) 303, 2 (2003).
16S. Das Sarma, M. Freedman, and C. Nayak, Phys. Rev. Lett. 94,

166802 (2005).
17A. Stern and B. I. Halperin, Phys. Rev. Lett. 96, 016802

(2006).
18P. Bonderson, A. Kitaev, and K. Shtengel, Phys. Rev. Lett. 96,

016803 (2006).
19S. Bravyi, Phys. Rev. A 73, 042313 (2006).
20S. Tewari, C. Zhang, S. Das Sarma, C. Nayak, and D.-H. Lee, Phys.

Rev. Lett. 100, 027001 (2008).
21P. Bonderson, D. J. Clarke, C. Nayak, and K. Shtengel, Phys. Rev.

Lett. 104, 180505 (2010).
22F. Hassler, A. R. Akhmerov, C.-Y. Hou, and C. W. J. Beenakker,

New J. Phys. 12, 125002 (2010).
23J. D. Sau, S. Tewari, and S. Das Sarma, Phys. Rev. A 82, 052322

(2010).
24P. Bonderson and R. M. Lutchyn, Phys. Rev. Lett. 106, 130505

(2011).
25D. J. Clarke, J. D. Sau, and S. Tewari, e-print arXiv:1012.0296 (to

be published).
26K. Flensberg, Phys. Rev. Lett. 106, 090503 (2011).
27F. Hassler, A. R. Akhmerov, and C. W. J. Beenakker, New J. Phys.

13, 095004 (2011).
28L. Jiang, C. L. Kane, and J. Preskill, Phys. Rev. Lett. 106, 130504

(2011).
29O. Zilberberg, B. Braunecker, and D. Loss, Phys. Rev. A 77, 012327

(2008).
30L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008).
31J. D. Sau, R. M. Lutchyn, S. Tewari, and S. Das Sarma, Phys. Rev.

Lett. 104, 040502 (2010).
32S. Das Sarma, C. Nayak, and S. Tewari, Phys. Rev. B 73, 220502

(2006).
33L. Fu and C. L. Kane, Phys. Rev. B 79, 161408 (2009).
34M. Wimmer, A. R. Akhmerov, M. V. Medvedyeva, J. Tworzydło,

and C. W. J. Beenakker, Phys. Rev. Lett. 105, 046803 (2010).
35P. A. Lee, e-print arXiv:0907.2681 (to be published).
36J. Alicea, Phys. Rev. B 81, 125318 (2010).
37R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev. Lett. 105,

077001 (2010).
38Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105, 177002

(2010).
39J. D. Sau, S. Tewari, R. M. Lutchyn, T. D. Stanescu, and S. Das

Sarma, Phys. Rev. B 82, 214509 (2010).
40R. M. Lutchyn, T. D. Stanescu, and S. Das Sarma, Phys. Rev. Lett.

106, 127001 (2011).
41L. Mao, M. Gong, E. Dumitrescu, S. Tewari, and C. Zhang, e-print

arXiv:1105.3483 (to be published).
42A. C. Potter and P. A. Lee, Phys. Rev. Lett. 105, 227003

(2010).
43A. C. Potter and P. A. Lee, Phys. Rev. B 83, 094525 (2011).
44X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 82, 184516

(2010).

45J. Linder, Y. Tanaka, T. Yokoyama, A. Sudbo, and N. Nagaosa,
Phys. Rev. Lett. 104, 067001 (2010)

46S. Nadj-Perge, S. M. Frolov, E. P. A. M. Bakkers, and L. P.
Kouwenhoven, Nature (London) 468, 1084 (2010).

47H. A. Nilsson, P. Caroff, C. Thelander, M. Larsson, J. B. Wagner,
L.-E. Wernersson, L. Samuelson, and H. Q. Xu, Nano Lett. 9, 3151
(2009).

48V. Aleshkin, V. Gavrilenko, A. Ikonnikov, S. Krishtopenko,
Y. Sadofyev, and K. Spirin, Semiconductors 42, 828
(2008).

49Y.-J. Doh, J. van Dam, A. Roest, E. Bakkers, L. Kouwenhoven, and
S. D. Franceschi, Science 309, 272 (2005).

50J. A. van Dam, Y. V. Nazarov, E. P. A. M. Bakkers, S. D.
Franceschi, and L. P. Kouwenhoven, Nature (London) 442, 667
(2006).

51A. Chrestin, T. Matsuyama, and U. Merkt, Phys. Rev. B 55, 8457
(1997).

52R. M. Lutchyn and M. P. A. Fisher, e-print arXiv:1104.2358.
53P. G. de Gennes, Rev. Mod. Phys. 36, 225 (1964).
54A. S. Alexandrov and V. V. Kabanov, Phys. Rev. B 78, 132510

(2008).
55W. L. McMillan, Phys. Rev. 175, 537 (1968).
56S. Gangadharaiah, B. Braunecker, P. Simon, and D. Loss, Phys.

Rev. Lett. 107, 036801 (2011).
57E. Sela, A. Altland, and A. Rosch, Phys. Rev. B 84, 085114

(2011).
58E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A. Fisher,

Phys. Rev. B 84, 014503 (2011).
59T. D. Stanescu, J. D. Sau, R. M. Lutchyn, and S. Das Sarma, Phys.

Rev. B 81, 241310 (2010).
60P. Ghosh, J. D. Sau, S. Tewari, and S. Das Sarma, Phys. Rev. B 82,

184525 (2010).
61A. R. Akhmerov, J. P. Dahlhaus, F. Hassler, M. Wimmer, and

C. W. J. Beenakker, Phys. Rev. Lett. 106, 057001
(2011).

62C. W. J. Beenakker, J. P. Dahlhaus, M. Wimmer, and A. R.
Akhmerov, Phys. Rev. B 83, 085413 (2011).

63A. A. Abrikosov and L. P. Gor’kov, Sov. Phys. JETP 12, 1243
(1961).

64A. C. Potter and P. A. Lee, Phys. Rev. B 84, 059906(E) (2011);
R. M. Lutchyn, T. Stanescu, and S. Das Sarma
(unpublished).

65S. Tewari, T. D. Stanescu, J. D. Sau, and S. D. Sarma, New J. Phys.
13, 065004 (2011).

66O. Motrunich, K. Damle, and D. A. Huse, Phys. Rev. B 63, 224204
(2001).

67I. A. Gruzberg, N. Read, and S. Vishveshwara, Phys. Rev. B 71,
245124 (2005).

68P. W. Brouwer, M. Duckheim, A. Romito, and F. von Oppen, e-print
arXiv:1103.2746 (to be published).

69P. W. Brouwer, M. Duckheim, A. Romito, and F. von Oppen, e-print
arXiv:1104.1531 (to be published).

70S. Das Sarma and W.-Y. Lai, Phys. Rev. B 32, 1401 (1985).
71M. Yamashiro, Y. Tanaka, and S. Kashiwaya, Phys. Rev. B 56, 7847

(1997).
72C. J. Bolech and E. Demler, Phys. Rev. Lett. 98, 237002

(2007).
73S. Tewari, C. Zhang, S. Das Sarma, C. Nayak, and D.-H. Lee, Phys.

Rev. Lett. 100, 027001 (2008)

144522-28

http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1103/PhysRevB.70.205338
http://dx.doi.org/10.1103/PhysRevB.70.205338
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/PhysRevLett.94.166802
http://dx.doi.org/10.1103/PhysRevLett.94.166802
http://dx.doi.org/10.1103/PhysRevLett.96.016802
http://dx.doi.org/10.1103/PhysRevLett.96.016802
http://dx.doi.org/10.1103/PhysRevLett.96.016803
http://dx.doi.org/10.1103/PhysRevLett.96.016803
http://dx.doi.org/10.1103/PhysRevA.73.042313
http://dx.doi.org/10.1103/PhysRevLett.100.027001
http://dx.doi.org/10.1103/PhysRevLett.100.027001
http://dx.doi.org/10.1103/PhysRevLett.104.180505
http://dx.doi.org/10.1103/PhysRevLett.104.180505
http://dx.doi.org/10.1088/1367-2630/12/12/125002
http://dx.doi.org/10.1103/PhysRevA.82.052322
http://dx.doi.org/10.1103/PhysRevA.82.052322
http://dx.doi.org/10.1103/PhysRevLett.106.130505
http://dx.doi.org/10.1103/PhysRevLett.106.130505
http://arXiv.org/abs/arXiv:1012.0296
http://dx.doi.org/10.1103/PhysRevLett.106.090503
http://dx.doi.org/10.1088/1367-2630/13/9/095004
http://dx.doi.org/10.1088/1367-2630/13/9/095004
http://dx.doi.org/10.1103/PhysRevLett.106.130504
http://dx.doi.org/10.1103/PhysRevLett.106.130504
http://dx.doi.org/10.1103/PhysRevA.77.012327
http://dx.doi.org/10.1103/PhysRevA.77.012327
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevB.73.220502
http://dx.doi.org/10.1103/PhysRevB.73.220502
http://dx.doi.org/10.1103/PhysRevB.79.161408
http://dx.doi.org/10.1103/PhysRevLett.105.046803
http://arXiv.org/abs/arXiv:0907.2681
http://dx.doi.org/10.1103/PhysRevB.81.125318
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevB.82.214509
http://dx.doi.org/10.1103/PhysRevLett.106.127001
http://dx.doi.org/10.1103/PhysRevLett.106.127001
http://arXiv.org/abs/arXiv:1105.3483
http://dx.doi.org/10.1103/PhysRevLett.105.227003
http://dx.doi.org/10.1103/PhysRevLett.105.227003
http://dx.doi.org/10.1103/PhysRevB.83.094525
http://dx.doi.org/10.1103/PhysRevB.82.184516
http://dx.doi.org/10.1103/PhysRevB.82.184516
http://dx.doi.org/10.1103/PhysRevLett.104.067001
http://dx.doi.org/10.1038/nature09682
http://dx.doi.org/10.1021/nl901333a
http://dx.doi.org/10.1021/nl901333a
http://dx.doi.org/10.1134/S1063782608070129
http://dx.doi.org/10.1134/S1063782608070129
http://dx.doi.org/10.1126/science.1113523
http://dx.doi.org/10.1038/nature05018
http://dx.doi.org/10.1038/nature05018
http://dx.doi.org/10.1103/PhysRevB.55.8457
http://dx.doi.org/10.1103/PhysRevB.55.8457
http://arXiv.org/abs/arXiv:1104.2358
http://dx.doi.org/10.1103/RevModPhys.36.225
http://dx.doi.org/10.1103/PhysRevB.78.132510
http://dx.doi.org/10.1103/PhysRevB.78.132510
http://dx.doi.org/10.1103/PhysRev.175.537
http://dx.doi.org/10.1103/PhysRevLett.107.036801
http://dx.doi.org/10.1103/PhysRevLett.107.036801
http://dx.doi.org/10.1103/PhysRevB.84.085114
http://dx.doi.org/10.1103/PhysRevB.84.085114
http://dx.doi.org/10.1103/PhysRevB.84.014503
http://dx.doi.org/10.1103/PhysRevB.81.241310
http://dx.doi.org/10.1103/PhysRevB.81.241310
http://dx.doi.org/10.1103/PhysRevB.82.184525
http://dx.doi.org/10.1103/PhysRevB.82.184525
http://dx.doi.org/10.1103/PhysRevLett.106.057001
http://dx.doi.org/10.1103/PhysRevLett.106.057001
http://dx.doi.org/10.1103/PhysRevB.83.085413
http://dx.doi.org/10.1103/PhysRevB.84.059906
http://dx.doi.org/10.1088/1367-2630/13/6/065004
http://dx.doi.org/10.1088/1367-2630/13/6/065004
http://dx.doi.org/10.1103/PhysRevB.63.224204
http://dx.doi.org/10.1103/PhysRevB.63.224204
http://dx.doi.org/10.1103/PhysRevB.71.245124
http://dx.doi.org/10.1103/PhysRevB.71.245124
http://arXiv.org/abs/arXiv:1103.2746
http://arXiv.org/abs/arXiv:1104.1531
http://dx.doi.org/10.1103/PhysRevB.32.1401
http://dx.doi.org/10.1103/PhysRevB.56.7847
http://dx.doi.org/10.1103/PhysRevB.56.7847
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.98.237002
http://dx.doi.org/10.1103/PhysRevLett.100.027001
http://dx.doi.org/10.1103/PhysRevLett.100.027001


MAJORANA FERMIONS IN SEMICONDUCTOR NANOWIRES PHYSICAL REVIEW B 84, 144522 (2011)

74J. Nilsson, A. R. Akhmerov, and C. W. J. Beenakker, Phys. Rev.
Lett. 101, 120403 (2008).

75K. T. Law, P. A. Lee, and T. K. Ng, Phys. Rev. Lett. 103, 237001
(2009).

76C. Berthod and T. Giamarchi, e-print arXiv:1102.3895 (to be
published).

77H. J. Kwon, K. Sengupta, and V. M. Yakovenko, Eur. Phys. J. B 37,
349 (2003).

78M. Wimmer, A. R. Akhmerov, J. P. Dahlhaus, and C. W. J.
Beenakker, New J. Phys. 13, 053016 (2011).

79L. Fu and C. L. Kane, Phys. Rev. Lett. 102, 216403
(2009).

80A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Phys. Rev.
Lett. 102, 216404 (2009).

81J. D. Sau, S. Tewari, and S. Das Sarma, Phys. Rev. B 84, 085109
(2011).

144522-29

http://dx.doi.org/10.1103/PhysRevLett.101.120403
http://dx.doi.org/10.1103/PhysRevLett.101.120403
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://dx.doi.org/10.1103/PhysRevLett.103.237001
http://arXiv.org/abs/arXiv:1102.3895
http://dx.doi.org/10.1140/epjb/e2004-00066-4
http://dx.doi.org/10.1140/epjb/e2004-00066-4
http://dx.doi.org/10.1088/1367-2630/13/5/053016
http://dx.doi.org/10.1103/PhysRevLett.102.216403
http://dx.doi.org/10.1103/PhysRevLett.102.216403
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevB.84.085109
http://dx.doi.org/10.1103/PhysRevB.84.085109

