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Interaction of Josephson and magnetic oscillations in Josephson tunnel junctions with a
ferromagnetic layer
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We study the dynamics of Josephson junctions with a thin ferromagnetic layer F [superconductor-ferromagnet-
insulator-ferromagnet-superconductor (SFIFS) junctions]. In such junctions, the phase difference ϕ of the
superconductors and magnetization M in the F layer are two dynamic parameters coupled to each other. We
derive equations describing the dynamics of these two parameters and formulate the conditions of validity. The
coupled Josephson plasma waves and oscillations of the magnetization M affect the form of the current-voltage
(I-V) characteristics in the presence of a weak magnetic field (Fiske steps). We calculate the modified Fiske steps
and show that the magnetic degree of freedom not only changes the form of the Fiske steps but also the overall
view of the I-V curve (new peaks related to the magnetic resonance appear). The I-V characteristics are shown
for different lengths of the junction including those which correspond to the current experimental situation. We
also calculate the power P absorbed in the system if a microwave radiation with an ac in-plane magnetic field
is applied (magnetic resonance). The derived formula for the power P essentially differs from the one which
describes the power absorption in an isolated ferromagnetic film. In particular, this formula describes the peaks
related to the excitation of standing plasma waves as well as the peak associated with the magnetic resonance.
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I. INTRODUCTION

A great attention in recent years has been paid to the study of
Josephson junctions (JJ) with a magnetic layer (or layers).1–4

Although the exchange field in the ferromagnetic layer F
essentially suppresses the Josephson current IJ , the interaction
of the exchange field and singlet Cooper pairs results in new,
interesting, and nontrivial effects. For example, the singlet pair
wave function penetrating from the superconducting leads into
the F layer due to the proximity effect oscillates in space. In
case of a uniform F layer, the pair wave function consists of
two components: one is the singlet component and another is
the triplet component with zero projection of the total spin on
the direction of the magnetization vector M in the ferromagnet.
The condensate wave function decays in the ferromagnet
on a short distance from the superconductor-ferromagnet
(SF) interfaces, which in the diffusive limit, is of the order
ξF = √

D/2Eexc, where D = vF l/3 is the diffusion constant
and Eexc is the exchange energy. Here, vF and l denote the
Fermi velocity and the electron mean free path, respectively.
Oscillations of the Cooper pair wave function in space lead
to a change of sign of the critical Josephson current IJc. This
effect was predicted long ago5,6 but observed only recently.7–14

If the magnetization in the F layer is not uniform (for
example, this occurs in the case of a domain structure or
multilayered ferromagnet-superconductor (FS) structures with
noncollinear magnetization directions in the F layers), due
to the proximity effect a so-called odd-frequency triplet
component arises.3,4,15 In contrast to a conventional triplet
component that is an odd function of momentum and is
suppressed by scattering off ordinary impurities,16 the odd-
frequency triplet component is an even function of momentum
(in the diffusive case) and is not destroyed by scattering off
ordinary impurities. This component also is not sensitive to the
exchange field and therefore can penetrate into the ferromagnet
over a long distance up to ξN = √

D/2πT at temperature T .

Convincing data in favor of existence of this long-range
triplet component have been obtained in a number of recent
experimental works.17–23

Another interesting effect arises in SFIFS junctions. It turns
out that at the antiferromagnetic magnetization orientation in
the F layers, the Josephson critical current IJc is increased.24

Its value may even exceed the critical current IJc in similar
JJs without ferromagnetic layers. This prediction was also
confirmed experimentally.25

Alongside with the study of the dc Josephson current in
SFS or SF1F2F1S JJs, dynamic properties of these junctions
and also of tunnel SIFS or SFIFS JJs have been investi-
gated both experimentally26–29 and theoretically.30–32 Here
and throughout the paper, S and I, respectively, represent a
superconducting and insulating layers and F1/2 denotes two
distinct ferromagnetic layers. Interesting dynamic phenomena
in JJs with a ferromagnetic layer or a magnetic particle occur
when the dynamics of the superconducting phase difference
ϕ(t) and the magnetization M(t) come into play.

The coupling between these two degrees of freedom may be
realized in different ways. For example, the Josephson current
produces a torque acting on magnetization vectors in multilay-
ered SF1F2S junctions. Since the Josephson current IJ [ϕ(t)]
is determined by the mutual orientations of magnetization
vectors M1/2, the dynamic behavior of the Josephson current
will depend on the dynamics of M(t).33–35 Another mechanism
of the supercurrent action on magnetization was considered
by Konschelle and Buzdin.36 They studied dynamics of SFS
junctions with a noncentrosymmetric ferromagnet. In this case,
the Josephson current IJ acts directly on the magnetization M

leading to its precession. In a nonstationary case, the interplay
between IJ (t) and M(t) leads to a complicated behavior of the
phase difference ϕ(t) in time.

In several papers,37–39 dynamics of SmS (superconductor-
magnetic impurity-superconductor) JJs have been studied.
Interaction between tunneling Cooper pairs and the magnetic
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moment of the impurity not only changes the current-phase
relation IJ (ϕ) but also results in interesting dynamics of the
magnetic moment.

The most interesting dynamic effects arise in tunnel JJs with
a ferromagnetic layer (or layers). In this case, the interaction
between the magnetization in F and the Josephson current
is realized in the simplest way. As is well known, even a
weak in-plane magnetic field strongly affects the Josephson
current IJ (ϕ). In case of JJs of the SIFS or SFIFS type,
such a magnetic field is produced by the F layer itself.
Therefore any perturbations of the magnetization vector M
change the current IJ (ϕ) and in addition the Meissner currents
in the superconducting leads change the orientation of the M
vector.

In absence of the F layer, Josephson plasma waves can
propagate in SIS junctions and their spectrum is40–42 ω2 =
�2

J + k2v2
J , where �J is the Josephson “plasma” frequency

and vJ is the velocity of Swihart waves. On the other hand,
in the F film, spin waves can be excited with the spectrum
ω2 = �2

M (1 + k2l2
M )2, where �M is the magnetic resonance

frequency and lM is a “magnetic” length.43 If �J < �M , then
these dispersion curves cross (usually l2

M � l2
J ≡ v2

J /�2
J ), and

the interaction between magnetization and Josephson currents
leads to a coupling between Josephson “plasma” and spin
waves and to a repulsion of the corresponding dispersion
“terms.” The coupling between magnetic and superconducting
oscillations can be observed by studying the I-V characteristics
of the junction in the presence of a weak external magnetic
field. In this case, the so-called Fiske steps arise on the
I-V curve, but their particular positions and form depend on
parameters characterizing the magnetic system. New peaks
related to magnetic resonances appear on the current-voltage
characteristics (CVC). These results have been obtained in a
short paper by two of us.30

In the current paper, we study dynamic phenomena in the
same systems (SIFS or SFIFS JJs) as in Ref. 30. However, we
present in more detail the derivation of equations describing
the dynamics of the coupled magnetic and superconducting
systems (see Sec. II). In particular, we formulate conditions
(frequency range) under which these equations are valid. As
in Ref. 30, we analyze Fiske steps in SFIFS junctions, but
the CVC will be presented for a wider range of parameters
of these junctions. The CVC will be displayed not only for
junctions with L = lJ as it was done in Ref. 30, but for
junctions longer or shorter than the Josephson length (L <

lJ ). The latter case corresponds to the current experimental
situation.

The coupled magnetoplasma modes will also be dis-
cussed in more detail (see Sec. IV). Finally, in Sec. V, we
present a formula for the power absorption P in SFIFS
junctions when a weak ac in-plane magnetic field is ap-
plied, that is, we study the ferromagnetic resonance in the
system. This formula drastically differs from the known
formula for ferromagnetic resonance in an isolated F film.
In particular, it describes plasma resonances in tunnel JJs,
which also occur in absence of the F film. The frequency
dependence of P will be presented for various system
parameters. In Sec. VI, we discuss the obtained results
and analyze possibilities to observe the predicted effects in
experiments.

II. MODEL AND BASIC EQUATIONS

We consider a planar SFIFS junction of the “overlap”
geometry as shown schematically in Fig. 1 (the results obtained
are also applicable to an SIFS junction). Our aim is to
generalize the equation for the phase difference ϕ between
the superconducting layers describing the static and dynamic
properties of an SIS JJ to the case of SFIFS JJs.

This equation reads40–42,44,45

�−2
J

(
∂2ϕ

∂t2
+ γR

∂ϕ

∂t

)
− l2

J ∇2
⊥ϕ + sin(ϕ) = η, (1)

where �J = (2ejc/C�h̄)1/2 is the Josephson “plasma” fre-
quency, γR = (R�C�)−1, C� = ε/4πd, and R� are the
capacitance and resistance of the junction per unit area,
respectively, d is the thickness of the insulating layer, l2

J =
v2

J /�2
J , vJ = c

√
d/2ελL is the plasma wave propagation

velocity (Swihart waves), λL is the London penetration depth,
and ∇⊥ represents the tangential or in-plane gradient with
respect to the interfaces in the x-y plane.

We single out the term on the right-hand side of Eq. (1),
η = j/jc, which describes the normalized bias current through
the junction. Although it may depend on y, the normalized
current η will be considered as constant along the y direction.
Strictly speaking, this is only true for “overlap” junctions41,42

considered here in which the system geometry is arranged in
such a way that the intersection region of superconducting
layers is approximately one-dimensional. However, the form
of Eq. (1) is most convenient for analysis of CVC for the
system under consideration and, moreover, neglecting the
y dependence of normalized current η does not change
qualitatively the final results. The critical current density
jc is considered as a known quantity. It was calculated in
Refs. 24,46–48.

The resistance R� depends on the voltage V across the
junction. This dependence is especially strong in the case of
tunnel SIS JJs if the voltage V is close to the energy gap �.
We assume that the characteristic frequencies (�J and �M )
are smaller than �/h̄. In addition, we are interested in the
form of the CVC at voltages V close to h̄�J /2e, h̄�M/2e,
where R� and, therefore, γR can be regarded as constant.
Of course, the overall form of the CVC will be modified
as a direct consequence of the voltage-dependent damping
coefficient γR(V ).

x
y

z

dF

Superconductors

Ferromagnets

Insulating barrier

dF

d

FIG. 1. (Color online) Schematic construction of a SFIFS junc-
tion of the “overlap” geometry.
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We consider planar JJs of the SFIFS, SFIS, or SFS type
and assume that the layer separating the two superconductors
is characterized by the magnetic susceptibility χ (ω,k). In
particular, this layer may be a magnetic insulator or metallic
ferromagnet. The derivation of an equation for the phase
difference ϕ in SFIFS junctions is quite similar to that in
the case of tunnel SIS junctions.41,42,49,50 We assume that
there is no magnetic field normal to the interfaces in the
superconductors or, in other words, no Abrikosov vortices
pierce the superconducting films, and the lateral dimensions
Lx,y are much larger than the thickness dF of the F layers
and the Josephson penetration depth λL. Since the normal
component of the magnetic induction Bz is continuous at the
superconductor-ferromagnet (SF) interfaces, it also vanishes
in the ferromagnetic layers and, hence, according to Bz =
Hz + 4πMz one has Hz = −4πMz in the F films. In order
to find the relation between the magnetic field H in the
superconductor (note that in the S layers H coincides with
the magnetic induction B) and the phase difference ϕ, we
express the tangential component of the current density in
the S film j⊥ ≡ jxnx + jyny using the vector potential A⊥
(nz × ∂A/∂z = B⊥) and the tangential gradient of the phase
in the superconductor ∇⊥χ as

j⊥ = c

4πλ2
L

(1 + γqp)

(
−A⊥ − �0

2π
∇⊥χ

)
, (2)

where γqp(ω) = 4πiωσ (ω)λ2
L/c2 is a damping parameter

describing effects of quasiparticles on the supercurrent and
�0 = hc/2e > 0 is the magnetic flux quantum. The parameter
γqp is very small for not very high frequencies because the
frequency c/λL is very large. For example, taking λL =
5 × 10−6cm we obtain c/λL = 0.6 × 1016s−1, which actually
allows us to omit the parameter γqp.

Writing Eq. (2), we imply a local relation between the
tangential current density j⊥ and the gauge invariant quantity
in brackets, which is legitimate in the limit kλL � 1, where
k is the modulus of the in-plane wave vector of perturba-
tions. Subtracting the expressions for the current density,
Eq. (2), written for the right and left superconductors from
each other we find the change of the tangential current density
[j⊥] = j⊥(d̃F /2) − j⊥(−d̃F /2) across the junction

[j⊥] = c

4πλ2
L

(1 + γqp)

(
d̃F {nz × B⊥} − �0

2π
∇⊥ϕ

)∣∣∣∣
d̃F /2

,

(3)

where d̃F = dF in the case of an SIFS or SFS junction and
d̃F = 2dF in the case of an SFIFS junction. The parameter
dF is the thickness of the F film, which is assumed to be
smaller than the London penetration length λL, and for any
quantity Q, we denote the difference Q|S(R) − Q|S(L) by [Q],
where S(R) and S(L) are the right and left superconductors,
respectively.

The assumption dF � λL allows one to neglect the change
of A⊥ along the z direction caused by Meissner currents in the
F layer and to write the change of the vector potential A⊥ in
the form [A⊥] = d̃F (nz × B⊥) with B⊥ = 4πM⊥ + H⊥. The
field H⊥ is approximately the same to the right and to the left
from the SF interfaces and does not contribute to the jump of
the tangential current density [j⊥]. The Meissner currents in

the F layers and, therefore, the variation of H⊥ there are much
smaller than in the superconductors for the following reason.
The total screening Meissner current IScr in the F layer is
proportional to λ−2

LF d̃F A, where the inverse London penetration
depth λ−1

LF is proportional to the density of Cooper pairs, λ−2
LF ∼

nSF, and, thus, is much smaller than λ−2
L . The phase difference

ϕ between the two S layers has the (gauge-invariant) definition:

ϕ = [χ ] + 2e

h̄c

∫ S(R)

S(L)
dz Az, (4)

and completely describes the JJ because we choose a gauge
with Az = 0 and [χ ] = χ (d̃F /2) − χ (−d̃F /2).

Equation (3) determines the boundary conditions of the
London equation in the superconductors. Indeed, considering
the Maxwell equation at the points z = ±zSF ≈ ±d̃F /2,

∇ × B⊥

∣∣∣∣
±d̃F /2

= 4π

c
j⊥

∣∣∣∣
±d̃F /2

, (5)

where zSF denotes the coordinate of the right SF interface, we
obtain by successively taking the cross product with nz in both
sides and subtracting the two equations from each other

−∂B⊥
∂z

∣∣∣∣
d̃F /2

= 2π

c
nz × [j⊥]. (6)

Here, we used the relation

∂B⊥
∂z

∣∣∣∣
d̃F /2

= − ∂B⊥
∂z

∣∣∣∣
−d̃F /2

(7)

taking into account the symmetry of the SFIFS system.
Recalling that the magnetic field component Bz normal to
the interfaces is assumed to be zero in the S layers and
considering only the z dependence of B⊥, we have to solve
in the superconductors the equation

∂2B⊥
∂z2

− κ2B⊥ = 0 (8)

with κ2 = λ−2
L (1 + γqp) ≈ λ−2

L . The solution reads for |z| >

d̃F /2,

B⊥(z) = B⊥(d̃F /2) exp

{
−|z| − d̃F /2

λL

}
. (9)

Inserting this expression for B⊥ into Eq. (6), we obtain by use
of Eq. (3)

B⊥

(
d̃F

2

)
= − �0

4πλ̃L

(nz × ∇⊥ϕ) − 2πd̃F

λ̃L

M⊥

∣∣∣∣
d̃F /2

, (10)

where we have set λ̃L = λL + d̃F /2. The magnetic field B

decays exponentially with increasing z provided the thickness
of the S layers exceeds the London penetration length λL.

In order to obtain an equation for the phase difference
ϕ of the superconductors, we use the Maxwell equation
(∇ × H)z − c−1∂Dz/∂t = (4π/c)jz and the standard expres-
sion for the Josephson current according to the Stewart-
McCumber model.51,52 This simple model [also known as
the resistively and capacitively shunted junction (RCSJ)
model] provides a good description of the CVC of a real JJ,
although effects due to finite dimensions of the contacts and
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nonlinearities of the quasiparticle current are neglected. Using
the Josephson relation

∂ϕ

∂t
= −2eV

h̄
(11)

and the standard expression for the Josephson current, we
obtain within this model

c

4π
(∇ × H)z = −h̄C�

2e

∂2ϕ

∂t2
− h̄

2eR�

∂ϕ

∂t
− jc sin(ϕ) + j.

(12)

Finally, with the help of Eq. (10) and taking into account that
in the S layers B = H ,

�−2
J

(
∂2ϕ

∂t2
+ γR

∂ϕ

∂t

)
− l2

J ∇2
⊥ϕ + sin(ϕ)

= η + cd̃F

2̃λLjc

(∇ × M⊥)z (13)

where here, too, �J = (2ejc/C�h̄)1/2 is the Josephson
“plasma” frequency, γR = (R�C�)−1, C�(ω) = ε(ω)/4πd

and R�(ω) are the capacitance and resistance of the junction
per unit area, respectively, d is the thickness of the insulating
layer, l2

J = v2
J /�2

J , vJ = c
√

d/2ελ̃L is the plasma wave
propagation velocity (Swihart waves), and η = j/jc is the
normalized bias current through the junction. The capacitance
C� and the resistance R� of the junction may depend on
frequency ω (in the Fourier representation). A simpler equation
for the phase difference ϕ in the stationary case has been
reported previously in Ref. 53. In a general, nonstationary
case, this equation was derived in Ref. 30. Note that a slightly
different approach for the study of dynamic processes in SFS
junctions was used in a recent paper.31 In particular, Eq. (13)
can be easily derived from Eqs. (A3)–(A6) of this work.

In order to obtain a closed set of equations for the phase
difference ϕ of the superconductors and the magnetization M⊥
of the ferromagnetic layer, we need to use a dynamic equation
for M⊥ as well.

The dynamics of the magnetization M in the F layer is
described by the well-known Landau-Lifshitz-Gilbert (LLG)
equation (see, e.g., Refs. 43 and 54), which allows one to de-
scribe the temporal development of M in an effective magnetic
field Heff including all internal and external contributions.

We decompose the magnetization vector M according to
M = M0ne + m, where the unit vector ne denotes the easy
axis direction and m ⊥ ne is the dynamic part, which evolves
in time as described by the LLG equation. Assuming that in
equilibrium the magnetization coincides with the static part
along the easy axis, i.e. M0 ≈ |M| 	 |m|, and using Bz = 0,
we obtain

∂m
∂t

= −4παMeff
(
1 − l̃ 2

M ∇2
⊥
)

(M × m)

+MeffM × B⊥ + γM

|M|M × ∂m
∂t

, (14)

where Meff = g|e|/2mc, g < 0 is the gyromagnetic factor,
α is a parameter related to the anisotropy constant,43 l̃M is
a characteristic length related to spin waves, and γM is the
dimensionless Gilbert damping constant.

We further neglect the Gilbert damping term (γM = 0),
align the easy axis along the z direction (e ≡ z), and substitute
B⊥F = 4πM⊥ + H⊥ (M⊥ ≡ m) into Eq. (14), where B⊥F is
the magnetic induction in the F layer and H⊥ is the magnetic
field, which is assumed to be independent of the z coordinate
(screening effects in the F layer are negligible). The field H⊥ is
continuous across the SF interface, i.e., H⊥ = B⊥(z → d̃F /2),
and is given by Eq. (10).

Finally, we obtain

∂m
∂t

= �M

[(
1 + s − l2

M∇2
⊥
)M × m

M0

− �0

(4π )2(α − 1)̃λL

∇⊥ϕ

]
, (15)

where �M = 4π (α − 1)|Meff|M0 is the resonance frequency
of magnetic moment precession (α > 1), s = d̃F /[2(α −
1)̃λL], and l 2

M = [α/(α − 1)]̃l 2
M .

Equations (13) and (15) fully describe different dynamical
processes in the junctions under consideration. Note that the
Josephson current is coupled to the magnetization through the
spatial derivative of the phase difference ∇⊥ϕ [the last term
on the right-hand side of Eq. (15)]. Therefore, in a spatially
homogeneous case, there is no coupling between the Josephson
effect and dynamics of the magnetization.

III. FISKE STEPS

In this section, we consider a SFIFS Josephson junction
in a weak external magnetic field Hext assuming that it is
constant in space and time and is directed parallel to the
interfaces along the y direction. As is well known, in this
case, so-called Fiske steps arise on the CVC due to excitation
of eigenmodes in the junction. The phase difference ϕ(x,t)
depends on the x coordinate and, therefore, dynamics of
the magnetic and superfluid systems are coupled together.
We consider the case when the magnetization vector in the
stationary state is directed perpendicular to the SF interfaces,
i.e., M0 = M0nz and H0 = −4πM0. As the typical values
for the magnitude of the stationary magnetization M0 are
hundreds of gauss and the small external magnetic field
Hext is of the order of a few gauss, one can neglect the
in-plane magnetization My = −Hext/(4π ) compared to M0.
The resulting precessional motion of the magnetization M in
presence of a current through the JJ implies that the in-plane
components m ⊥ nz of M are excited. Therefore we represent
M as M(x,t) = M0 + m(x,t). Components mx,y are easily
found from Eq. (15):

my = �M (1 + s)

iω
mx

= 1

(1 + s)LωF

�0

(4π )2(α − 1)̃λL

∂ϕ

∂x
, (16)

LωF = ω(ω − iγM )

�2
M (1 + s)2

− 1. (17)

Equations (16) and (17) are written under the assumption that
all relevant quantities depend on time as exp(iωt) and, what is
more important, spatial derivatives in the equation for m(x,t)
are neglected. The latter assumption is justified provided the
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magnetic length lM is much shorter than the Josephson length
lJ : lM � lJ . It is not difficult to analyze a more general case
of arbitrary relation between lM and lJ , but the corresponding
formulas become too cumbersome. Substituting Eq. (16) into
Eq. (13), we obtain

−
[
ω(ω − iγR)

�2
J

+ l̃ 2
J (ω)

∂2

∂x2

]
ϕ(x,ω)

+F{sin(ϕ)}(x,ω) = η, (18)

where F{sin(ϕ)}(x,ω) is the Fourier transform of sin[ϕ(x,t)]
with respect to time t and

l̃J (ω) = lJ

[
1 + s

(1 + s)LωF

]1/2

(19)

is a renormalized Josephson length containing LωF and,
therefore, depending on frequency ω. Equation (18) is the
favored generalization of Eq. (1) for SFIFS junctions.

In order to find the CVC, we represent the phase difference
ϕ of the superconducting layers in the form ϕ = ϕ0(x,t) +
ψ(x,t) (see Ref. 50). The first term is given by ϕ0(x,t) =
κHx + �V t with κH = 4πλ̃LHext/�0 [see Eq. (10)] and �V =
2eV/h̄. The function ψ(x,t) is assumed to be small allowing
us to linearize Eq. (13) with respect to ψ :

−P̂{ψ}(x,t) = sin[ϕ0(x,t)] = sin(�V t) cos(κHx)

+ cos(�V t) sin(κHx), (20)

where the operator P̂ is defined as

P̂ = �−2
J

(
∂2

∂t2
+ γR

∂

∂t

)
− l̃ 2

J (�V )
∂2

∂x2
. (21)

The current correction δη to the dc current η0 =
(2eV/h̄)/�J = �V /�J is given by

δη = 〈ψ(x,t) cos[ϕ0(x,t)]〉, (22)

where the angular brackets denote the average with respect to
space and time.

Equation (22) determines the constant normalized current
through the junction as a function of voltage V , which gives
a current-voltage (I-V) curve. Equation (20) contains parts
oscillating in space and time. It should be solved taking into
account the boundary conditions41,42,49,50

∂ψ

∂x

∣∣∣∣
x=±L

= 0, (23)

where L denotes the length of the junction along the x

direction. The right-hand side of Eq. (20) can be written in
the form Im{exp(i�V t)[cos(κHx) + i sin(κHx)]} and, there-
fore, the solution of Eq. (20) can be written as ψ(x,t) =
Im{exp(i�V t)ψ1(x)}, where the function ψ1(x) obeys the
equation

−P̂�{ψ1}(x) = cos(κHx) + i sin(κHx) (24)

with the boundary condition Eq. (23).
The operator P̂� coincides with P̂ after replacing ∂/∂t by

i�V . The solution can be easily found and equals

ψ1 = 1

P�(V,H )
[cos(κHx) + C cos(κV x) + i sin(κHx)

+ iS sin(κV x)], (25)

where P�(V,H )=a2 − l̃ 2
J (�V )κ2

H , a2 =�−2
J (�2

V − iγR�V ),
and

C = −θH

θV

sin θH

sin θV

, S = −θH

θV

cos θH

cos θV

(26)

with θH = κHL, θV = κV L, κ2
V = a2̃l −2

J (�V ). Substituting
the function ψ(x,t) expressed through ψ1(x) into Eq. (22),
we find the dependence, δη(V ) ≡ δj (V )/jc,

δη = Im

{
1

P�(V,H )

[
1 − θ2

H

θV

(
θ2
H − θ2

V

)
× cos(2θV ) − cos(2θH )

sin(2θV )

]}
. (27)

Since we assumed that the correction ψ =
Im{exp(i�V t)ψ1(x)} to the phase difference ϕ in the
superconducting layers is small, Eq. (27) is only valid for
normalized voltages �V /�J > (γR/�J )−1. This can be seen
from Eq. (25) where one should verify that the prefactor
P −1

� (V,H ) is small.
Let us discuss the current results and compare them with

those obtained in Ref. 30. The prefactor P −1
� (V,H ) in Eq. (27)

contains the renormalized Josephson length l̃J defined in
Eq. (19), which corresponds to the quantity lV of Ref. 30.
The formulas for Fiske steps in Ref. 30 were given for small
values of the parameter s. If the parameter s is not very
small, one can reproduce the correct result by replacing there
�2

M → (1 + s)�2
M , i.e., Eq. (19). [Note that in the definition

of �Ms , Eq. (10) of Ref. 30, there is a misprint. The factor of
two in the exponent at the right-hand side is missing so that
the correct formula reads �2

Ms = �2
M (1 + s)2]. The modified

dependence of the normalized Josephson length l̃J on the
parameter s changes the form of the I-V characteristics and
reveals that the effect of the ferromagnetic layer is much
more pronounced compared to the results of Ref. 30 even
for small s because the denominator in Eq. (10) of Ref. 30 is
very small at voltages corresponding to peaks in the CVC and
therefore is very sensitive to the parameter s. Thus, we update
the figures showing the dependence δη(Vnorm) as a function
of normalized voltage Vnorm = �V /�J . Finally, we also
present I-V characteristics for different values of normalized
junction lengths L/lJ including those which correspond to
the experimental values of Ref. 28 (L/lJ < 1). As in Ref. 30,
for simplicity, we assume that the damping coefficient γR is
constant, i.e., it does not depend on voltage V .

In Figs. 2 and 3, we plot the current correction δη as a
function of normalized voltage Vnorm for different values of
the parameter s = d̃F /(2(α − 1)̃λL) and normalized junction
length L/lJ . Taking into account the experimental values of L

and lJ (see Ref. 28), we display the current correction δη for
short junctions with L/lJ = 0.75 [see Figs. 2(a) and 2(b)] and,
in addition, for longer junctions with L/lJ = 2 [see Figs. 2(c)
and 2(d)] and L/lJ = 10 [see Figs. 3(a) and 3(b)]. Black curves
represent the limit s → 0 where we have no F layers in the
system and the CVC correspond to ordinary Fiske steps. Due
to the fact that in experiments, only the strength of the external
magnetic field can be varied, we display our result for different
values of the parameter κH lJ ∝ Hext keeping all other system
parameters such as �M/�J , L/lJ , and s constant.
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FIG. 2. (Color online) Correction to the I-V characteristics of an SFIFS JJ in a weak external magnetic field due to interaction of Josephson
oscillations and spin-wave modes. The correction is plotted as a function of normalized voltage Vnorm = �V /�J for different values of the
parameter s. The figures are presented for the following parameters: (a) �M/�J = κH lJ = 8 and L/lJ = 0.75, (b) �M/�J = 8, κH lJ =
12 and L/lJ = 0.75, (c) �M/�J = κH lJ = 8, and L/lJ = 2, and (d) �M/�J = 8, κH lJ = 12, and L/lJ = 2. The damping coefficients are
γR/�J = 0.4 and γM/�J = 0.3.

The strongest influence of the ferromagnetic layers on the
current-voltage characteristics develops for external magnetic
fields such that the parameters κH lJ and �M/�J coincide. By
comparing Figs. 2(a) and 2(b) [or Figs. 2(c) and 2(d), respec-
tively] one can observe that the change of the current correction
is clearly recognizable for κH lJ = �M/�J and nonzero s,
while for κH lJ �= �M/�J , it only becomes pronounced for
larger values of s.

As can be seen from Figs. 2(a) and 2(c) that the normalized
junction length L/lJ determines the form of the CVC even
in the case s = 0, i.e., the number of Fiske steps close to the
normalized magnetic resonance frequency �M/�J may vary
for different values of L/lJ . Provided for s = 0 there appears
a single peak close to �M/�J , increasing the parameter s

leads to a double splitting of the dominant peak. For even
larger values of s, the pair of peaks moves more and more
apart from each other [see Fig. 2(a)]. A similar effect can be
seen for a larger number of Fiske steps close to �M/�J , e.g.,
Fig. 2(c) displays essentially two Fiske steps in the vicinity of
�M/�J = 8 that both split up into two peaks moving apart
from each other with increasing s.

For distinct values of the parameters κH lJ and �M/�J

[see Figs. 2(b) and 2(d)], there also emerge additional peaks
in the I-V characteristics close to the normalized magnetic
resonance frequency, but the detailed impact of the F layers on
the CVC is not as obvious as is the case for κH lJ = �M/�J .

From Fig. 2(d), one can already conjecture that for long
junctions, the ferromagnetic layers simply induce a single
additional peak close to �M/�J . In Fig. 3, where the
current correction δη is shown for the limit of large values
of L/lJ (L/lJ = 10), this feature becomes more apparent.
For coinciding values of the magnetic resonance frequency
�M/�J and the parameter κH lJ [see Fig. 3(a)], we find a
single peak for s = 0 and a double peak for s �= 0 in the
vicinity of �M/�J . For �M/�J �= κH lJ , there emerges a
single peak close to �M/�J and κH lJ , respectively, where
the former is notably smaller in magnitude [see Fig. 3(b)].
Below we also derive analytical expressions for these peak
positions.

Thus the presence of the F layers leads not only to a shift
of the peaks in the dependence δη(Vnorm) but also to a change
of the overall form of this dependence. The additional peaks
arising on the I-V curves can be attributed to the ferromagnetic
resonance and the nonzero coupling between Josephson and
magnetic moment oscillations. In order to observe these
peaks experimentally, one should perform measurements with
different samples that contain ferromagnetic layers of varying
thickness. Then, according to our theoretical result, one would
be able to differentiate between ordinary Fiske steps and peaks
caused by interaction of Josephson and magnetic oscillations
in the F layers. Note that in the limit of a very short junction
(L/lJ � 1) there is no coupling between Josephson and
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FIG. 3. (Color online) Current correction δη as a function of
normalized voltage Vnorm = �V /�J for long JJ with normalized
junction length L/lJ = 10. The function δη is displayed for
(a) �M/�J = κH lJ = 8, (b) �M/�J = 8, κH lJ = 12, and for
different values of the parameter s. The damping coefficients are
γR/�J = 0.4 and γM/�J = 0.3.

magnetic moment oscillations. Indeed, in this limit we obtain
from Eq. (27)

δη = Im

{
�2

J

�V (�V − iγR)

}
. (28)

It is seen that magnetic characteristics such as �M of the F
layers drop out from this expression.

In the limit of long junctions, L/lJ 	 1, the expression for
the current correction can be approximated by

δη = Im

[
1

P�(V,H )

]
= Im

{
�2

V − iγR�V

�2
J

− κ2
H l2

J

[
1 + s

(1 + s)L�V F

]}−1

.

(29)

In accordance to Fig. 3, we obtain for s = 0 a single peak at
normalized voltage Vnorm = κH lJ , while for s �= 0 and κH lJ =
�M/�J , there exist two peaks at

Vnorm = �M

�J

√
(1 + s) ±

√
s(1 + s). (30)

Finally, for the general case s �= 0 and κH lJ �= �M/�J , we
find in leading order of the parameter s, two peaks located at
normalized voltages

V (1)
norm = κH lJ

√
1 + s

x2

1 − x2
, (31a)

V (2)
norm = �M

�J

√
1 + s

1 − 2x2

1 − x2
, (31b)

where x = (�M/�J )/(κH lJ ). These analytical expressions
perfectly describe the peak locations of the current-voltage
characteristics in the limit L/lJ 	 1 as exemplarily shown in
Fig. 3 for junctions with L/lJ = 10.

IV. COUPLED COLLECTIVE MODES

In this section we analyze the spectrum of coupled collec-
tive modes in long Josephson junctions with a ferromagnetic
layer. So far we have derived essentially two (coupled)
equations, Eqs. (13) and (15), that describe respectively
the dynamics of the phase difference ϕ of the S layers
and the magnetization M of the ferromagnetic layers. Here,
we consider again the case when the magnetization M0 is
aligned normal to the interface so that in equilibrium B0 = 0.
Small perturbations near the equilibrium result in precessional
motion of the magnetic moment M and in a variation of the
phase difference ϕ in space and time. In order to find the
spectrum of collective modes in the system, we represent the
phase difference ϕ and the magnetic moment M in the form

ϕ = ϕ0 + ψ, M = M0nz + m⊥, (32)

where nz is the unit vector normal to the SF interface and the
functions ψ and m⊥ are assumed to be small, |ψ | � |ϕ0| and
|m⊥| � |M0|. Linearizing Eq. (13) with respect to ψ , we find
that the function ψ(x,t) obeys the equation

�−2
J

(
∂2ψ

∂t2
+ γR

∂ψ

∂t

)
− l2

J ∇2
⊥ψ + ψ = cd̃F

2̃λLjc

[∇ × m⊥]z.

(33)

The perturbation m⊥ of the magnetic moment is parallel to the
SF interface and is described by the equation

∂m⊥
∂t

= �M

{(
1 + s − l2

M∇2
⊥
)
[nz × m⊥]

− �0

(4π )2βλ̃L

∇⊥ψ

}
+ γM

[
nz × ∂m⊥

∂t

]
, (34)

where we included again the Gilbert damping term, which was
neglected in Eq. (15). Fourier transforming the perturbations
ϕ(r,t) and m⊥(r,t) to (k⊥,ω) representation and combining
Eqs. (33) and (34) into a single equation, we obtain

M
(

ϕ(k⊥,ω)

m⊥(k⊥,ω)

)
= 0, (35)

M =

⎛⎜⎝�−2
J

(
ω2

J − ω2
)

ibky −ibkx

iakx −iω ωM

iaky −ωM −iω

⎞⎟⎠, (36)
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where ω2
J ≡ ω2

J (k,ω)=�2
J (1 + k2l2

J ) − iγRω, ωM ≡ ωM

(k,ω)=�M (1 + s + k2l2
M ) − iγMω, b=sβc/jc, a=s�Ml2

J /

b, and k = |k⊥|.
The homogeneous equation (35) has a nonvanishing so-

lution provided the determinant of M equals zero. Setting
det(M) equal to zero, we obtain the dispersion relation(

ω2 − ω2
J

)(
ω2 − ω2

M

) = sv2
J �MωMk2. (37)

From Eq. (37), we can conclude that the spin and charge
excitations decouple only in the limit when the right-hand side
of this equation can be neglected. In this case, the spin waves
with spectrum ωM (k,ω) and the plasmalike Josephson waves
with spectrum ωJ (k,ω) exist separately. In the general case,
Eq. (37) describes the spectrum of coupled spin waves and
plasmalike modes in the system. The most interesting behavior
corresponds to the case �M > �J . In this situation, the two
branches of the spectrum cross each other in the absence of
the coupling, while a finite coupling leads to mutual repulsion
of these branches.

In order to show this explicitly, we consider the case without
damping, γR = γM = 0, and assume that s � 1 and lM � lJ ,
which means that we neglect the spatial dispersion of spin
waves on the Josephson length (these conditions are usually
fulfilled experimentally). It is convenient to write Eq. (37) in
the dimensionless form

(Z − 1 − q2)(Z − ZM ) = sq2ZM, (38)

where Z = (ω/�J )2, ZM = (�M/�J )2, and q = lJ k. One
can see that for s = 0, the two dispersion curves Z = 1 + q2

and Z = ZM cross each other at q2
0 = ZM − 1. To find the

form of the dispersion curve in the vicinity of the crossing
point q0, we represent Z and q, respectively, as Z = ZM + δZ

and q = q0 + δq. Then, one can easily obtain from Eq. (38)

δZ = q0(δq ±
√

δq2 + sZM ). (39)

In Fig. 4, we plot the spectrum of coupled spin and plasmalike
modes and the function δZ(δq) close to the crossing point.
Here, we take into account a finite value of the parameter
lM/lJ so that Eq. (38) that determines the function Z(q) takes
the form

(Z − 1 − q2)(Z − Z̃M ) = sq2
√

Z̃MZM, (40)

with Z̃M = ZM [1 + s + q2(lM/lJ )2]2. The inset of Fig. 4(a)
indicates that the two branches indeed cross each other for
s = 0, whereas for s �= 0, we find a “repulsion” of the spin
and Josephson excitations. Figure 4(b) displays the function
δZ(δq) that represents the behavior of the spectrum in the
vicinity of the crossing point and distinctly emphasizes the
mutual repulsion. Both the dispersion curves Z(q) and δZ(δq)
given by Eqs. (39) and (40), respectively, are presented for
several values of s and the parameters �M/�J = 2 and
lM/lJ = 0.1.

V. FERROMAGNETIC RESONANCE

In this section, we study the response of the system to
an external oscillating magnetic field Hext(t) = Hν sin(νt)
with a small amplitude Hν � M0 and frequency ν. The
applied field is supposed to be directed along the y axis,
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FIG. 4. (Color online) Spectrum of coupled spin and plasmalike
modes. (a) The function Z(q) = [ω(q)/�J ]2 determined by Eq. (40)
is shown for finite values of s and in the inset, for the case s = 0.
(b) The dependence δZ(δq) that represents the spectrum close to
the crossing point is plotted according to Eq. (39). The following
parameters are chosen: ZM = (�M/�J )2 = 4 and lM/ lJ = 0.1 .

i.e., Hext(t) = Hext(t)ny . We assume again that the equilibrium
magnetization M0 is oriented in the z direction, M = M0nz.
The external magnetic field Hext(t) causes precessional motion
of the magnetization vector M and a variation of the phase
difference ϕ in space and time. As before (see Sec. III),
we, respectively, represent magnetization and phase difference
in the form M(x,t) = M0nz + my(x,t)ny and ϕ(x,t) = ϕ0 +
ψ(x,t). Here, ϕ0 is a constant determined by a bias current jb =
jc sin(ϕ0) and ψ(x,t),my(x,t) are small perturbations due
to the external ac magnetic field Hext(t) = Hν Im[exp(iνt)],
|ψ | � |ϕ0|, |my | � |M0|. Due to the coupling of M and ϕ,
we expect modifications of the ferromagnetic resonance in the
system appearing as additional features in absorption spectra.

Thus, to study ferromagnetic resonance, we need to
calculate the power P (per unit area) absorbed in the system.
The absorbed power P can be found as the time-averaged
difference between the energy flux Sin,out coming in and out
of the system. These fluxes are expressed in terms of Poynting
vectors S43

P =
∫

dzdy nx · 〈Sin − Sout〉 , (41)

where Sin,out = (c/4π )[E × H]x=±L and the angular brackets
denote averaging with respect to time t . The electric field
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E = nzE is directed along the z axis and is related to the time
derivative of the phase difference via the Josephson relation

E = −(1/d)(h̄/2e)∂ψ/∂t. (42)

Therefore, in order to find the Poynting vector S, we have
to calculate the function ψ(t), which is determined by
an applied weak ac magnetic field Hext(t). This vector S
differs from zero only in the insulating layer of thickness
d. The magnetic field consists only of the applied ac
field, H(x = ±L) = Hext(t)ny and, therefore, the Poynting
vectors are directed parallel to the x axis. We represent the
phase difference in form of the Fourier transform ψ(x,t) =∫

dω/(2π ) exp(iωt)ψ(x,ω), ψ(x, − ω) = ψ∗(x,ω). The
function ψ(x,ω) obeys an equation that is derived in a way
similar to the derivation of Eqs. (18)–(22) and has the form

∂2

∂x2
n

ψ(xn,ω) − κ2
ωψ(xn,ω) = 0, (43)

where we have introduced the dimensionless variable xn =
x/lJ and have set

κ2
ω = LωJ

1 + s/[(1 + s)LωF ]
≡ LωJ

aω

(44)

with LωJ ≡ cos(ϕ0)−ω(ω−iγR)/�2
J , aω = 1+ s/[(1+ s)LωF ],

and LωF is defined in Eq. (17). Equation (44) is supplemented
by the boundary conditions

aω

∂

∂xn

ψ(x,ω)

∣∣∣∣
x=±L

= −Hext(ω)

H0
and H0 = �0

4πλ̃LlJ
(45)

that can be obtained from Eqs. (9) and (10). As a consequence,
the solution for Eq. (43) has the form

ψ(±L,ω) = ∓Hext(ω)Ln

H0

tanh(θω)

aωθω

, (46)

where θω = κωLn ≡ θ ′
ω + iθ ′′

ω and Ln = L/lJ . Fourier trans-
forming Eq. (46) back into the time representation, we obtain

ψ(±L,t) = ∓HνLn

H0
Re

[
eiνt

aνθν

tanh(θν)

]
. (47)

Taking into account that all the quantities do not depend on y,
the absorbed power P can be represented as

P = 2Ly

h̄c

4πe

〈
∂ψ(L,t)

∂t
Hext(t)

〉
, (48)

where Ly is the length of the junction along the y direction.
Substituting Eq. (47) into Eq. (48) and relabeling the external
field frequency ν → ω, we finally arrive at

P = �0H0

(2π )2

(
Hω

H0

)2
LxLy

lJ
ω Im

[
tanh (θω)

aωθω

]
, (49)
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FIG. 5. (Color online) Frequency dependence of the normalized absorbed power Pn in the JJ as a function of the normalized frequency
ω/�J for different values of the parameter s and for different damping coefficients γR/�J and γM/�J . The figures (a) and (b) are shown for
the parameters Ln = 3, γM/�J = 0.1, and (�M/�J )2 = 5 and, respectively, (a) γR/�J = 0.1 and (b) γR/�J = 1. With regard to (c) and (d),
we have chosen Ln = 1,(�M/�J )2 = 5 and in (c) γM/�J = 0.1.
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FIG. 6. (Color online) Frequency dependence of the normalized absorbed power Pn as a function of the normalized frequency ω/�J for
really short junctions. Here, too, the figures are displayed for different values of the parameter s and for the choice γR/�J = 1, γM/�J =
0.1, and (�M/�J )2 = 5. In figure (a), Ln = 0.2, whereas in figure (b), Ln = 0.6.

where Lx ≡ L. This formula differs drastically from a standard
formula for the absorbed power P in ferromagnetic films
because it describes the power absorption not only in the F film,
but also in the Josephson junction. In particular, P �= 0 even
in the absence of the ferromagnetic layer. In this case, Eq. (49)
describes the power needed to excite standing plasma waves.

In Fig. 5, we plot the frequency dependence of the normal-
ized absorbed power Pn = (ω/�J )Im[tanh(θω)/(aωθω)] as a
function of normalized frequency ω/�J at different s and
normalized junction length L/lJ . Generally speaking, from
Fig. 5(a), we see that at s = 0 (no ferromagnetic layer), there
are periodic resonances related to excitation of standing waves
in the Josephson junction (Josephson plasma resonances).
Interestingly, in the presence of the ferromagnetic layers,
s �= 0, additional peaks appear on the curves. These peaks
are caused by the ferromagnetic resonance in the F layer at
frequencies ω ≈ �M . With increasing s the influence of the F
layer becomes more and more pronounced. One can see this
from the fact that, for instance, the spectrum close to ω ≈ �M

appears to have a more complicated structure and the peaks
increase in height.

To indicate the influence of the (normalized) damping
parameters γR and γM , we display in Fig. 5(b) the normalized
absorbed power Pn for the case γR 	 γM . This shows that the
periodic resonances in the junction are strongly suppressed and
the absorption spectrum is dominated by the effect of the ferro-
magnetic layer. In addition to that, the normalized length of the
junction Ln = Lx/lJ also determines the absorption spectrum.
In Figs. 5(c) and 5(d), Pn is shown for the case Ln = 1
and here, too, for different values of the parameters s, γR,

and γM . We find that the distance between periodic resonances
is larger for short junctions and compared to Fig. 5(a), where
Ln = 3, the influence of the F layer on the absorption spectrum
is weaker. The blue curve in Fig. 5(c) reveals that the periodic
resonances can be almost completely suppressed by increasing
the damping parameter γR . Eventually, Fig. 5(d) indicates that
in systems where both damping parameters γR and γM are
large and of the same order of magnitude, the effect of the
ferromagnetic layer becomes negligible.

In Fig. 6, we show the frequency dependence of the
absorbed power Pn for short junctions of length Ln = 0.2

[see Fig. 6(a)] and Ln = 0.6 [see Fig. 6(b)]. In Fig. 6(a), the
peak at ω/�J ≈ 2.3 is related to the ferromagnetic resonance
in the F film. In contrast to this, slightly longer junctions
feature a much stronger influence of the ferromagnetic layer
as becomes apparent from Fig. 6(b). More importantly, we
find that the relative magnitudes of peaks due to the Josephson
plasma resonances and the ferromagnetic resonance are even
in the case of γR 	 γM of the same order of magnitude
for short junctions contrary to Fig. 5(b), Ln = 3, where the
Josephson plasma resonances are considerably smaller for the
same choice of parameters.

Note that our analysis is valid for not too high frequencies
as it is assumed that the penetration depth is not frequency
dependent. This means that the inequality ω � �J lJ /λL =
vJ /λL should be fulfilled. For this reason, Figs. 6(a) and
6(b) indicate only a small number of Josephson plasma
resonances.

VI. DISCUSSION

We studied dynamic properties of Josephson junctions with
a magnetically active layer characterized by the magnetic
susceptibility χ (ω,k). These junctions may be of the SFIFS
or SIFS type with conducting or insulating ferromagnets. In
the former case, we assumed that both vectors M1 and M2

characterizing the stationary orientation of magnetization in
the F layers were aligned along the z direction, and our results
are applicable only in this situation.

We calculated the form of the CVC for SFIFS junctions in
the presence of a weak magnetic field and found a modification
of Fiske steps due to the presence of the ferromagnetic layer.
The position of these steps depends on the relation between
different parameters, especially between κH lJ and �M/�J .

We have also analyzed the spectrum of the collective
coupled modes in long JJs with a ferromagnetic layer. If
the frequency of the ferromagnetic resonance �M is higher
than the characteristic Josephson frequency �J , then coupled
magnetoplasma modes (spin waves and Josephson plasmalike
modes) occur in the region of crossing terms.

The analysis of the ferromagnetic resonance in the F layer
incorporated in JJs of the SFS or SFIFS types shows that the
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peaks in the frequency dependence of the absorbed power
P (ω) correspond both to the ferromagnetic resonance in the F
film and to the Josephson plasma resonances in the tunnel JJ.

It is not easy to compare our results with available
experimental data. The dynamic properties of ferromagnetic
layers play a crucial role in determining the form of the CVC
(Fiske steps). Meanwhile, little is known about these properties
in experiments. It would be useful to study experimentally
magnetic resonance in the F layers at temperatures above the
critical temperature of the superconducting transition Tc. The
frequencies of the Josephson oscillations �J and magnetic
resonance �M should not be very different. In addition, we
assumed that the easy-axis magnetization is perpendicular
to the SF interface. There are no data about magnetization
orientation in junctions studied experimentally.

As to magnetic resonance, we are only aware of Refs. 32,55,
and 56 where ferromagnetic resonance was measured on
SF structures. However, the authors of Ref. 32 measured
the CVC of a SFS junction with a strong damping, but
not the absorbed power. In Ref. 55 and 56 , the absorbed
power was measured, however not in SIFS junctions, but
in SF bilayers. Thus further experiments are needed to
study the interplay between magnetic and Josephson oscil-
lations in tunnel Josephson junctions with a ferromagnetic
layer.
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