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Neutron inelastic scattering peak by dissipationless mechanism in the s++-wave
state in iron-based superconductors

Seiichiro Onari1 and Hiroshi Kontani2
1Department of Applied Physics, Nagoya University and JST, TRIP, Furo-cho, Nagoya 464-8602, Japan

2Department of Physics, Nagoya University and JST, TRIP, Furo-cho, Nagoya 464-8602, Japan
(Received 6 June 2011; revised manuscript received 25 August 2011; published 24 October 2011)

We investigate the neutron scattering spectrum in iron pnictides based on the random-phase approximation in
the five-orbital model with a realistic superconducting (SC) gap, � = 5 meV. In the normal state, the neutron
spectrum is suppressed by large inelastic quasiparticle (QP) scattering rate γ ∗ ∼ �. In the fully-gapped s-wave
state without sign reversal (s++), a hump-shaped enhancement appears in the neutron spectrum just above 2�,
since the inelastic QP scattering is prohibited by the SC gap. That is, the hump structure is produced by the
dissipationless QPs for QP energy Ek < 3�. The obtained result is more consistent with experimental spectra,
compared to the results of our previous paper with � = 50 meV. On the other hand, both height and weight of
the resonance peak in the fully-gapped s-wave states with sign reversal (s±) are much larger than those observed
in experiments. We conclude that the experimentally observed broad spectral peak in iron pnictides is created by
the present “dissipationless mechanism” in the s++-wave state.
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I. INTRODUCTION

Since the discovery of superconductivity in iron pnictides
with high transition temperature (Tc),1 substantial experimen-
tal and theoretical works have been performed to clarify the
mechanism of superconductivity. The superconducting (SC)
gap in many iron pnictides is fully gapped and band dependent,
as shown by the penetration depth measurement2 and the
angle-resolved photoemission spectroscopy (ARPES).3,4 The
fully gapped state is also supported by the rapid suppression
in 1/T1 (∝ T n, n ∼ 4–6) below Tc.5–7 On the other hand,
p-doped Ba1228 and LaFePO9,10 show the nodal line behavior
(T -linear dependence) in penetration depth measurements. In
these compounds, A1g symmetry pairing states with accidental
nodes are expected theoretically.11,12

In iron pnictides, the intraorbital nesting of the Fermi sur-
face (FS) between the hole- and electron-pockets is expected
to induce the antiferromagnetic (AF) fluctuations. Taking this
fact into account, the fully gapped sign-reversing s-wave
state (s±-wave state) mediated by the AF fluctuation had
been predicted.13,14 On the other hand, we have demonstrated
that the orbital fluctuation mediated a fully gapped s-wave
state without sign reversal (s++-wave state), which is realized
by the interorbital nesting, by taking the electron-phonon
interaction into account.15,16 In the latter scenario, the close
relation between Tc and the crystal structure revealed by
Lee,17 e.g., Tc becomes the highest when the As4 cluster is
regular tetrahedron, is automatically explained.16 Moreover,
the latter scenario is consistent with the large SC gap on the
z2-orbital band in Ba122 systems,16 observed by bulk-sensitive
laser ARPES measurement.18 In addition, the orthorhombic
structure transition and the corresponding shear modulus
softening is well explained theoretically.19 In newly discovered
KxFe2Se2 with Tc ∼ 30 K, in which only electron pockets
exist, orbital-fluctuation-mediated fully-gapped s++-wave20

or spin-fluctuation-mediated nodal dx2−y2 -wave states20,21 had
been predicted theoretically.

Thus it is important to clarify the sign of the SC gap
via phase-sensitive experiments. Nonmagnetic impurity effect

offers us useful phase-sensitive information. In iron pnic-
tides, the SC state survives against high substitution of Fe
sites by other elements (more than 10%).22–25 These results
support the s++-wave state, since the s±-wave state is very
fragile against impurities, similar to other unconventional
superconductors.26,27 Moreover, impurity driven crossover
from s±-wave to s++-wave states had been discussed in
Refs. 12 and 21.

Another promising method is the neutron scattering mea-
surement; as discussed by Monthoux and Scalapino in Ref. 28,
existence of the resonance peak at a nesting wave vector Q is a
strong evidence for AF fluctuation mediated superconductors
with sign reversal.28–31 The resonance occurs under the
condition ωres < 2�, where ωres is the resonance energy and �
is the magnitude of the SC gap. The sharp and large resonance
peak has been observed in many AF fluctuation mediated
unconventional superconductors, like high-Tc cuprates,32–34

CeCoIn5,35 and UPd2Al3.36 The measurements of phonon
spectral function for |ω| � 2� would also be useful.37

Neutron scattering measurements for iron pnictides had
been performed38–43 after the theoretical predictions.44,45 Al-
though clear peak structures were observed in FeSe0.4Te0.6,39

BaFe2−xCoxAs2,40,42 and Ca-Fe-Pt-As,43 these weights are
much smaller than those in high-Tc cuprates and CeCoIn5.
Moreover, the resonance condition ωres < 2� is not surely
confirmed, since it is difficult to determine the value of �

accurately. For example, in BaFe1.85Co0.15As2, ωres is observed
as 10 meV in neutron scattering measurements.40 In this
material, 2� = �h + �e, where �h(e) denotes the magnitude
of gap on the hole (electron) pocket. It was estimated as 11 meV
according to an earlier ARPES measurement.46 However,
�h + �e was estimated as 7 meV by a recent measurement of
the specific heat.47 We also obtain �h + �e = 7 meV from a
recent penetration depth measurement in Ref. 48, by the linear
interpolation for x = 0.14 and 0.17.

In our previous paper,49 we revealed that for � = 50 meV, a
prominent hump structure free from the resonance mechanism
appears in neutron scattering spectrum just above 2� in
the s++-wave state. The hump structure originates from the
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dissipationless quasiparticles (QPs) free from the inelastic
scattering in the SC state. Although the broad spectral peak
observed in iron pnictides was naturally reproduced based on
the s++-wave state, rather than the s±-wave state, the used
model parameters were not realistic.

In this paper, we investigate the dynamical spin suscepti-
bility χs(ω, Q) based on the five-orbital model13 for both s++-
and s±-wave states, by improving the method of numerical
calculation. Using a realistic parameter � = 5 meV, the
obtained results are more realistic than our previous results
for � = 50 meV.49 In the normal state, χs(ω, Q) is strongly
suppressed by the inelastic QP damping γ ∗, which is large due
to the strong correlation. However, this suppression is released
in the SC state since the inelastic damping γ ∗ disappears
for |ω| � 3�. This “dissipationless mechanism” induces a
hump-shaped enhancement in χs(ω, Q) in the s++-wave state,
just above 2� till ∼3�. In the s±-wave state, a very high and
sharp resonance peak appears at ωres < 2� even in the case
of � = 5 meV. We demonstrate that the broad spectral peak
observed in iron pnictides is naturally reproduced based on the
s++-wave state, rather than the s±-wave state.

In Sec. III C, we comment that Nagai et al.50 fail to repro-
duce the spectral gap in the two-particle Green function 2�

and therefore their predictions are unreliable. In Appendix, we
introduce the similar hump structure of the neutron scattering
spectrum in CeNiSn, much below the Kondo temperature
TK. This compound is called Kondo semiconductor, since
the hybridization gap � opens much below TK, while it
is an incoherent metal with large inelastic scattering above
TK. This is another example of the hump structure by the
“dissipationless mechanism,” since the inelastic scattering is
prohibited by the singlet gap �.

We note that numerical results are improved from results
in the first version of preprint,51 in which the value of γ ∗(ε)
for 3� < ε < 4� was incorrect in our previous numerical
calculation.

II. FORMULATION

A. Method of calculation

Now, we study the 10 × 10 Nambu BCS Hamiltonian Ĥk

composed of the five-orbital tight-binding model and the band-
diagonal SC gap introduced in Ref. 26. Then, the 10 × 10
Green function is given by

Ĝ(iωn,k) ≡
(

Ĝ(iωn,k) F̂ (iωn,k)
F̂ †(iωn,k) −Ĝ(−iωn,k)

)

= (iωn1̂ − �̂k(iωn) − Ĥk)−1, (1)

where ωn = πT (2n + 1) is the fermion Matsubara frequency,
Ĝ (F̂ ) is the 5 × 5 normal (anomalous) Green function, and
�̂k is the self-energy in the d-orbital basis. In this paper, we
assume that the magnitude of the SC gap is band independent:
|�ν | = �.

Here, we have to calculate the spin susceptibility as a
function of real frequency. Numerically, it is rather easy
to use the Matsubara frequency method and the numerical
analytic continuation (Pade approximation).44,45 In the present
study, however, we perform the analytical continuation before
numerical calculation in order to obtain more reliable results.

The irreducible spin susceptibility in the singlet SC state is
given by31

χ̂0R
l1l2,l3l4

(ω,q) = 1

N

∑
k

∫
dx

2

×
[

tanh
x

2T
GR

l1l3
(x+,k+)ρG

l4l2
(x,k)

+ tanh
x+
2T

ρG
l1l3

(x+,k+)GA
l4l2

(x,k)

+ tanh
x

2T
F R

l1l4
(x+,k+)ρF†

l3l2
(x,k)

+ tanh
x+
2T

ρF
l1l4

(x+,k+)F †A
l3l2

(x,k)

]
, (2)

where x+ = x + ω, k+ = k + q, li = 1, . . . ,5 represents the
d orbital, and A(R) represents the advanced (retarded)
Green function. ρG

ll′ (x,k) ≡ [GA
ll′(x,k) − GR

ll′(x,k)]/2πi and
ρ

F(†)
ll′ (x,k) ≡ [F (†)A

ll′ (x,k) − F
(†)R
ll′ (x,k)]/2πi are one-particle

spectral functions. Here, we divide χ̂0R(A) into the “Hermite
part” χ̂0′ and “non-Hermite part” χ̂0′′,

χ̂0R(A) ≡ χ̂0′ + (−)iχ̂0′′

=
[
χ̂0R + χ̂0A

2

]
+ (−)i

[
χ̂0R − χ̂0A

2i

]
. (3)

Then, χ̂0′ and χ̂0′′ are expressed as

χ̂0′
l1l2,l3l4

(ω,q) = π

2N

∑
k

∫
dx

×
[

tanh
x

2T
�G

l1l3
(x+,k+)ρG

l4l2
(x,k)

+ tanh
x+
2T

ρG
l1l3

(x+,k+)�G
l4l2

(x,k)

+ tanh
x

2T
�F

l1l4
(x+,k+)ρF†

l3l2
(x,k)

+ tanh
x+
2T

ρF
l1l4

(x+,k+)�F†
l3l2

(x,k)

]
, (4)

χ̂0′′
l1l2,l3l4

(ω,q) = π

2N

∑
k

∫
dx

×
[

tanh
x+
2T

− tanh
x

2T

]

× [
ρG

l1l3
(x+,k+)ρG

l4l2
(x,k)

+ ρF
l1l4

(x+,k+)ρF†
l3l2

(x,k)
]
, (5)

where we denote �G
ll′(x,k) ≡ [GA

ll′ (x,k) + GR
ll′ (x,k)]/2π and

�
F(†)
ll′ (x,k) ≡ [F (†)A

ll′ (x,k) + F
(†)R
ll′ (x,k)]/2π .

We explain that the non-Hermite part satisfies the relation
χ̂0′′(ω,q) = 0 for |ω| < 2� at T = 0. Now, we assume
ω > 0. ρ

G,F
ll′ (x,k) = 0 is given for |x| < �, since the SC

gap opens. Then, in order to satisfy both ρ
G,F
ll′ (x,k) �= 0

and ρ
G,F
ll′ (x+,k+) �= 0, inequalities |x+| > � and |x| > �

are required. Moreover, [tanh x+
2T

− tanh x
2T

] �= 0 only when
x+ x < 0. In order to obtain a finite value of χ̂0′′(ω,q) in
Eq. (5), all three inequalities must be satisfied for some x.
Considering the third inequality, the first two inequalities are
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restricted to

x+ > �, (6)

x < −�. (7)

They are satisfied for some x only when ω > 2�. There-
fore χ̂0′′(ω,q) �= 0 for |ω| > 2�, while χ̂0′′(ω,q) = 0 for
|ω| < 2�.

In the present numerical study, we calculate exactly χ̂0′′
using Eq. (5), and calculate approximately χ̂0′ using the
Hermite part of Eq. (6) in Ref. 49. Using this method,
we can calculate accurately the imaginary part of the spin
susceptibility as we will discuss later.

Then, the spin susceptibility χs(ω,q) is given by the
multiorbital random-phase approximation (RPA) with the
intraorbital Coulomb U , interorbital Coulomb U ′, Hund
coupling J , and pair hopping J ′:13

χs(ω,q) =
∑
i,j

[
χ̂0R(ω,q)

1 − Ŝ0χ̂0R(ω,q)

]
ii,jj

, (8)

where vertex of spin channel Ŝ0
l1l2,l3l4

= U , U ′, J , and J ′
for l1 = l2 = l3 = l4, l1 = l3 �= l2 = l4, l1 = l2 �= l3 = l4, and
l1 = l4 �= l2 = l3, respectively. Hereafter, we put J = J ′ =
0.15 eV, U ′ = U − 2J , and fix the electron number as 6.1
(10% electron-doped case). In the present model, χs(0,q) takes
the maximum value when q is the nesting vector Q = (π,π/8).
Due to the nesting, χs(0, Q)/χ0(0, Q) ≈ 1/(1 − αSt) is en-
hanced; αSt (�1) is the maximum eigenvalue of Ŝ0χ̂0R(0, Q),
which is called the Stoner factor.

In the following, we prove that the non-Hermite part of
spin susceptibility Imχs(ω,q) ≡ [χsR(ω,q) − χsA(ω,q)]/2i

is zero for |ω| < 2� at T = 0, except at the resonance energy
ωres for the s±-wave state; the spin susceptibility is expressed as
χsR(A)(ω,q) = ∑

l,m[χ̂ sR(A)]ll,mm, where χ̂ sR(A) ≡ χ̂0R(A)[1 −
Ŝ0χ̂0R(A)]−1. As explained, χ̂0′′ = 0 is satisfied for ω < 2�.
Then, we obtain χ̂ sR = χ̂ sA = χ̂0′[1 − Ŝ0χ̂0′]−1. As a result,
χ̂ sR − χ̂ sA = 0 for ω < 2� except when det[1 − Ŝ0χ̂0′] = 0,
which is satisfied at ω = ωres in the s±-wave state. Thus, if we
perform the numerical calculation of Eqs. (3)–(8) accurately,
Imχs(ω, Q) = 0 should be satisfied for ω < 2�.

B. Inelastic QP damping rate γ ∗

In strongly correlated systems, χs(ω,q) is renormalized by
the self-energy correction. We phenomenologically introduce
a band-diagonal self-energy as z Im�̂R

k (ε) = iγ ∗(ε)1̂, where
z ≡ m/m∗ is the renormalization factor. First, we estimate
the QP damping in the normal state from the experimentally
observed conductivity. From the Nakano-Kubo formula, the
conductivity is given by s = e2 ∑

ν Nν(0)v2
ν/2γ (0), where

γ (0) ≡ γ ∗(0)/z is the “unrenormalized” damping at zero
energy, and Nν(0) and vν are the density of states (DOS) and
the Fermi velocity of the νth FS, respectively. Using the five-
orbital model, we obtain ρ ≈ [2.0γ (0)(meV)] μ
cm for the
interlayer spacing c = 6 Å and ρ ≈ [2.8γ (0)(meV)] μ
cm
for c = 8 Å.26,27 In Table I, we show the T dependence of ρ

estimated by fitting the experimental data below ∼100 K,52–54

and the inelastic damping γ (0) is derived from the theoretical
relation between ρ and γ . For example, in BaFe1.85Co0.15As2

(c ≈ 6 Å), the unrenormalized inelastic damping γ (0) is
estimated as 3.7T , which is comparable to that in overdoped
cuprates.

Then, we derive the (ε, T ) dependencies of the “renormal-
ized” inelastic scattering; in the presence of the strong spin
and orbital fluctuations, the damping follows the approximate
relation γ ∗(ε) ≈ b(T + |ε|/π ) according to spin (orbital)
fluctuation theories.12,55 According to Table I, we obtain
b ∼ 1.9 in BaFe1.85Co0.15As2 if we assume z ∼ 0.5. In the
present study, we use a larger value b = 2.5. Note that the
result is not so sensitive to the value of b.

In the present numerical study, we assume more simple
ε-dependence of γ ∗(ε) to simplify the analysis, justified in
calculating Imχs for 0 � |ω| � 4�. In the normal state, we
put

γ ∗(ε) = γ ∗
0 . (9)

In the SC state at T 	 Tc, γ ∗(ε) = 0 for |ε| < 3� [which
is a particle-hole excitation gap (2�) plus a single-particle
excitation gap (�)], while its functional form approaches to
that of the normal state for |ε| � 3�. Taking these facts into
account, we put

γ ∗(ε) = a(ε)γ ∗
s , (10)

where (i) a(ε) 	 1 for |ε| < 3�, (ii) a(ε) = 1 for |ε| > 4�,
and (iii) a linear extrapolation is used for 3� < |ε| < 4�;
see Fig. 1. We have confirmed that the obtained results are
insensitive to the boundary of |ε| (4� in the present case)
between (ii) and (iii). Since γ ∗(ε) increases with T , γ ∗

s at
T 	 Tc should be smaller than γ ∗

0 . Here, we derive the values
of γ ∗

s and γ ∗
0 from the relations γ ∗(ε) ∼ 2.5(T + |ε|/π ), by

putting ε = 3� = 15 meV, since we are interested in the hump
structure around ω ∼ 3�. Therefore, we put γ ∗

0 = γ ∗(3�) =
20 meV at T = 3 meV in the normal state. Similarly, we
put γ ∗

s = γ ∗(3�) = 10 meV at T = 0 in the superconducting
state. In the s++(±)-wave state, we put � = 5 meV for the two
hole pockets and � = (−)5 meV for electron pockets. In the
numerical calculation, we use 3072 × 3072 k mesh points and
a(ε)γ ∗

s = 0.5 meV (= 0.1�) for |ε| < 3�.

TABLE I. ρ(T ) − ρ(0) and “unrenormalized” inelastic damping at zero energy γ (0) [= γ ∗(0)/z] estimated by fitting the experimental data
below ∼100 K.52–54 The unit of T is meV.

Ba1−xKxFe2As2 (Tc = 37 K)52 BaFe1.85Co0.15As2 (Tc = 25 K)53 LaFeAsO0.89F0.11 (Tc = 28 K)54

ρ(T ) − ρ(0) (μ
 cm) ∼23T ∼7.3T ∼4.6T 2

γ (0) (meV) at T ∼12T ∼3.7T ∼1.6T 2

γ (0) (meV) at Tc ∼37 ∼7.9 ∼9.3
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S++ -wave
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FIG. 1. (Color online) (a) Schematic inelastic scattering process
in the SC state by creating a particle-hole excitation 2�. The
realization condition is Ek � 3�. (b) Energy dependence of the DOS,
γ ∗(ω), and Imχs(ω) in the s++-wave state.

C. Hump structure in Imχ s due to dissipationless
QPs (Ek < 3�)

Here, we explain an intuitive reason why the QP is
“dissipationless” for |ω| < 3� at zero temperatures.30 In
Fig. 1(a), we show an inelastic scattering process, in which
a QP at k is scattered to k − q by exciting a particle-hole
(p-h) pair (k′ + q, k′). Since a QP in the SC state cannot exist
in the thin shell |ω| < �, the particle-hole excitation energy
Ep-h is always larger than 2�. Since the energy of the final
state, Ek−q , is also larger than �, the inelastic scattering is
prohibited when Ek � 3�. Thus, the relationship γ ∗(ω) = 0
for |ω| < 3� is obtained. Form this relation, the peak of the
DOS at ω = � for the isotropic SC gap remains to be sharp.

Then, the dissipationless QPs in the SC state produce the
hump-shaped enhancement in the spin spectrum. In the normal
state, Imχs has no gap structure, and it is suppressed by the
inelastic QP damping γ ∗ induced by the strong correlation.
In the SC state as illustrated in Fig. 1(b), Imχs has the p-h
excitation gap 2�. Since the QP is dissipationless for |ω| <

3� in the SC state, the suppression in Imχs(ω) is released
just above the excitation gap ω � 2� so as to form a hump
structure. For this reason, a prominent hump structure appears
in Imχs(ω, Q) just above 2� up to ∼ 3� in strongly correlated
s++-wave superconductors.

III. NUMERICAL RESULT

A. Spin susceptibility at the nesting vector Q = (π,π/8)

Figure 2 shows the obtained Imχs(ω, Q) at the nesting
vector between the hole and electron pockets Q = (π,π/8).
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|Δ|=5meV

Im
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S+− -wave with cutoffU=1.33eV

Normal γ0*=15meV
Normal γ0*=20meV

FIG. 2. (Color online) (a) ω-dependence of Imχs(ω, Q) at Q =
(π,π/8) for U = 1.32 eV in the s++-wave state (� = 5 meV), as well
as in the normal state with γ ∗

0 = 15, 20 meV. The hump structure
is enhanced by considering the high-energy dependence of the SC
gap, by introducing the cutoff energy �E = 20 meV, (b) those in
the s±-wave state (|�| = 5 meV), (c) those for U = 1.33 eV in the
s++-wave state, and (d) those in the s±-wave state.

We fix T = 1 meV hereafter, since the obtained results
are insensitive to the temperature for T � 3 meV. In the
normal state with γ ∗

0 = 20(15) meV, the Stoner factor is
αSt = 0.950(0.959) for U = 1.32 eV. In the SC states with
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γ ∗
s = 10 meV, αSt = 0.956 (0.982) in the s++-wave (s±-wave)

state for U = 1.32 eV. In the s±-wave state, αSt increases
due to the coherence factor. Inversely, αSt in the s++-wave
state decreases due to absence of coherence factor. As shown
in Fig. 2, in the normal state with γ ∗

0 = 20 meV, the peak
position of Imχs is about 20–25 meV, which is consistent
with experimental result in BaFe1.85Co0.15As2.40 Thus the
value of Imχs in the normal state with γ ∗

0 = 15 meV is
overestimated.

A broad hump structure appears in the s++-wave state at
ω � 2� even in the case of � = 5 meV, and its overall shape
is consistent with experimental results.39,40 We had neglected
the energy dependence of � in the previous study.49 However,
in reality, the SC gap � will be cut off when the energy of
the νth band εν

k measured from the Fermi energy exceeds
the characteristic energy scale of the pairing interaction. To
take this fact into account, we introduce a Gaussian cutoff
�ν

k = �ν exp[−(εν
k/�E)2] following Refs. 56 and 50. We

put �E = 20 meV, which corresponds to the Fe ion optical-
phonon frequency ωD ∼ 20 meV employed in the orbital
fluctuation theory.12,15

When the cutoff is applied in the s++-wave state, the hump
structure becomes more prominent as shown in Fig. 2(a).
We confirm that the obvious hump appears over the normal
state even with γ ∗

0 = 15 meV. The enhancement of hump
structure originates from the increment of the Stoner factor
by introducing the cutoff, from αSt = 0.956 to 0.965 for
U = 1.32 eV.

On the other hand, in the s±-wave state, a very high and
sharp resonance peak appears at ωres < 2� even in the case of
|�| = 5 meV as shown in Fig. 2(b). This result is apparently
inconsistent with experimental results. In order to explain the
experimental result by the s±-wave state, large inhomogeneity
would be required, although the s±-wave state is fragile
against inhomogeneity. The height of the resonance peak
exceeds 100 eV−1 for a(0)γ ∗

s = 0.5 meV, while it diverges
for a(0) → 0 if k meshes are fine enough. Imχs is slightly
suppressed by considering the cutoff, �E = 20 meV.

We also study the spectra for both s++- and s±-wave states
with cutoff for U = 1.33 eV. In Figs. 2(c) and 2(d), we show the
results for the normal state with γ ∗

0 = 15 meV (αSt = 0.965)
and γ ∗

0 = 20 meV (αSt = 0.956). We also show results for the
s++-wave state with γ ∗

s = 10 meV (αSt = 0.971), and s±-wave
state with γ ∗

s = 10 meV (αSt = 0.984).
We note that the effect of multiband on Imχs , which

was discussed in Ref. 40, is automatically included in our
calculation. By increasing U from 1.32 to 1.33 eV, the hump
structure in the s++-wave state is more enhanced. Also, the
resonance peak in the s±-wave state develops, and ωres shifts
to a lower energy.

In Fig. 3, we confirm that the hump in the s++-wave with
� = 5 meV state is enhanced as the value of U increases. Thus
the hump becomes prominent as the system comes close to the
AF order.

In this paper, we have calculated χs introduced in Eq. (8). To
obtain the value of spin susceptibility χneu observed in neutron
measurements, we have to take the spin magnetic moment
(1 μB) and the factor of spin degeneracy. Its z component is
χneu

z = 2χs(μ2
BeV−1) and the transverse spin susceptibility is

χneu
± = 4χs(μ2

BeV−1).
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FIG. 3. (Color online) ω dependence of Imχs(ω, Q) at Q =
(π,π/8) for U = 1.3, 1.32, and 1.33 eV in the s++-wave state with
� = 5 meV, and the cutoff energy �E = 20 meV as well as normal
states with γ ∗

0 = 20 meV for each value of U .

B. Comparison with our previous method

In the s++-wave state, Imχs(ω, Q) = 0 for |ω| < 2� at
T = 0 as we discussed in Sec. II. This relation is correctly
satisfied in the present method if we put a(0) → 0 in Eq. (10).
In the present method, we perform the numerical calculation
of χ̂0′′ using Eq. (5) exactly. In fact, in Figs. 4(a) and
4(b), we verify that the spectral gap of Imχs(ω, Q) is well
reproduced in the present method with a(0)γ ∗

s = 0.5 meV,
demonstrating the superiority of the present method to the

S++ -wave

ω [meV]

Δ=5meV

Present method
Previous method

U=1.32eV

Im
χs

(Q
,ω

) 
[e

V
−1

]
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FIG. 4. (Color online) Imχs(ω, Q) at Q = (π,π/8) for U =
1.32 eV (a) and U = 1.33 eV (b) in the s++-wave state (� =
5 meV). We show the comparison between the present improved
method and the previous method in Ref. 49 with the cutoff
(�E = 20 meV).
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previous method in Ref. 49. In the case of s±-wave state,
we obtain Imχs(ω, Q) ∝ δ(ω − ωres) for |ω| < 2� if the
numerical calculation is performed accurately.

In the present paper, we calculate χ̂0′′ in Eq. (5) exactly,
while χ̂0′ is calculated approximately using Eqs. (6) and (7)
in Ref. 49. We consider this is justified since we had verified
that the present “approximated RPA” is reliable in our previous
paper.49 In Fig. 1(b) of Ref. 49, we had performed the “exact
RPA calculation” for both χ̂0′ and χ̂0′′ with � = 400 meV,
and confirmed that overall behavior of Imχs(ω, Q) is well
reproduced by the present approximated RPA.

Here, we comment on the q dependence of Imχs(ω,q)
around q = Q. In our two-dimensional model,13 it is difficult
to discuss the q dependence of Imχs(ω,q) because the q
dependence of Imχs(ω,q) is drastic even in the normal state,
which is inconsistent with the neutron scattering measure-
ments.

C. Comparison with Nagai et al.

Recently, Nagai et al.50 had calculated the neutron scat-
tering spectrum using the method proposed in Ref. 49, and
claimed that (i) a hump structure in the s++-wave state is
smeared when γ ∗ ∼ 10 meV and � ∼ 5 meV compared to
the case of � > 25 meV, and (ii) the resonance peak in the
s±-wave state becomes very low and broad. Moreover, they
had also claimed that (iii) one can distinguish between the
s++- and the s+−-wave states from the spectrum at q = (π,π ).

First, we explain that (i) and (ii) are incorrect statements
based on their inaccurate numerical calculation. First, their
result fails to reproduce the spectral gap of Imχs for ω < 2�

as shown in Fig. 5(a). (One can prove rigorously that Imχs = 0
for ω < 2� at T = 0.) Second, the peak position of the result
of Nagai et al.50 is about 2�, while it must be of higher energy
(∼3�). In the s±-wave state, the resonance peak should be
a δ functional structure when a(0) in Eq. (10) is sufficiently
smaller than �. Thus the low and broad resonance peak of

Nagai et al.50 is far from the exact behavior of the resonance
peak. In Nagai’s results, fine structures in Imχs(ω,q) seem
to be inappropriately smeared in both s++- and s±-wave
states.

Next, we comment on the claim (iii). They pointed out
that the spectrum in the s±-wave state with � = 5 meV is
different from that in the s++-wave state with � = 25 meV.
Here, we show the results of both s++- and s±-wave states in
Fig. 5, for (b) |�| = 5 meV and (c) |�| = 25 meV. Since both
spectra are almost identical, we cannot distinguish between the
s++- and s±-wave states by the spectrum at the wave vector
q = (π,π ) for the same �. This result is reasonable because
the sign of the SC gap is preserved through the (π,π ) shift
for both the s++- and s±-wave states. Although claim (iii)
is based on their numerical result in which the hump of the
s++-wave state appears only for � � 25 meV, the prominent
hump appears in the s++-wave state with � = 5 meV in our
improved numerical results as shown in Figs. 2(a) and 2(c).
Thus we conclude it is impossible to distinguish between the
s++- and s±-wave states with � = 5 meV.

IV. CONCLUSION

We have studied the dynamical spin susceptibility χs(ω, Q)
in iron-based superconductors for both s++- and s±-wave
states, by developing a more accurate numerical method and
introducing the high-energy dependence of the SC gap.49

In the s++-wave state, the dissipationless QPs for |ω| < 3�

produce a prominent hump-shaped enhancement in χs(ω, Q)
just above 2� up to ∼3�. This “dissipationless mechanism” is
unrelated to the resonance. The peak energy of the hump will
shift to a lower energy if we consider the band dependence
and/or the anisotropy of the SC gap, as we discussed
in Ref. 49.

On the other hand, in the s±-wave state, the very high
and sharp resonance peak appears at ωres < 2�. In order
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FIG. 5. (Color online) (a) Imχs(ω,q) in
the s++-wave state (� = 5 meV) for U =
1.32 and 1.33 eV obtained in the present
study. We also plot the data of Nagai et al.50

for U = 1.375 eV, by multiplying 0.39. All
results are obtained for the cutoff energy
�E = 20 meV. (b) Imχs(ω,q) at q = (π,π )
for U = 1.3 eV in both s++- and s±-wave
states with |�| = 5 meV and γ ∗

s = 10 meV
together with the result in the normal state for
γ ∗

0 = 20 meV. (c) Imχs(ω,q) at q = (π,π )
in both s++- and s±-wave states with |�| =
25 meV and γ ∗

s = 50 meV together with the
result in the normal state for γ ∗

0 = 50 meV.
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to interpret the small and broad peaks observed in Refs. 39
and 40 as the resonance peak in the s±-wave state, sufficient
inhomogeneity or small SC volume fraction would be required.
However, the s±-wave state is fragile against inhomogeneity.
We concluded that the small and broad spectral peak observed
in iron pnictides is naturally reproduced based on the s++-wave
state in the absence of inhomogeneity, rather than the s±-wave
state.

In the Comment on the present paper written by Nagai
and Kuroki,57 the authors repeated their claim “smallness of
the hump in the s++-wave state” based on the “old method”
that was first developed in Ref. 49. In Sec. III, however, we
actually obtained a large hump using the “new method,” which
is mathematically superior to the old method. This discrepancy
originates from the calculation method as well as the numerical
accuracy, not from the details of model parameters, as we
discussed in our Reply on Ref. 58.
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APPENDIX: HUMP STRUCTURE IN THE NEUTRON
INELASTIC SCATTERING FOR A KONDO

SEMICONDUCTOR CeNiSn

In this paper, we have studied the neutron inelastic
scattering spectrum in iron pnictide superconductors. In the
s++-wave SC state, we confirmed that a large hump structure
appears just above 2� due to the reduction in the inelastic
QP scattering γ ∗, which is the most important finding in this
paper.

Then, a natural question is whether such a hump-shaped
enhancement by the “dissipationless mechanism” is universal
or not. To answer this question, we discuss the Kondo
semiconductor CeNiSn. Figure 6(a) shows the neutron in-
elastic scattering spectrum in CeNiSn at q = (0,π,0) at low
temperatures.59 The observed large and broad hump structure
in CeNiSn59,60 is very similar to that in iron pnictides.
CeNiSn is an incoherent metal with large inelastic scattering
above the Kondo temperature TK ∼ 30 K, while it becomes
a semiconductor with a c-f hybridization gap in the single-
particle spectrum (�) much below TK.

The effective model for the CeNiSn is described as the
periodic Anderson model (PAM) at half filling.61–63 Neglecting
the f -orbital degeneracy, the PAM is given as

H =
∑
k,σ

εc
kc

†
kσ ckσ + εf

∑
k,σ

f
†
kσ fkσ + U

∑
i

f
†
i↑fi↑f

†
i↓fi↓

+V
∑
k,σ

(f †
kσ ckσ + c

†
kσ fkσ ), (A1)

FIG. 6. (a) ω dependence of S( Q,ω) = Imχs/(1 − e−ω/T ) in
CeNiSn at various temperatures.59 (b) Single-particle spectrum A(ω)
at T = 1/16 for U = 0 (solid curve), 1(open circles), 2(open squares),
3(open diamonds), 4(solid squares), and 5(solid circles).62 The inset
shows the low-frequency part. (c) Imχs(ω) for U = 4 at different
temperatures.62

where ckσ (c†kσ ) and fkσ (f †
kσ ) are annihilation (creation)

operators for c and f electrons, respectively. V is the
c-f mixing potential and U is the Coulomb interaction
for f electrons. Here, the bandwidth is two. Mutou and
Hirashima studied this model at half filling using the dynamical
mean-field theory (DMFT) and the quantum Monte Carlo
(QMC) method.62 Hereafter, we introduce their numerical
results and discuss the energy-dependence of Imχs(ω).
Readers can find more detailed explanations in the original
paper.62

Figure 6(b) shows the obtained single-particle spectrum
A(ω). For U = 0, the hybridization gap in A(ω) is � = 0.62.
For U = 4, � is renormalized to 0.35 at T = 1/16 (<TK),
while the gap is smeared out by thermal fluctuations above
TK.62 At T = 0, inelastic QP scattering is suppressed by the
hybridization gap, such that γ ∗(ω) = 0 for |ω| < 3�63 in
analogy to Fig. 1(a).

Figure 6(c) shows Imχs(ω) for U = 4. In the metallic
state at T = 1/4 (
 TK), Imχs(ω) shows a gapless metallic
behavior. In the semiconducting state at T = 1/16 (	TK),
in contrast, it shows a spectral gap �s and the relation
�s ≈ 2� ≈ 0.7 is recognized. At the same time, a large
hump structure emerges around ω ∼ 3�. Because of the
absence of spin resonance mechanism, its natural explanation
is the reduction in the inelastic QP scattering [γ ∗(ω) = 0
for |ω| < 3�], as we discussed in Fig. 1(b). We must
stress the hump structure in Fig. 6(c) is obtained exactly
in the DMFT, by including both the self-energy and vertex
corrections. Therefore experimental and theoretical studies
in CeNiSn strongly support the idea of “hump structure in
the s++-wave state” given in Fig. 2(a), which is obtained
by the RPA by introducing the inelastic QP scattering γ ∗(ω)
phenomenologically.
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