
PHYSICAL REVIEW B 84, 144508 (2011)

Majorana states and longitudinal NMR absorption in a 3He-B film
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The topological superfluid 3He-B supports massless Dirac spectrum of surface bound states which can be
described in terms of the self-conjugated Majorana field operators. We discuss here the possible signature of
surface bound states in nuclear magnetic resonance absorption spectrum in a 3He-B film. It is shown that
transitions between different branches of the surface states spectrum lead to the nonzero absorption signal in
longitudinal NMR scheme when the frequency is larger than the Larmour one.
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I. INTRODUCTION

Recently, much attention has been devoted to the investi-
gation of bound fermion states on surfaces and interfaces of
topological superfluid 3He-B. The presence of surface states in
3He-B can be observed through anomalous transverse sound
attenuation,1–4 surface specific heat measurements.5 Gapless
fermion states are supported by the nonzero value of the
topological invariant in 3He-B7 and have two-dimensional
relativistic massless Dirac spectrum.6,8–11 Such massless
fermions can be described in terms of the Majorana self-
conjugated field operators which have been intensively studied
recently in a number of condensed matter systems.12

It has been suggested that NMR technique can be employed
to study the spectrum of surface states.13 The NMR mea-
surements were implemented recently on superfluid 3He films
demonstrating various frequency shifts associated with the
order parameter dynamics both at high-temperature A phase as
well as with two nonequivalent low-temperature B phase states
characterized by the different values of the Ising variable.14,15

In this paper, we focus on the contribution of the surface
bound states to the ac magnetic susceptibility of 3He-B film.
We demonstrate that the transitions between different branches
of surface states spectrum result in dissipation manifested in
the nonzero imaginary part of the χzz component of magnetic
susceptibility, where z is the axis normal to the film surface.
This effect should provide the contribution to the longitudinal
NMR absorption signal absent both in the normal state and the
bulk 3He-B phase. Under the action of the z component of the
magnetic field which destroys the self-conjugating Majorana
states, the magnetic absorption is suppressed at frequencies
smaller than the Larmour one.

II. SPECTRUM OF SURFACE STATES IN 3HE-B FILM

At first we introduce the basic formalism for treating the
spectrum of fermionic quasiparticles. We consider 3He-B film
confined in a slab at z > 0 and homogeneous in the x and
y directions. The 3He-B surface mode is derived from the
quasiclassical BdG Hamiltonian

Ĥ = −ih̄Vzτ̂3∂z + τ̂1�̂ − γ

2
H · σ̂ , (1)

where �̂ = Aijqi σ̂j , and q = k/kF where τ̂i are Pauli matrices
of Bogolyubov-Nambu spin, σ̂α are Pauli matrices of 3He
nuclear spin, and γ is the gyromagnetic ratio of the 3He atom.

The order parameter in 3He-B is 3 × 3 matrix Aij where
the first and second indices correspond to the spin and orbital
variables. The geometrical confinement induced by the walls
destroys the isotropy of the B phase order parameter.16 As a
result, for the distorted 3He-B it has the form

Aij =

⎛
⎜⎝

�‖ 0 0

0 �‖ 0

0 0 �⊥

⎞
⎟⎠ ,

where �⊥ is the gap for quasiparticles propagating in the
direction along the normal to the wall, and �‖ is the gap for
quasiparticles propagating in directions parallel to the wall.

Upon specular reflection from the surface, the quasiparticle
momentum projection qz, and therefore part of the order
parameter, changes the sign which leads to the formation
of surface bound states. To find the spectrum of this state
we employ the usual procedure, considering the two parts of
Hamiltonian Ĥ = Ĥ0 + Ĥ1 so that

Ĥ0 = −ih̄Vzτ̂3∂z + τ̂1F̂ (z) (2)

Ĥ1 = �‖τ̂1(σ̂xqx + σ̂yqy) − γ

2
H · σ̂ , (3)

where F̂ (z) = �⊥(z)σ̂zqz and q = p/pF . The Hamiltonian (2)
has zero energy eigenvalues corresponding to the degenerate
surface bound states. To get into account correction from
the perturbation terms Ĥ1, we find the eigenfunctions as a
superposition

ψ =
2∑

j=1

Xjϕj (z), (4)

where Xj are the arbitrary coefficients, and the generic terms
ϕj (z) are the eigenfunctions of Hamiltonian Ĥ0 corresponding
to the zero energy ε = 0

ϕj (z) = A−1/2αjβj exp[−K(z)], (5)

where A = 〈ϕ1|ϕ1〉 = 〈ϕ2|ϕ2〉 is the normalizing coefficient
and

K(z) = 1

h̄VF

∫ z

0
�⊥(s)ds.

The Pauli and Nambu spinors βj and αj satisfy the relations
σ̂zβ1,2 = ∓β1,2 and τ̂2α1,2 = ±α1,2.

Following the standard method, we substitute the solution
in the form (4) into the equation (Ĥ0 + Ĥ1)ψ = εψ multiply
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it by ψ∗
j (z) from the left and integrate over z. Then for the

spinor X = (X1,X2)T , we obtain the two-dimensional Dirac
equation

[Cσ̂p + σ̂zM]X = εX, (6)

with the “light velocity” given by

C = 1

ApF

∫ ∞

0
dz�‖(z) exp[−2K(z)] ∼ �‖/pF ,

and “mass” M = h̄ωH/2 determined by the Larmour fre-
quency ωH = γH/h̄.

For the massless particles we can choose the eigenfunctions
of Eq. (6) satisfying the relation

Xε = iσ̂yX−ε. (7)

As a result, the quasiparticle field operators are self-conjugated
analogously to the Majorana fermions in relativistic quantum
field theories. In the external magnetic field, the particles
described by Eq. (6) become massive13 so that the property (7)
does not hold and therefore the quasiparticles are no longer
self-conjugated Majorana fermions.

The Dirac equation (6) determines the equation for the
energy levels in the following form13

ε1,2 = ±
√

(Cp)2 + (h̄ωH )2/4. (8)

The energy spectrum of surface bound states (8) is sensitive
only to the z projection of the magnetic field. It can result in
a large anisotropy of magnetic susceptibility6 if the magnetic
field is much smaller then the effective dipole field. However
the larger magnetic field will reorient the spin axes eliminating
the magnetic anisotropy.13 Note that deriving the spectrum (8),
we have neglected the finite thickness of the slab. The size
effect due to the overlap of quantum states localized at the
opposite surfaces of the slab leads to the splitting of the Dirac
cone11 even in zero magnetic field. For a sufficiently strong
magnetic field, this modification can be neglected.

III. MAGNETIC SUSCEPTIBILITY AND NMR
ABSORPTION SPECTRUM

Now we consider the contribution of surface bound states
to the imaginary part of ac magnetic susceptibility component
χzz, which determines the power absorption under the exper-
imental conditions of the longitudinal scheme of magnetic
resonance when the total magnetic field is directed along the
z axis.

To find the magnetic susceptibility, let us use a conventional
Kubo formula:

χij = γ 2

4
T

∑
ωn

∫
d2p

(2πh̄)2
T r{σ̂iĜ(p+)σ̂j Ĝ(p−)}, (9)

where

Ĝ(ωM,p) =
∑
k=1,2

|ψk〉〈ψk|
iωM − εk(p)

is a temperature Green function and p± = (ωn ± εl/2,p). Here
ωn = π (2n + 1)T is a fermionic and εl = 2πlT is a photonic
Matsubara frequency. The normalized wave functions ψ1,2

are given by the superpositions (4) and correspond to the

energy branches ε1,2 in Eq. (8). We use the value of the matrix
element |〈ψ1|σ̌z|ψ2〉| = Cp/ε1 and the formula for the sum
over fermionic frequencies

∑
ωn

T

[i�n+ − ε1][i�n− − ε2]
= f0(ε1) − f0(ε2)

iεl − ε2 + ε1
,

where �n± = ωn ± εl/2 and f0(ε) = tanh(ε/2T ). Then
changing the photonic Matsubara frequency by εl → ih̄ω from
Eq. (9), we get that

χzz = γ 2C2

8πh̄2

∫
p3dp

(ε2 − ε1)[f0(ε1) − f0(ε2)]

ε2
1[(h̄ω)2 − (ε2 − ε1)2]

, (10)

where ε1,2 = ε1,2(p). We use now the dispersion relation (8)
and obtain that when the frequency is larger than the Larmour
frequency ω > ωH the susceptibility given by Eq. (10) has a
nonzero imaginary part

Imχzz =
(

γ

4h̄C

)2
h̄ω

2
f0

(
h̄ω

4T

)(
1 − ω2

H

ω2

)
. (11)

Note that the nonzero dissipation Imχzz �= 0 occurs only
when the frequency is larger than the threshold value ωH ,
which is similar to the threshold behavior of absorption
rate in semiconductors where the absorption edge frequency
is determined by the band gap energy. However, in the
vicinity of the threshold the frequency dependence of the
absorption rate [Eq. (11)] is completely different from that
of the electromagnetic wave absorption in the physics of
semiconductors.17

The estimate of imaginary magnetic susceptibility (11) of
a unit film area yields

Imχzz ∼ χnξ
h̄ω

�‖
f0

(
h̄ω

4T

)
,

where χn ∼ γ 2k3
F /EF is a normal state susceptibility and ξ =

h̄VF /�‖ is a coherence length.

IV. EFFECT OF SURFACE ROUGHNESS

In general, the quasiparticle energy levels are broadened due
to the statistical fluctuations of the film surface which affect
the boundary conditions for the wave functions. Different
models of surface roughness related to the surface effects in
3He were developed including the diffusive surface layer,18,19

randomly rippled wall (RRW), randomly oriented mirrors
(ROM) models,19,20 and random scattering matrix model.21

Under the conditions of diffusive scattering, the acoustic
impedance data demonstrate the presence of surface bound
states in 3He-B film,2,3 although there is no evidence of the
relativistic massless Dirac spectrum. On the other hand, the
surface conditions can be varied in the experiments by coating
the surface of several layers of 4He.22 For increased specularity
factor, the new features on the temperature dependence of
acoustic impedance were observed indicating the formation of
2D Dirac energy spectrum.2

Here we employ the ROM model assuming that the surface
consists of small randomly oriented specularly scattering
facets.20 This model is applicable to describe the fluctuations
with the scale much larger than k−1

F of the 4He coated
surface of the film. Within the framework of ROM model,
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the important characteristic is the angle αs which constitutes
the local normal vector to the wall ns with the z axis.
Let us use the new coordinate system rotated by the angle
αs with respect to the axis defined by ν = z × ns. Then
we obtain in the new coordinate system the expression for
the order parameter matrix Ãij = AikRkj , where R̂ is the
corresponding rotation matrix. Let us assume without loss
of generality that the rotation axis coincides with the y

axis. Then in the Eq. (2) for the Hamiltonian Ĥ0, we obtain
F̂ = (�⊥ cos αsσ̂z − �‖ sin αsσ̂x)qz and the perturbation term
is given by

Ĥ1 = τ̂1qx(�‖σ̂x cos αs + �⊥σ̂z sin αs) − γ

2
H · σ . (12)

To proceed further with analytical calculations we assume
that the order parameter does not depend on the space
coordinates so that �⊥,�‖ = const. Then we obtain easily
the zero energy eigenvectors of the Hamiltonian Ĥ0 in the
form of Eq. (5) with

β1 =
(

�‖ sin αs

�⊥ cos αs + �̄
,1

)T

(13)

β2 =
(

1, − �‖ sin αs

�⊥ cos αs + �̄

)T

, (14)

where �̄ = √
(�‖ sin αs)2 + (�⊥ cos αs)2. Correspondingly

in Eq. (5), for the zero order wave functions we obtain

K(z) = 1

h̄VF

∫ z

0
�̄ds.

The quasiparticle spectrum obtained along the perturbation
theory scheme described above yields the spectrum in the
form (8) but with modified parameters. We will study the
modification of the absorption threshold which is determined
by the “mass” term and does not depend on the “light velocity.”
We therefore will neglect the modification of “light velocity”
and focus on the “mass” term which is given by

ω̃H = ωH

(�⊥ cos αs + �̄)2 − (�‖ sin αs)2

(�⊥ cos αs + �̄)2 + (�‖ sin αs)2
. (15)

To proceed further and calculate statistical average over the
surface roughness, we assume that |αs | � 1 and obtain to the
leading order

ω̃H = ωH

(
1 − α2

s �
2
‖

2�2
⊥

)
. (16)

The above equation yields the fluctuating correction to the
absorption edge in Eq. (11). It leads to the smoothing out of the
sharp absorption edge at the Larmour frequency. To estimate
this effect, we assume the Gaussian distribution of angle αs

with the zero average value 〈αs〉 = 0 and the dispersion 〈α2
s 〉 =

σ 2
α . After that the average value of the susceptibility in the

vicinity of Larmour frequency is given by

Imχzz =
(

γ

4h̄C

)2(
�‖
�⊥

)2
h̄ω

2
f0

(
ω

4T

)
S(α0,σα),

FIG. 1. Plot of the function S(α0,σα) for σα = 0.01 (solid line)
and σα = 0.7 (dashed line).

where α0 = 2(�⊥/�‖)2[1 − (ω/ωH )2] and

S(α0,σα) =
∫ ∞

α∗
(α2 − α0)

exp[−(α/σα)2]

σα

√
π

dα, (17)

where α∗ = √
α0 if α0 > 0 and α∗ = 0 if α0 < 0.

The plots of the function (17) for the different values of σα

are shown in Fig. 1 demonstrating smoothing of the absorption
edge with increasing dispersion of surface ripples. Although in
general for σα > 0 the absorption signal is nonzero at the whole
frequency domain, it is exponentially decaying for ω � ωH .
The size of the crossover domain in Fig. 1 is determined by the
dispersion δω = ωH σα . Therefore in general we can conclude
that the absorption edge should be well observed provided
these fluctuations are small so that σα � 1.

V. CONCLUSION

To conclude, we have calculated the contribution of
fermionic surface bound states to the ac magnetic susceptibility
of 3He-B film. We have shown that in the longitudinal NMR
scheme the nonzero absorption signal appears provided the
frequency is larger than the threshold one determined by the
Larmour frequency ω > ωH . Such absorption is absent in
the normal state of 3He and can not occur due to the dynamics
of the order parameter spin either. In zero magnetic field, there
is no frequency threshold for the dissipation which can be con-
sidered as the fingerprint of the gapless Majorana surface
bound states. The surface fluctuations are shown to smooth
the threshold behavior out providing the small absorption in
the frequency domain ω < ωH .

ACKNOWLEDGMENTS

This work was supported, in part, by “Dynasty” Foundation,
Russian Foundation for Basic Research, Russian Presidential
Council (Grant No. MK-4211.2011.2), by Programs of RAS
“Quantum Physics of Condensed Matter” and “Strongly cor-
related electrons in semiconductors, metals, superconductors
and magnetic materials.” Discussions with G. E. Volovik and
A. S. Mel’nikov are greatly acknowledged.

144508-3



M. A. SILAEV PHYSICAL REVIEW B 84, 144508 (2011)

1K. Nagai, Y. Nagato, M. Yamamoto, and S. Higashitani, J. Phys.
Soc. Jpn. 77, 111003 (2008).

2S. Murakawa, Y. Tamura, Y. Wada, M. Wasai, M. Saitoh, Y. Aoki,
R. Nomura, Y. Okuda, Y. Nagato, M. Yamamoto, S. Higashitani,
and K. Nagai, Phys. Rev. Lett. 103, 155301 (2009).

3J. P. Davis, J. Pollanen, H. Choi, J. A. Sauls, W. P. Halperin, and
A. B. Vorontsov, Phys. Rev. Lett. 101, 085301 (2008).

4Y. Aoki, Y. Wada, M. Saitoh, R. Nomura, Y. Okuda, Y. Nagato,
M. Yamamoto, S. Higashitani, and K. Nagai, Phys. Rev. Lett. 95,
075301 (2005).

5H. Choi, J. P. Davis, J. Pollanen, and W. P. Halperin, Phys. Rev.
Lett. 96, 125301 (2006).

6Y. Nagato, S. Higashitani, and K. Nagai, J. Phys. Soc. Jpn. 78,
123603 (2009).

7G. E. Volovik, JETP Lett. 90, 587 (2009).
8M. M. Salomaa and G. E. Volovik, Phys. Rev. B 37, 9298 (1988).
9G. E. Volovik, JETP Lett. 90, 398 (2009).

10Suk Bum Chung and Shou-Cheng Zhang, Phys. Rev. Lett. 103,
235301 (2009).

11Y. Tsutsumi, M. Ichioka, and K. Machida, Phys. Rev. B 83, 094510
(2011).

12F. Wilczek, Nat. Phys. 5, 614 (2009).
13G. E. Volovik, JETP Lett. 91, 215 (2010).
14R. G. Bennett, L. V. Levitin, A. Casey, B. Cowan, J. Parpia, and

J. Saunders, J. Low. Temp. Phys. 158, 163 (2010).
15L. V. Levitin, R. G. Bennett, A. Casey, B. Cowan, J. Parpia, and

J. Saunders, J. Low. Temp. Phys. 158, 159 (2010).
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