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Vortex matter in mesoscopic two-gap superconductor square
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In mesoscopic superconductors with low intrinsic pinning, the boundary plays the most important role in the
stabilization of the vortex patterns. Especially in the case of symmetric sample shape, very distinct vortex locations
inside the sample are defined, for the different vorticity states. The study of two-component superconductors
with the Ginzburg-Landau equation implies the introduction of a coupling term between the two condensates,
changing the linear part of the potential. This article presents the analysis of the impact of the competition between
the coupling term and the geometry of confinement on the vortex patterns of thin mesoscopic square samples
made from a two-gap superconductor. For a simple case presented here, it was found that the appearance of the
noncomposite vortices is accompanied by an unusual shape of the component of the order parameter associated
with the passive band as a function of the temperature. This shape is a distinct fingerprint for materials with

noncomposite vortices.
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Vortex matter in two-component superconductors was
intensively studied after the discovery of superconductivity
in MgB,' and the new iron-based superconductors.” Theoret-
ically, many studies address the vortex behavior in different
components of the superconducting condensate.® The concept
of fractionalization of vortex (when magnetic flux is not quan-
tized in units of the flux quantum &y = 2"—6) has been explored
in bulk samples of unconventional superconductors,*”’ and
also studied for the case of two-component superconductors,
and was found to be thermodynamically unstable in the
bulk samples.®’ In two-component superconductors, these
fractional vortex phases appear only when the condensates
have different winding numbers (i.e., L # Lj). It was also
found that phases, where vortices belonging to different
condensates of two-gap superconductors have different spatial
positions (noncomposite vortices), have divergent energy
density,8 which is in accordance with the fact that only normal
(Abrikosov) vortices have been detected in bulk samples.

Recent studies show that it is possible to have noncomposite
vortices in thin mesoscopic superconductors,'? and fractional
flux vortex phases, thermodynamically stable, in a long
mesoscopic cylinder!' and a mesoscopic disk'? (i.e., where
the radius is of the order of the coherence length). For
mesoscopic superconductor disks and cylinders, it was found
that the 7-H phase diagrams, corresponding to the intrinsic
superconductivity in the two bands, generally do not coincide.
More precisely, the phase diagram that corresponds to the
passive band is shifted upward with respect to the phase
diagram for the active band.'®!" This displacement allows
for vortex phases with different winding numbers in the two
condensates and noncomposite vortices. Although, we note a
major difference between long mesoscopic cylinders and thin
mesoscopic disks;'? in the latter the screening currents are
negligible.

In mesoscopic superconductors, the coherence length (§)
and the penetration length (A) are of the same order of
magnitude as the sample size. This makes the properties of
the superconducting condensate strongly influenced by the
geometry of the sample’s boundary. At the mesoscopic scale,
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the vortex patterns are defined by the symmetry/geometry
of the sample. Many studies with disks and polygons were
made to investigate and understand the origin of various vortex
patterns in mesoscopic samples.'>? In these studies, it was
found that near the normal-superconducting phase boundary
(PB) the condensate is mainly defined by the solutions of the
linear Ginzburg-Landau (LGL) equation.'>?* In experiments>}
on mesoscopic samples with low intrinsic pinning, the PB
was found to consist of segments of a cusplike shape. Then,
simulations were made!>*} showing that this shape was
due to periodic fluctuations of the ground-state eigenvalues,
corresponding to different vorticities, with the magnetic field
strength. An extension of these studies has shown that the
vortex patterns near the PB, in mesoscopic samples, are
mostly defined by linear combinations of a few eigenfunctions
of the LGL equation. The nucleated vortices are always
consistent with the symmetry of the sample and then pass
into broken-symmetry phases by lowering the temperature.>*
The existence of non-negligible regions on the 7-H phase
diagram corresponding to symmetry-consistent vortex patterns
is an important feature that distinguishes the bulk from thin
mesoscopic superconductor samples. !>

In this paper, the interplay between the geometry of the
confinement and the coupling between the two condensates of
the thin mesoscopic two-gap superconductors is investigated.
Consider a square sample of size a of the order of the coherence
length (§) and thickness d much smaller than &. Since the
thickness of the sample is very small, the screening currents are
not important, and the Ginzburg-Landau equation is reduced
to a 2D case.?>** Thus, the GL free-energy functional is given

by’ZS
2 /1 2e 2
AF = —ihV — =AY, AV
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where W, and W, are the two components of the super-
conducting order parameter (the index 1 and 2 refer to the
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active and the passive band, respectively), and A is the vector
potential related to the applied magnetic field, H = rorA.
In (2), the variables o; = —a;t and oy = ay) — ayt (with
t = 1 — T /T, where T is the critical temperature of the active
band) are the condensation energy coefficients, §; and B, are
the nonlinearity coefficients, and y is the Josephson coupling
coefficient. The eigenfunctions of the one-component LGL
equation with the usual boundary condition,

) 2e \*
<—1hV —_ ?A) ¢n == )‘fn(Pna (2)

( ) 2e \’
—ihV — _A) ¢n|n.b. = 07 (3)
C

(n.b. means that the equation is projected on the unit vector
normal to the boundary) were used as a basis for the solutions

of Eq. (1):
v, = Zui¢i v, = Zvi¢i- 4

Equations (2) and (3), at their turn, were solved by using
the superconducting gauge approach.'*?® Substituting (4) into
(1), the GL functional is reduced to a polynomial with the
decomposition coefficients ¢; (¢; = u;,v;):

2 .
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AF = AFi(u) + AF>(v) — y (v 4+ u;v)),
with &; = ;S/h? and
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where S = a? is the area of the sample. To simplify the

problem, we rescaled the space coordinates and the expansion
coefficients as in the previous publications,'%>*
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and defined the LGL parameters as follows:
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Using these definitions, the GL functional is written as,
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The functional (11) was minimized using multiple tries of
a nonlinear conjugated gradient method, which yielded the
equilibrium distribution of the two components of the order
parameter. The method described above, and more extensively
in Ref. 13, is faster than the typical methods used to study this
type of problem (i.e., finite difference and the finite element
methods). This is achieved with the usage of a small basis
set that already satisfies the boundary conditions, previously
simplified by fixing the gauge. In the simulations presented in
this article, a basis set of 900 functions was used to solve the
LGL equation with the respective boundary condition, and
a basis set of 24 functions was used to minimize the GL
function. Reference 13 can be used to address the accuracy
of calculations made with this basis size.

Figure 1(b) shows the calculated phase diagram for the
two-gap superconductor square. For the square geometry, the
case of a one-component mesoscopic superconductor was
already investigated in previous publications.’* To compare
that case with the two-component case, we have reproduced
its T-H phase diagram [displayed in the Fig. 1(a)] by setting
W, = 0. Near the 7, boundary, the condensate pattern is
dominated by the LGL solution'>!> that has the symmetry of
the sample, while at lower temperatures [i.e., at larger values
of §/€%(T)] the nonlinear term starts to compete with the
symmetry-conserving solutions, breaking the symmetry of the
condensate order parameter. The vortex phase boundaries in
the T-H diagram are shaped by this competition. If there were
no nonlinear term, these boundaries would be vertical lines,
which is quite different from what we see in Fig. 1(a).

For the two-component superconductors, the two conden-
sates nucleate at different temperatures (the condensation
temperature in the passive band is lower than in the active
band).”® As a result, the regions of the vortex phases in
the T-H diagram are different for the two condensates.'”
The corresponding PBs in the two condensates are shifted
relative to each other, so there is a “large” region [i.e., areas
(a)—(g) of the diagram in Fig. 1(b)] where the two condensates
have different vorticity. Figure 1(b) shows that there is an even
bigger area where the two condensates have noncomposite
vortices.

Novel vortex phases are clearly seen in our results. In the
areas (d), (f), and (i) of the diagram presented in Fig. 1(b),
there are vortex phases containing one antivortex only in
one of the components of the order parameter. Some other
interesting phases, represented in the areas (h) and (i) of
this diagram and in Figs. 2(a) and 2(b), appear where
one of the components is in a symmetry broken phase,
while the other is almost in a symmetry-consistent vortex
phase. These almost symmetric vortex phases correspond to
a slightly deformed nucleated vortex pattern. For example,
in the antivortex pattern (four separated vortices and one
antivortex in the center) associated with area (i) of Fig. 1(b),
the antivortex is dislocated toward a neighbor vortex, as can
be seen in Fig. 3. The antivortex observed in this pattern
is created from the interplay of two effects. The first is
the requirement of the symmetry consistency of the order
parameter distribution close to the superconducting-normal
phase boundary.'*!> The second is the confinement effect from
the boundaries which stabilizes, in the case of vorticity three,
in a configuration of four vortices plus one antivortex instead of
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FIG. 1. (Color) Diagrams of the vortex phase boundaries for one-component (a) and two-component (b) superconductors. The one-

component case is parameter free. For the two-component diagram, the values of the parameters used were L = 1

S
£3(Te)

b _1 5

> > A & =

0.05, and

= 20. On the diagrams, the almost vertical lines are the boundaries for the vorticity phases, and the almost horizontal lines, inside the

vorticity areas, are boundaries for the broken-symmetry phases. The dashed red line is the nucleation phase boundary for the second component
with y = 0. The small square diagrams over the regions represent the respective vortex patterns of that region. In these square diagrams, the
noncomposite vortices in the active band (V) and passive band (W) are represented by green and red circles, respectively, and the composite
vortices are represented in black as in the case of only one band on the diagram (a). The filled small circles, empty small circles, and the big

filled circles correspond to vorticity 1, —1, and 2, respectively.

one giant vortex (with vorticity three) in the center. These two
effects are equally present in both single-band and two-band
superconductors.

Regarding the observation of noncomposite vortices in
the distributions of |W;|> 4 |W,|?, the total density of the
superconductor condensate, we note that they are hardly seen,
as shown in Fig. 2. This is due to two factors. First, the
active band is typically “stronger” than the passive band,
thus resulting in a higher density of the condensate. Second,
the vortex cores have a radius of the order of the sample
size, which is bigger than the separation between them.
Although, it is difficult to distinguish the vortices of the
different components in the total order parameter density
distribution (lowest panel in Fig. 2). This distribution is
significantly different from any of the components density
distributions.

I. DEPENDENCE OF THE VORTEX DECONFINEMENT ON
THE INTERBAND JOSEPHSON COUPLING AND THE
CRITICAL TEMPERATURE OF THE PASSIVE BAND

We have studied the influence of the Josephson coupling
(y) and S /522(TC) term on the deconfinement of the vortices
belonging to different condensates. We note that the vorticity
regions change in the 7-H phase space with the parameters
y and S /EZZ(TC), and the vorticity boundaries in 7-H space
are functions of temperature and magnetic field. In order to
analyze the problem, we took lines in the T-H space that
passed through a single vorticity region. These lines were
traced in different regions of the 7-H diagram for different
parameters, in order to compensate for the fact that vorticity
regions change with these parameters. For the parameters
mi; = my, aj/ay = 1, and B;/B, = 1, these lines are parallel
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FIG. 2. (Color online) 3D view of the condensate in the common logarithm scale (logj). (a), (b), and (c) correspond to phases (h), (i), and
(g) of the diagram 1(b) and to the parameters (®/Dy,S/ 512) = (4.5, 60), (6, 50), and (6.6, 52), respectively. For each vertical set of plots, the top
plot corresponds to |, |2, the second to |W;|?, and the third to the sum. The remaining parameters are the same as in Fig. 1(b).

and they are displaced in S/&(T'). Simulations described at the
beginning of this article were made, along the lines intercepting
the two-vortex region for different values of the parameters.
The displacements between these lines are listed in Table 1.
The results of the simulations are shown in the corresponding
plots of Fig. 4, and a small diagram inside each plot shows
the lines, in the 7-H diagram, where the simulations where
made.

The plots in Fig. 4 display the data obtained for S/ EZZ(TC) =
20 and S/£3(T.) = 100, with the different values of S/&.
These plots show the | W/ |ims, | W2 |ms, and the distance between
vortices in the two bands, in units of the sample size, as a
function of S/&(T). To calculate this distance in each pattern,
the centers of the vortices belonging to both bands were first
detected. Afterwards, the closest pair of vortices belonging
to different bands was found. The distance between the two
vortices of this pair is the distance shown in the plots of Fig. 4.

This distance as a function of S/&; (T)? reflects the difference
in the transitions between the symmetry-consistent and the

FIG. 3. (Color online) A zoom, in the center of the sample, of
the passive band-density distribution for the vortex phase area (i) of
Fig. 1(b).
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FIG. 4. (Color online) Plots of the root mean square of the two components of the order parameter, |V |y, = 4/ ( f |W|2dS)/S and

Iq‘l2|rms =

J( f |W,|2dS)/S, and the distance(in units of the sample size a) between vortices in the different bands, as defined in the text, along

the lines in the T-H phase space(that pass through regions of vorticity two, these lines are shown in the small plots inside the plots) for different
parameters of the system. Vertical dashed lines show the transition point between symmetric and broken vortex patterns. We note that there
are plots with one and plots with two vertical dashed line. In the case of one vertical line this represents the symmetry breaking of both of
the condensates. In the case of two vertical lines the left and the right lines are the points were the W, and W, condensates break symmetry,

respectively.

broken-symmetry phase in the two condensates [Fig. 1(b)].
To better compare the results obtained for different values
of parameters, Table I shows the relation between these
parameters and the maximum value of distance between the
closest vortices in the two bands, obtained over the lines in the
T-H space.

In all plots of Fig. 4, the dependence of |Wi|,s on
temperature has the usual shape. However, |W,(T')|ims strongly
changes its shape as a function of y. It has a conventional

behavior corresponding to the uncoupled passive band in
the case of small y, and a conventional shape coinciding with
the active band for large y . In transition from one regime to the
other, the shape of this curve has a pronounced inflection at the
point of the passive band critical temperature. This inflection
is due to intrinsic superconductivity in the passive band.

The shape of |W,(T')|ims, Shown in the plots of Fig. 4, seems
to be strongly correlated with the separation between vortices
in the different bands. More precisely, different regimes,
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TABLE 1. Displacement of the lines on the S/£2(T)-¢/¢o
diagram [Fig. 1(b)] for which simulations in Fig. 4 were done.

. s s (1) dpax a

Displacement g am ZE—V max

0 0.1 20 0.0050 0.1124
0.5 1 20 0.0500 0.0618
4.14 10 20 0.5000 0.0119
0, 1 100 0.0100 0.0819
1 10 100 0.1000 0.0217
41.8 100 100 1.0000 0.0022

4dmax 1s the maximal distance found on the simulations presented in
the plots of Fig. 4.

from high and low y, seem to have a similar effect on
both noncomposite vortex phenomenon and the shape of

L)

£y

N

©

FIG. 5. (Color online) Density plots of the In(W,/W¥,) for the
MgB, parameters expressed in the text. The regions with the lighter
green(lighter color) and darker blue(darker color for black and white
picture) colors identify were @, and ¢, are more close to zero,
respectively. (a), (b) and (c) correspond to the ®/ Py = 4.5, 6 and 7,

i ith =5— =
respectively, with g = 100
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|Wo(T)|mms. This means that the existence of the inflection in
shape of |W,(T')| can be used as a criterion of weak coupling,
signaling the non-negligible vortex deconfinement effects in
mesoscopic superconductors.

II. VORTEX DECONFINEMENT IN MgB, SAMPLES AND
ITS RELATION TO THE MASS RATIO AND o, TERM

We have also studied a square mesoscopic sample with
the parameters of MgB,. A square sample of MgB, with
124 x 124 nm? area was simulated using the following MgB,
parameters:'0 oo = 1.5, B1/B2 = 1.5, my/my = 1/0.07,
S/E2(0) = 314.2, V/S/&(T,) = 1435, \/S/&, = 11.17, and
T. =39 K.

Figure 5 shows the results for some specific cases. From
them we conclude that the distance between vortices in the
two condensates is of the order of 2—3 nm. It is interesting to
note that vortex phases that do not have a broken-symmetry
phase transition also have noncomposite vortices which are
very close to each other, as can be seen from Fig. 5(c). If we
compare the vortex separation distances obtained in the case of
the disk geometry with the present case of the square geometry
for similar parameters of GL functional, we can conclude that
the change of the symmetry of the sample from disk to square
does not influence the vortex separation.

III. CONCLUSION

In conclusion, we have shown that lowering the symmetry
of the sample’s boundary from circle to square does not
increase the separation of vortices in the two bands. The
calculations have revealed that the phase diagram of the
square is very close to the two-gap superconductor'® disk.
However, in the case of a square, a much richer phase diagram
appears containing novel vortex phases. Among them we
mention here one with an antivortex in only one component
of the order parameter. In relation to vortex deconfinement
phenomenon, we have observed that it practically disappears
with the inflection point on the temperature dependence of
the passive band component. This can be used as a criterion
of “weak” coupling for vortex deconfinement in mesoscopic
superconductors. Thus, the shape of the dependence of the
passive band density |W,|? in the temperature provides a new
tool for searching materials with noncomposite vortices.

As in the case of disk geometry, the visualization of the
separation of vortices belonging to different condensates does
not appear to be feasible for the MgB, samples, at least at the
current technical level, due to the strong interband coupling
parameter. Nevertheless we point out that the existence of
such noncomposite vortices is a real mesoscopic effect, which
could be observed in two-gap superconductors with a weaker
coupling between the two bands.
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