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Mean-field analysis of intra-unit-cell order in the Emery model of the CuO2 plane
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Motivated by recent experiments on high-Tc cuprate superconductors pointing toward intra-unit-cell (IUC)
order in the pseudogap phase, we investigate three distinct intra-unit-cell-ordering possibilities: nematic, nematic-
spin-nematic, and current-loop order. The first two are Fermi-surface instabilities involving a spontaneous charge
and magnetization imbalance between the two oxygen sites in the unit cell, respectively, while the third describes
circulating currents within the unit cell. We analyze the three-band Emery model of a single CuO2 layer including
various on-site and nearest-neighbor interactions within a self-consistent mean-field approach. We show how
these on-site and further-neighbor repulsions suppress or enhance particular IUC orders. In particular, we show
that the attractive interactions necessary for nematic and nematic-spin-nematic orders in one-band models have
their natural microscopic origin in the O-O on-site and nearest-neighbor repulsions in the three-band model.
Finally, we find that while the nematic and nematic-spin-nematic orders cannot coexist in this framework, the
loop-current order can coexist with nematic order.
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I. INTRODUCTION

Experimental evidence for various types of symmetry
breaking in the pseudogap region of the phase diagram of
the high-Tc cuprate superconductors has been accumulating
in recent years. Neutron-scattering experiments discovered
a subtle staggered magnetic order in the pseudogap region
of YBCO (Ref. 1) and Hg compounds2 that could be ac-
counted for by either so-called nematic-spin-nematic order3,4

or circulating current loops.5 On the other hand, neutron-
scattering6 and Nernst effect7 measurements on YBCO as well
as spectroscopic imaging scanning tunneling microscopy on
BSCCO (Ref. 8) point toward an electronic nematic state.
All these states retain the translational symmetry of the
underlying crystal and can thus naturally be described by
breaking intra-unit-cell (IUC) symmetries. Hence, identifying
mechanisms for these symmetry-breaking possibilities and
understanding their competition is crucial for understanding
the nature of the pseudogap phase.

Theoretical investigations of translationally invariant IUC
order have so far been focusing on one particular ordering at
a time within simplified models each aimed at the ordering of
interest. Nematic and nematic-spin-nematic order have only
been studied in one-band models3,4,9–15 or in the extreme limit
of infinite interactions.16 Loop currents, being more dependent
on an IUC picture, have been studied in a mean-field picture
with additional assumptions5 or numerically on small clusters
or ladders.17–19

Here, we aim at a comprehensive investigation of IUC-
ordering possibilities suggested by recent experiments28 using
a three-band model for the CuO2 plane, the so-called Emery
model.20 While it may be possible to describe such orderings
within a single-band picture, we choose a theoretical descrip-
tion of intra-unit-cell order based on a microscopic model that
explicitly allows for structures within the unit cell and carries
the advantage that local interactions can be incorporated to
give a more transparent picture. Moreover, recent work by Lau
et al.21 suggests that a reduced one-band description cannot
capture all the physics of the CuO2 plane.

In the following, we consider various on-site and nearest-
neighbor (NN) interactions (see Fig. 1) and analyze three

distinct IUC orders: nematic, nematic-spin-nematic, and loop
currents. These phases can be distinguished by the respective
symmetries they break, both of the point group D4h and time
reversal, as is summarized in Table I. For simplicity, only
fourfold rotations, inversion, time reversal, and combinations
of these are shown. Within a self-consistent mean-field scheme
we analyze and compare the origins of these phases and
compare the influence of the different model parameters on
them. In addition, we show how the O-O on-site and NN
interactions result in effective interactions of dx2−y2 symmetry
in one-band models, thus naturally leading to nematic or
nematic-spin-nematic order.

This paper is organized as follows: After introducing
the Emery model describing the CuO2 plane, Sec. III deals
with nematic and nematic-spin-nematic IUC order through
a decoupling of various interactions in the Hartree channel
within self-consistent mean-field theory. In addition, we
compare the three-band with the one-band model by focusing
on the (partially filled) lowest of the three bands. Section IV
examines IUC loop currents by decoupling the nearest-
neighbor interactions of the full Emery model in the Fock
channel. Finally, Sec. V compares the results for the different
orderings and concludes.

II. MODEL

The kinetic part of the Emery model20 describing hopping
of holes in the CuO2 plane is

H0 = −tpd

∑
i,s

∑
ν

(d̂†
i,s p̂i+ν̂/2,s + H.c.)

− tpp

∑
i,s

∑
〈ν,ν ′〉

(p̂†
i+ν̂/2,s p̂i+ν̂ ′/2,s + H.c.)

−μ
∑
i,s

n̂d
i,s − 1

2
(μ − �)

∑
i,s

∑
ν

n̂
p

i+ν̂/2,s , (1)

with tpd and tpp the Cu-O and O-O hopping integrals. Here,
d̂
†
i,s creates a hole in the copper dx2−y2 orbital at site i with spin

s, p̂
†
i+ν̂/2,s creates a hole in the oxygen pν orbital at the site
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FIG. 1. The unit cell of the CuO2 plane with the copper dx2−y2 in
the middle surrounded by the oxygen px and py orbitals. Also shown
are the different hopping as well as interaction parameters used in the
Emery model.

i + ν̂/2 for ν = x,y, and n̂d
i,s , n̂

p

i+ν̂/2,s are the corresponding
number operators. The Cu sites i form a square lattice with
unit vectors x̂ and ŷ, and the total number of lattice sites is
N . The chemical potential μ and the charge-transfer energy �

control the total and relative Cu/O hole densities, and 〈ν,ν ′〉
point to neighboring oxygen sites.

In addition, we consider the interaction Hamiltonian in-
cluding on-site interactions with strengths Ud and Up as well
as NN interactions, Vpd and Vpp,

H′ = Ud

∑
i

n̂d
i↑n̂d

i↓ + Up

2

∑
i,ν

n̂
p

i+ν̂/2,↑n̂
p

i+ν̂/2,↓

+Vpd

∑
i,ν

∑
s,s ′

n̂d
i,s n̂

p

i+ν̂/2,s ′

+Vpp

∑
i

∑
〈ν,ν ′〉

∑
s,s ′

n̂
p

i+ν̂/2,s n̂
p

i+ν̂ ′/2,s ′ . (2)

The different orbitals and parameters of the model are shown in
Fig. 1. Setting tpd = 1, we fix the energy scale in the following.

III. NEMATIC AND NEMATIC-SPIN-NEMATIC ORDER

For the above-introduced Emery model, only the strong
coupling-limit, taking all interactions to infinity, has been
analyzed for nematicity. Most theoretical investigations of ne-
matic and nematic-spin-nematic order start from a single-band
model, where in the weak-coupling limit a quadrupolar3,4,10

or a forward-scattering interaction11,12 is introduced. For
systems with a sufficiently high density of states at the
Fermi energy, e.g., due to a van Hove singularity, this can

TABLE I. The broken symmetries distinguishing the different
IUC orderings with × denoting symmetries broken in the respective
phase. For simplicity, we restrict the table to the fourfold rotation C4,
the inversion I, time-reversal operation T , as well as combinations
thereof.

C4 I T C4 ◦ T I ◦ T

Nematic × ×
Nematic-spin-nematic × ×
�II loop current × × × ×

lead to a Pomeranchuck instability in the d-wave channel.
Other studies of the Hubbard model without any additional
(long-range) interactions found a nematic instability within
a (weak-coupling) renormalization group (RG) approach,13

while dynamical mean-field theory calculations showed that
the model maintains C4 symmetry,14,15 but becomes very
susceptible to weak nematic driving fields (such as lattice
distortions) close to the Mott transition.15

In the three-band model, the oxygen-oxygen NN interaction
prefers an imbalance in the hole densities of the neighboring
oxygen sites, whereas the oxygen on-site interaction prefers
to spin polarize the oxygen sites. The former interaction can
thus lead to nematic order, the breaking of C4 symmetry, and
the latter to either an overall magnetization on the oxygen
sites or a nematic-spin-nematic order, which is invariant
under a combination of a C4 rotation and time reversal (see
Table I). Solving self-consistently the mean-field equations,
we analyze the nematic and nematic-spin-nematic ordering in
the following.

A. Mean-field theory

In this section, we focus only on symmetry breaking
associated with the hole densities on the oxygen sites n

p
νs =

〈n̂p

i+ν̂/2,s〉. In the absence of an overall magnetization on the
oxygen sites, i.e.,

m ≡ (
n

p

x↑ − n
p

x↓
) + (

n
p

y↑ − n
p

y↓
) = 0, (3)

there are two distinct ways to break the lattice symmetry within
each unit cell: a nematic order and a nematic-spin-nematic
order. IUC nematic order in this model can be measured in
terms of a spontaneous imbalance between the density of holes
at the oxygen sites

η ≡ (
n

p

x↑ + n
p

x↓
) − (

n
p

y↑ + n
p

y↓
)
, (4)

while nematic-spin-nematic order corresponds to having
equal, but opposite magnetization on the two oxygen sites,

ηs ≡ (
n

p

x↑ − n
p

x↓
) − (

n
p

y↑ − n
p

y↓
)
. (5)

Figure 2 shows the distorted Fermi surfaces associated with
these ordering possibilities as well as for ferromagnetic
ordering for contrast.

We arrive in the following at the mean-field Hamiltonian
for nematic or nematic-spin-nematic order by a standard
decoupling of all the interaction terms in Eq. (2) in the Hartree
channel. We seek a self-consistent solution with η 	= 0 or
ηs 	= 0, respectively, for nematic and nematic-spin-nematic
order.

(a) (b) (c)

FIG. 2. Static Fermi-surface instabilities analyzed in this work:
(a) nematic phase breaking C4 symmetry, (b) nematic-spin-nematic
and (c) ferromagnetic instability. In (b) and (c), the solid and dashed
lines denote the up- and down-spin band.
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1. Nematic order

The mean-field Hamiltonian can be written in momentum
space as

HMF =
∑
k,s

Ĉ
†
ksHksĈks + f (np,η), (6)

with Ĉ
†
ks = (p̂†

xks ,p̂
†
yks ,d̂

†
ks),

Hks =

⎛
⎜⎝

ξx γ2(k) γ1(kx)

γ2(k) ξy γ1(ky)

γ1(kx) γ1(ky) ξd

⎞
⎟⎠ (7)

and

f (np,η)

N
= −Ũp

(np)2

8
+ Ṽpp

η2

8
− Ũd

(n − np)2

4
. (8)

Here, n is the total density of holes, np is the total density of
holes on the oxygen sites, i.e.,

np ≡ (
n

p

x↑ + n
p

x↓
) + (

n
p

y↑ + n
p

y↓
)
, (9)

and the nematic order parameter η is defined in Eq. (4). The
elements of the matrix (7) are given by

γ1(ki) = −2tpd cos
ki

2
, (10)

γ2(k) = −4tpp cos
kx

2
cos

ky

2
, (11)

and

ξx = � + Ũp

np

4
− Ṽpp

η

4
− μ, (12)

ξy = � + Ũp

np

4
+ Ṽpp

η

4
− μ, (13)

ξd = Ũd

(n − np)

2
− μ, (14)

and also, we introduced the effective interaction parameters

Ũp = Up + 8Vpp − 8Vpd, (15)

Ṽpp = 8Vpp − Up, (16)

Ũd = Ud − 4Vpd. (17)

In addition, we have put all the constant terms, i.e., 2Vpdn −
Vpdn

2, into the chemical potential μ. The mean-field Hamil-
tonian (6) can be diagonalized to yield three bands each with
mixed orbital character and dispersion ξαks , where α = 1,2,3
is the band index for the lowest-lying and the two upper bands.

In order to self-consistently determine the above-introduced
mean fields, we look at the grand potential per lattice site

ω = − T

N

∑
α,k,s

ln[1 + exp(−ξαks/T )] + f (np,η)

N
. (18)

For given values of np and η, the chemical potential μ is
implicitly given by solving

n = −∂ω

∂μ
= 1

N

∑
α,k,s

nF(ξαks), (19)

with the Fermi distribution function nF(x) = 1/[exp(x/T ) +
1]. Self-consistency equations for np and η are found by

extremizing the grand potential (18) to be

np = 4

N (Ũp + 2Ũd )

∑
α,k,s

nF(ξαks)
∂ξαks

∂np
+ 2Ũdn

Ũp + 2Ũd

(20)

and

η = −4

NṼpp

∑
α,k,s

nF(ξαks)
∂ξαks

∂η
. (21)

Second-order phase boundaries for nematic ordering can
be determined using the stability condition of ω by requiring

∂2ω

∂η2

∣∣∣∣
η=0

=
[

Ṽpp

4
− 1

N

∑
α,k,s

1

4T cosh2 ξαks

2T

(
∂ξαks

∂η

)2

+ 1

N

∑
α,k,s

nF(ξαks)
∂2ξαks

∂η2

]∣∣∣∣∣
η=0

= 0. (22)

This is equivalent to analyzing the linearized self-consistency
equation for η. To additionally find first-order phase bound-
aries requires examining the grand potential for the global
minimum.

2. Nematic-spin-nematic order

In complete analogy to the mean-field decoupling in-
troduced above for the nematic order, we find the mean-
field Hamiltonian for the nematic-spin-nematic ordering with
nonvanishing ηs as defined in Eq. (5). We only have to replace
the diagonal elements of the Hamiltonian (7) by (now spin
dependent)

ξxs = � + Ũp

np

4
− sUp

ηs

4
− μ, (23)

ξys = � + Ũp

np

4
+ sUp

ηs

4
− μ, (24)

ξds = Ũd

(n − np)

2
− μ, (25)

and

f (np,ηs)

N
= −Ũp

(np)2

8
+ Up

η2
s

8
− Ũd

(n − np)2

4
. (26)

The interaction parameters Ũp and Ũd are again given by
Eqs. (15) and (17), respectively. Note that now, the interaction
driving the instability is not the oxygen-oxygen NN interaction
Vpp, but the oxygen on-site interaction Up. This ordering is
thus in direct competition with an overall magnetization m

on the oxygen sites as given in Eq. (3). The critical Up for a
nematic-spin-nematic instability to occur is again determined
by analyzing the stability condition for the corresponding
grand potential, ∂2

ηs
ω = 0.

B. Results

1. Nematic order

Our goal is to investigate the effect each parameter has
on the nematic instability. For this, we use the linearized self-
consistency equation (22) to map out various phase boundaries
in the parameter space. Due to the large parameter space of the
three-band model we present results with � = 2.5, Up = 3,
and Vpd = 1 as realistic values for the cuprates. Realistic
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p
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]
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FIG. 3. The critical strength of the oxygen-oxygen interaction
V c

pp needed in order to enter a nematic phase as a function of hole
density n for tpp = 0. For numerical reasons, the calculation has been
carried out at T = 5 × 10−4[tpd ]. The dashed lines denote the values
of Vpp used for Fig. 5.

values for the O-O hopping and the Cu on-site interaction are
tpp ≈ 0.2–0.5 and Ud ≈ 6–8.22,23 After calculating a general
phase diagram and looking at the influence of finite O-O
hopping, we can thus, for example, analyze the effect of the
Cu on-site interaction on the nematic phase formation.

IUC nematic ordering within this mean-field theory arises
through a Stoner-type instability. It therefore requires a finite
interaction strength for all hole densities away from the van
Hove filling, where the diverging density of states allows for
an instability at infinitesimal Vpp. Figure 3 shows the critical
oxygen-oxygen interaction strength V c

pp needed to enter a
nematic phase at T ≈ 0 for Cu on-site interaction strength
Ud = 9 and tpp = 0 with the van Hove singularity at nvH = 1.
Note that the doping dependence of V c

pp is not symmetric
around the van Hove point. This is a multiband effect and we
will return to this in Sec. III C.

The main effect of a finite oxygen-oxygen hopping tpp is to
shift the van Hove singularity to higher hole densities as can
be seen in Fig. 4, where we show the hole-density dependence
of V c

pp for different tpp. In addition, we see that the nematicity
is gradually suppressed upon an increase in tpp, which reflects
the fact that a finite tpp adds to the two dimensionality of the
system. For the rest of this section, we will focus on the case
of tpp = 0.29

We now turn to the T -n phase diagram shown in Fig. 5(a).
For the phase diagram, we obtain the second-order phase

2

2.5

3

3.5

4

0.9 0.95 1 1.05 1.1 1.15 1.2

V
c p
p

n

1.5

tpp = 0.2

tpp = 0.4

tpp = 0.0

[t
p
d
]

FIG. 4. (Color online) Critical interaction strength for different
values of the oxygen-oxygen hopping tpp .

boundary from the linearized self-consistency equation for
Vpp = 2, 1.75, and 1.5 (dashed horizontal lines in Fig. 3). For
Vpp = 1.5, a small dome almost symmetric around the van
Hove filling is found, while for higher Vpp, the dome becomes
asymmetric with respect to the van Hove filling nvH = 1. At
low temperature, we expect the phase transition to be of first
order in analogy to the one-band model within mean-field
theory in Ref. 12. Explicitly examining the full grand potential
for Vpp, we indeed find second-order transitions at higher
temperature, i.e., for hole densities in the middle of the dome
and first-order transitions for densities at the border of the
dome, as indicated for Vpp = 2 by the solid lines in Fig. 5(a).
Note that the first-order character of the transition might be an
artifact of the mean-field treatment. In the case of a one-band
description, Jakubczyk et al. showed within a functional RG
approach how order-parameter fluctuations may make such a
first-order transition continuous.24

To illustrate the first-order character of the low-temperature
transition, Figs. 5(b)–5(d) show the free energy as a function
of η at T ≈ 0 for a hole density n deep inside the phase, where
the normal state is metastable, and where the nematic state is

T [tpd]

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.005 0.01 0.015 0.02 0.025 0.03

η

0

(e)

(d)

0.005

0.01

0.015

0.02

0.025

0.03

0.9 0.95 1 1.05 1.1 1.15 1.2

T
n

[t
p
d
]

n

(a)

(b) (c) (d)

Vpp= 1.
Vpp= 1.
Vpp= 2.

5
75
0

0 0.05 0.1

(a)

(b) (c) (d)

0 0.05 0.1

(a)

(b) (c) (d)

0 0.05 0.1

(a)

(b) (c)

0

FIG. 5. (a) Phase diagram for the different values of the O-O
nearest-neighbor interaction Vpp = 2, 1.75, and 1.5. At low tem-
perature, there would be first-order transitions, only shown for
Vpp = 2 by the solid lines, before the normal state becomes
unstable (dashed lines). Figs. (b)–(d) show the free energy as a
function of η for n = 1.05, n = 1.095, and n = 1.105 at T = 0.001,
illustrating the first-order character of the low-temperature transition.
(e) The nematic order parameter η as a function of temperature
for Ud = 9 and n = 1.05 showing the second-order transition
at Tc = 0.027.

144502-4



MEAN-FIELD ANALYSIS OF INTRA-UNIT-CELL ORDER . . . PHYSICAL REVIEW B 84, 144502 (2011)

Ud= 10
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0.015
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n

[t
p
d
]

n

Ud= 8
Ud= 9

0

FIG. 6. Phase diagram for Vpp = 1.75 and different Cu on-site
interaction strengths Ud = 8,9,10. Shown are again only “second-
order” phase boundaries.

metastable. The second-order character of the transition on the
top of the dome is best seen in the T dependence of the order
parameter η. This dependence is shown in Fig. 5(e).

What is particularly noteworthy from our survey of parame-
ter space is that the Cu on-site interaction Ud tends to stabilize
the nematic phase as shown in Fig. 6. In fact, we find that the
effect of increasing Ud is almost the same as increasing Vpp as
is apparent upon comparison of Figs. 5(a) and 6. As discussed
in Sec. III C, this is due to an increased hole density at the
oxygen sites as well as a reduced level separation between the
lowest-lying bands for larger Ud .

2. Nematic-spin-nematic order

We only present the doping dependence of the critical
oxygen on-site interactions Uc

p which drives the nematic-spin-
nematic (see Fig. 7), as technical details of the self-consistency
analysis for the nematic-spin-nematic phase are very much
analogous to that for the nematic phase. For completeness, we
also show the critical Up for a ferromagnetic instability with m

as defined in Eq. (3) and ηs = 0. This competing ferromagnetic
instability is only favored over the nematic-spin-nematic order
for n < 1 (electron doping). Notice that the magnitude of Uc

p

for the nematic-spin-nematic order to occur is almost an order
of magnitude larger than the magnitude of V c

pp for the nematic
instability. This is due to the fact that here, the holes on an
oxygen site with spin s are only interacting with the holes
on the same site with opposite spin, while for the nematic

n

m

8

10

12

14

16

18

0.9 0.95 1 1.05 1.1 1.15 1.2

U
c p

[t
p
d
]

ηs

FIG. 7. Critical oxygen interaction strength for a nematic-spin-
nematic (ηs) and a magnetic (m) instability on the oxygen sites. Here,
Ud = 9, Vpd = Vpp = 1, and tpp = 0.

instability, the holes interact with the total hole density of all
four neighboring oxygen sites.

Now we can compare the influence of various interaction
strengths for nematic-spin-nematic ordering to that for nematic
ordering. We find that Ud , �, and tpp have the same effect for
both types of ordering: Ud increasing and � and tpp decreasing
the tendency toward both orders. However, an increase in Vpp

leads to larger Uc
p as it reduces hole occupation of the oxygen

sites. We thus find that the interaction driving the nematic or
nematic-spin-nematic instability hurts the occurrence of the
respective other phase.

C. Comparison to one-band model

In this section, we highlight similarities and differences
between the mean-field theory of the three-band Emery model
and previous studies of effective one-band models. We first
derive effective attractive interactions in spin-symmetric and
antisymmetric channels with dx2−y2 symmetry for the lowest
band of the noninteracting model, in terms of repulsive
oxygen-oxygen interactions. We then discuss the multiband
effect in the “Stoner-like” self-consistency condition.

In order to see how Vpp and Up lead to effective attractive
interactions for the lowest-lying band ξ 0

1ks , we express the
interaction term in the diagonal basis ĉαks of the noninteract-
ing Hamiltonian (setting tpp = 0). In this basis the oxygen
operators read (see the Appendix)

p̂xks = −γ̃1xvkĉ1ks − γ̃1y ĉ2ks + γ̃1xukĉ3ks , (27)

p̂yks = −γ̃1yvkĉ1ks − γ̃1x ĉ2ks + γ̃1yukĉ3ks , (28)

where uk = cos ωk
2 , vk = sin ωk

2 , with

ωk = arctan

(2
√

γ 2
1 (kx) + γ 2

1 (ky)

�

)
, (29)

and

γ̃1i = γ1(ki)√
γ 2

1 (kx) + γ 2
1 (ky)

, i = x,y, (30)

with γ1(ki) = −2tpd cos ki

2 as was defined in Eq. (10). Note
that the oxygen on-site interaction can be separated into spin-
symmetric and antisymmetric parts as

Up

N

∑
k,k′

∑
ν=x,y

n̂νk↑n̂νk′↓

= Up

2N

∑
k,k′

∑
ν=x,y

∑
s,s ′

(n̂νks n̂νk′s ′ − ss ′n̂νks n̂νk′s ′ ), (31)

while the oxygen NN interaction only has a spin-symmetric
part. We now start by expressing the spin-symmetric part of
the interoxygen interactions in the basis ĉαks . The terms that
only involve lowest bands are

Up

4N

∑
k,k′

∑
s,s ′

(
γ̃ 2

1x γ̃
2
1x ′ + γ̃ 2

1y γ̃
2
1y ′

)
v2

kv
2
k′ n̂1ks n̂1k′s ′

+2Vpp

N

∑
k,k′

∑
s,s ′

(
γ̃ 2

1x γ̃
2
1y ′ + γ̃ 2

1y γ̃
2
1x ′

)
v2

kv
2
k′ n̂1ks n̂1k′s ′ , (32)
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with n̂1ks = ĉ
†
1ks ĉ1ks the density operator for the lowest-lying

band. Finally, Eq. (32) can be reorganized into an isotropic
part,

Ũp

4N

∑
k,k′

∑
s,s ′

v2
kv

2
k′ n̂1ks n̂1k′s ′ , (33)

where Ũp = (Up + 8Vpp)/2, and the effective “F2,s” part,

− Ṽpp

4N

∑
k,k′

∑
s,s ′

dkdk′v2
kv

2
k′ n̂1ks n̂1k′s ′ , (34)

where Ṽpp = (8Vpp − Up)/2 and

dk = (cos kx − cos ky)

(2 + cos kx + cos ky)
. (35)

Some remarks are in order. Equation (34) explicitly shows
that repulsive Vpp leads to an effective attractive interaction
that can drive nematicity for the lowest-lying band. It also
shows that Up hinders nematic ordering. Furthermore, we
see that these interoxygen interactions are acting only on the
portion of hole density in the lowest-lying band ξ 0

1ks that can be
attributed to oxygen occupation since the oxygen occupation
number

np = 1

N

∑
k,s

v2
k nF

(
ξ 0

1ks

)
. (36)

Following the same procedure, the spin-antisymmetric part
of Eq. (31) can be organized into an isotropic part and the
effective “F2,a” part:

− Up

8N

∑
k,k′

∑
s,s ′

ss ′v2
kv

2
k′ n̂1ks n̂1k′s ′

− Up

8N

∑
k,k′

∑
s,s ′

ss ′dkdk′v2
kv

2
k′ n̂1ks n̂1k′s ′ . (37)

We therefore find explicitly that oxygen nearest-neighbor and
on-site interactions in the three-band model lead in a one-
band model to attractive spin-symmetric and antisymmetric
interactions of dx2−y2 symmetry, F2,s and F2,a , driving nematic
and nematic-spin-nematic order, respectively.

We now turn to the multiband effect in the linearized
self-consistency equation (22). For the parameter space of
interest to the cuprates, only the lowest band of the (mean-field)
Hamiltonian with energy ξ1ks is filled at low temperatures.
Hence, Eq. (22) amounts to[

Ṽpp

4
− 1

N

∑
k,s

1

4T cosh2 ξ1ks

2T

(
∂ξ1ks

∂η

)2

+ 1

N

∑
k,s

nF(ξ1ks)
∂2ξ1ks

∂η2

]∣∣∣∣∣
η=0

= 0. (38)

While the first line is the familiar result from one-band
mean-field calculations with the second term being the familiar
polarization bubble, the term on the second line has no analog
in simple single-band models. This term grows with total hole
density and is thus responsible for the asymmetry around the
van Hove filling found in Sec. III B.

To better understand Eq. (38), we interpret nematic order
as a perturbation around the isotropic (η = 0) Hamiltonian
H(iso)

ks (as done in the Appendix for tpp = 0) and write the
derivatives in Eq. (38) in terms of the perturbation-theory
expansion parameters [see Eqs. (A13)–(A15)]. Introducing the
(isotropic) Green‘s functions G(iso)

α (k,ωn) = (iωn − ξ
(iso)
αks )−1

with ξ
(iso)
αks = ξαks |η=0, the eigenenergies of H(iso)

ks , and using
the relation

∑
ωn

G(iso)
α (k,ωn)G(iso)

α (k + q,ωn)

∣∣∣∣∣
q→0

= nF
(
ξ

(iso)
αks

) − nF
(
ξ

(iso)
αk+qs

)
ξ

(iso)
αks − ξ

(iso)
αk+qs

∣∣∣∣∣
q→0

= ∂nF
(
ξ

(iso)
αks

)
∂ξ

, (39)

we find
1

N

∑
k,s

1

4T cosh2 ξ1ks

2T

(
∂ξ1ks

∂η

)2
∣∣∣∣∣
η=0

= 1

N

∑
ks

G
(iso)
1 (k,ωn)G(iso)

1 (k,ωn)〈1|δH|1〉2, (40)

the familiar polarization bubble as depicted in Fig. 8(a). For the
case of multiple bands, interband interactions should also be
taken into account as indicated by Fig. 8(b). The corresponding
expression yields∑

α 	=β

∑
k,ωn

G(iso)
α (k,ωn)G(iso)

β (k,ωn)|〈α|δH|β〉|2

=
∑
α 	=β

∑
k

[
nF

(
ξ

(iso)
αks

) − nF
(
ξ

(iso)
βks

)] |〈α|δH|β〉|2
ξ

(iso)
αks − ξ

(iso)
βks

= 1

N

∑
k,s

nF(ξ1ks)
∂2ξ1ks

∂η2

∣∣∣∣∣
η=0

, (41)

where in the last step we have used Eq. (A15) and the fact that
only the lowest band is occupied for low temperatures. The
asymmetry is thus a multiband effect unlike the asymmetry
found in Ref. 12, which is due to an asymmetric density
of states. It is now clear why the asymmetry only appears
for large values of Vpp: only when the O-O NN interaction
is comparable to the band separation, the influence of this
term becomes visible. Increasing Ud then has two effects,
both enhancing nematicity: in addition to increasing the hole
density on the oxygen sites, it shifts the lowest band slightly up
in energy, decreasing the level separation to the second band,
hence increasing the importance of the interband term. This
explains why an increase in Ud has such a similar effect as an
increase in Vpp.

δ αβ

(a)

δ βαδ αα

Gαα(k, iωn)

Gαα(k, iωn)

δ αα

(b)
Gαα(k, iωn)

Gββ(k, iωn)

FIG. 8. The two bubble diagrams involved in the linearized
self-consistency equation, where we have used the short notation
〈δH〉αβ = 〈α|δH|β〉.
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IV. LOOP CURRENTS

In the loop-current picture, the staggered magnetic mo-
ments observed in experiments1 originate in circulating elec-
tron currents around O-Cu-O triangles within the unit cell. This
phase was introduced and analyzed in a mean-field approach
by Varma.5 Stipulating a Cu-O hopping integral that depends
on the hole doping and a vanishing charge-transfer gap, a
phase diagram was drawn in qualitative agreement with the
pseudogap phase. While later exact diagonalization calculation
on small clusters concluded that the energy scale of such
current loops was too small to account for the phenomena
associated with the pseudogap region,18 RG calculations for
two-leg ladders found incommensurate loop currents17 and
a variational Monte Carlo study found that the �II current
pattern is stabilized in intermediate system sizes.19

In this section, our aim is not to answer the question
whether such loop currents exist in the parameter range
usually assumed for the cuprates, but again to investigate the
microscopic origin and the influence of the various model
parameters. This then allows for a comparison with the two
orderings of the previous section.

A. Mean-field theory of loop currents

To analyze this loop phase, we perform a similar calculation
as in Ref. 5, however, with some important differences:
First, we only use the Hamiltonian as defined in Eqs. (1)
and (2) without any implicit assumption regarding doping
dependence of parameters. Further, our calculation includes
the O-O NN interaction, which we decouple analogously to
the Cu-O NN interaction. Finally, we do not reformulate the
Hamiltonian in terms of flux through the Cu-O triangles,
but decouple the NN interaction terms and directly solve
for the self-consistent mean-field solution. Our conventional
treatment of the problem leads to different doping dependence
and an additional Vpp contribution compared to Ref. 5.

We start with the interactions in Eq. (2) and follow the Cu-
O-interaction decoupling of Varma5 by defining the operators

A†
1/2is = 1

2 [(d̂†
i,s p̂i+x̂/2,s + d̂

†
i,s p̂i−x̂/2,s)

± (d̂†
i,s p̂i+ŷ/2,s + d̂

†
i,s p̂i−ŷ/2,s)], (42)

A†
3/4is = i

2
[(d̂†

i,s p̂i+x̂/2,s − d̂
†
i,s p̂i−x̂/2,s)

± (d̂†
i,s p̂i+ŷ/2,s − d̂

†
i,s p̂i−ŷ/2,s)]. (43)

Introducing the (complex) mean-field order parameters

Rνe
iφν = Vpd

∑
s

〈Aνs〉, (44)

with 〈Aνs〉 = 〈Aνis〉 independent of site i, the Cu-O interaction
can straightforwardly be mean-field decoupled in the Fock
channel

−Vpd

∑
i,ν

∑
s,s ′

A†
νisAνis ′ ≈

−
∑
i,ν,s

(Rνe
−iφνAνis + H.c.) + N

Vpd

∑
ν

R2
ν . (45)

The order parameters Rν correspond to the current patterns
shown in Fig. 9 and can again be classified according to the

A1s A2s A3s A4s

D1s D2s D3s D4s

FIG. 9. The different current patterns arising from the operators
A1−4s in Eqs. (42) and (43) and D1−4s in Eqs. (46)–(48). Combining
A2s with D2s leads to the loop-current phase �I, while A3s (A4s)
combined with D3s (D4s) leads to �II.

symmetries they break. We first note that A1s cannot lead to a
stationary current loop. Focusing for the other order parameters
again only on C4, I, T , and combinations thereof, we find that
the order parameter arising from A2s , corresponding to �I in
Ref. 5, differs from the order parameters arising from A3s and
A4s corresponding to the �II phase, in that it preserves C4 ◦ T
(see Table I).

Next, we similarly look at the O-O interaction. For the
decoupling, we again introduce operators of distinct symmetry,

D†
1/2is = 1√

2
(p̂†

i−x̂/2,s p̂i+ŷ/2,s ∓ p̂
†
i+x̂/2,s p̂i+ŷ/2,s

+ p̂
†
i+x̂/2,s p̂i−ŷ/2,s ∓ p̂

†
i−x̂/2,s p̂i−ŷ/2,s) (46)

and

D†
3is = i(p̂†

i+x̂/2,s p̂i+ŷ/2,s − p̂
†
i−x̂/2,s p̂i−ŷ/2,s), (47)

D†
4is = i(p̂†

i−x̂/2,s p̂i+ŷ/2,s − p̂
†
i+x̂/2,s p̂i−ŷ/2,s). (48)

This allows us to introduce (site-independent) mean fields

Rp
ν eiφ

p
ν = Vpp

∑
s

〈Dνs〉, (49)

and decouple the O-O interaction term in the Fock channel as

−Vpp

2

∑
i,ν

∑
s,s ′

D†
νisDνis ′ ≈

−1

2

∑
i,ν,s

(
Rp

ν e−iφ
p
ν Dνis + H.c.

) + N

2Vpp

∑
ν

(
Rp

ν

)2
. (50)

Looking at Fig. 9, we see that D1s only breaks time-reversal
symmetry, while D2s leads to the �I phase and D3/4s to the
�II phase with the respective broken symmetries.

In the following, we are only interested in the phase �II

and therefore only keep the two order parameters R3 ≡ R and
R

p

3 ≡ Rp, which have the same symmetry and mix, finite.
Analogously, we could also choose R4 and R

p

4 (see Fig. 9).
An order parameter yielding a current (rather than a bond
density) has to have an imaginary part, and for simplicity,
we set the phases to φ3 = φ

p

3 = π/2.30 Note that nonzero R

and Rp, while corresponding to nonzero loop currents, do not
guarantee the absence of macroscopic currents.

Contrary to Sec. III, where the mean-field decoupling led
to a shift of the diagonal elements in the Hamiltonian, here it
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leads to new hopping elements in the Hamiltonian (7),

γ̃1(ki) = −2tpd cos
ki

2
− iR sin

ki

2
(51)

and

γ̃2(k) = −4tpp cos
kx

2
cos

ky

2

− iRp

(
sin

kx

2
cos

ky

2
− cos

kx

2
sin

ky

2

)
. (52)

For simplicity, we decouple the nearest-neighbor interaction
only in the loop-current (Fock) channel and thus the diagonal
elements yield

ξx,y = � + Up

np

4
− μ, (53)

ξd = Ud

(n − np)

2
− μ, (54)

and

f (np,R,Rp)

N
= − (np)2

8
Up − (n − np)2

4
Ud + R2

Vpd

+ R2
p

2Vpp

.

(55)

To investigate the occurrence of instabilities, we need to
account for the fact that the two order parameters R and
Rp are coupled by symmetry. This means that we cannot
investigate their respective instabilities separately as done
for the order parameters in the previous section. Instead, the
pairs of critical interaction strengths (V c

pp,V c
pd ) are given by

a vanishing eigenvalue of the Hessian matrix of the grand
potential ω,

[ω]μν =
(

∂2
Rω ∂R∂Rp

ω

∂Rp
∂Rω ∂2

Rp
ω

)∣∣∣∣∣
R=Rp=0

. (56)

B. Results

The solid lines in Fig. 10 show the curves (V c
pp,V c

pd ) for
Ud = 9, Up = 3, tpp = 0.1, and different hole densities. Due to
coupling of the two order parameters R and Rp, the critical Cu-
O NN interaction V c

pd is reduced by a finite Vpp . We again study
the influence of different parameters on the critical interaction
values. As the dashed and the dotted lines for n = 0.9 show,
increasing the charge-transfer gap � or reducing the copper
on-site interaction Ud results in higher critical interaction
strengths. However, this mainly affects V c

pp due to the change
in the oxygen hole occupancy, while V c

pd is almost unchanged.
Contrary to the nematic and the nematic-spin-nematic order

of the previous section, the critical interaction strengths here
are monotonically decreasing with increasing hole density (see
Fig. 10). This is due to the fact that the current loop in a mean-
field approach arises due to a Fock-type rather than Hartree-
type decoupling and hence not a Stoner-type instability. As the
whole dispersion is altered by the decoupling, increasing the
hole density in the lowest band increases the tendency toward
loop currents. In order to find a phase diagram as found in
the cuprates, additional assumptions to the model have to be
made, such as a density-dependent hopping, e.g., of the form
tpd → tpd |x| with x = n − 1, as in Varma’s analysis.5

2

4

6

8

10

0 2 4 6 8 10 12

V
c p
d

V c
pp

Δ = 2.5, Ud = 9
Δ = 3.5, Ud = 9
Δ = 2.5, Ud = 7

0

n = 0.9
n = 1.0

n = 1.1

FIG. 10. Critical interactions (V c
pp,V c

pd ) for Ud = 9, Up = 3,
tpp = 0.1, � = 2.5, and different hole densities. The dashed and
dotted lines for n = 0.9 illustrate the influence of the Cu on-site
interaction and the charge-transfer gap.

V. DISCUSSION AND CONCLUSIONS

Starting from a three-band model and applying a mean-
field approach—despite its obvious shortcomings—we gained
valuable insights about the microscopic repulsive interactions
that can promote various IUC orders. We found that the Cu
on-site interaction Ud increases the tendency toward all the
studied orderings by shifting more holes to the oxygens.
The charge-transfer gap � has the opposite effect. Also,
different interaction parameters affect the different instabilities
differently: while the O on-site repulsion Up only favors the
nematic-spin-nematic phase and the Cu-O repulsion Vpd the
loop currents, the nearest-neighbor O-O repulsion Vpp helps
both, the nematic and the loop-current phase (see Table II for
a summary of all the model parameters). Further, we could
microscopically motivate attractive interactions F2,s and F2,a

with a repulsive (longer-ranged) O-O repulsion Vpp and O
on-site repulsion Up, respectively.

A comment on the magnitude of the interactions necessary
found here is in order: the energy scale of the pseudogap
phase in the cuprates is of order 100 K. For any of the
above phases to reach to such high temperatures, unrealis-
tically large interactions are needed within our mean-field
calculation. Looking at the nematic phase, for example, and
taking tpd ≈ 1 eV, Vpp needs to be of order 2tpd as can
be deduced from Fig. 5(a). Also, increasing the Cu on-site
interaction strength Ud to enter a nematic phase leads to
unphysically large values. For the nematic-spin-nematic phase,
the respective interactions need to be even larger as can be
seen in Fig. 7. Finally, for the loop-current phase, we deduce
values for the critical interaction strengths from Fig. 10,

TABLE II. Summary of the effect of the different parameters in
the Emery model on the different IUC orders, where + denotes a
parameter that helps a specific order and a − denotes a hindering
parameter.

Ud Up Vpd Vpp tpp �

Nematic + − − + − −
Nematic-spin-nematic + + − − − −
�II loop current + − + + − −
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which are much higher than realistically expected. However,
the aim of our analysis is not to answer whether these
phases exist in the cuprates—a mean-field analysis would
certainly not be the appropriate approach for such a task—
but to analyze the different IUC orderings within the same
framework.

We can also draw some conclusions about the competition
or coexistence of the IUC-ordered phases from our calculation
presented here. From a symmetry point of view, the two
orders discussed in Sec. III, the nematic and the nematic-spin-
nematic, can coexist independently, i.e., they do not couple
linearly in a Ginzburg-Landau-type expansion of the free
energy. However, they are promoted by different interactions,
Vpp and Up, each hurting the respective other phase. For
both orders to exist in principal, Vpp and Up have to be at
least an order of magnitude larger than tpd , clearly outside
the physically meaningful range of a mean-field calculation.
Being Stoner-type instabilities, however, both depend in a
mean-field picture on the presence of a van Hove singularity
and thus, even if the interactions were tuned in a way as to
allow for both instabilities, having one kind of order already
removes the high density of states from the Fermi level. This
prevents the system from entering the other phase and there is
no coexistence. In contrast, the loop-current phase is promoted
by the same interaction as the nematic phase, Vpp, and does
not depend on a high density of states at the Fermi level. A
deformation of the Fermi surface has thus no direct influence
on this instability. Being of different symmetry, a nematic
and a loop-current phase can therefore coexist, in general,
independently.

The mean-field analysis and our exploration of the rich
phase space of the three-band Emery model in this paper
can serve as a stepping stone towards more sophisticated
calculations of IUC orders and their interdependence. For
instance, extension of the calculations in Refs. 13 and 15
to the case of three bands might provide further valuable
insight. In particular, investigation of the interplay between
these IUC orders and superconductivity in a genuinely strong-
coupling approach will be of great interest. As supercon-
ductivity cannot be accessed within mean-field theory with
purely repulsive interactions, we left out this important issue
altogether.31

The possible coexistence of nematic and loop-current
phases we find in this work is interesting in light of experimen-
tal observations of both IUC nematic order6,7 and IUC stag-
gered magnetism in underdoped YBCO.1 On the other hand,
in Hg compounds only IUC staggered magnetism has been
observed.2 In order to test whether coexistence of both orders
is a generic feature, we propose a measurement of anisotropy in
Nernst effect in the presence of a symmetry-breaking field on
Hg compounds. For example, an in-plane magnetic field could
align possibly existing nematic domains in Hg compounds,
which is tetragonal otherwise, much in the same manner as
in Sr3Ru2O7.25
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APPENDIX: t pp = 0 ANALYSIS

In this Appendix, the case tpp = 0 is investigated for η → 0
for which we write the Hamiltonian (7) as

Hks = H(iso)
ks + ηδHks , (A1)

where

H(iso)
ks =

⎛
⎜⎝

ξ (iso)
p 0 γ1(kx)

0 ξ (iso)
p γ1(ky)

γ1(kx) γ1(ky) ξ
(iso)
d

⎞
⎟⎠ (A2)

and

δHks =

⎛
⎜⎜⎝

− Ṽpp

4 0 0

0 Ṽpp

4 0

0 0 0

⎞
⎟⎟⎠ , (A3)

with

ξ (iso)
p = � + Ũp

np

4
− μ, (A4)

ξ
(iso)
d = Ũd

(n − np)

2
− μ. (A5)

The unperturbed Hamiltonian (A2) can straightforwardly be
diagonalized yielding the eigenenergies ξ

(iso)
2ks = ξ (iso)

p and

ξ
(iso)
3/1ks = 1

2

(
ξ (iso)
p + ξ

(iso)
d

)
±

√
1
4

(
ξ

(iso)
p − ξ

(iso)
d

)2 + γ 2
1 (kx) + γ 2

1 (ky), (A6)

with the corresponding states |vα〉 given by the eigenvectors

�v1 =

⎛
⎜⎝

−γ̃1xvk

−γ̃1yvk

uk

⎞
⎟⎠, �v2 =

⎛
⎜⎝

−γ̃1y

γ̃1x

0

⎞
⎟⎠, �v3 =

⎛
⎜⎝

γ̃1xuk,

γ̃1yuk

vk

⎞
⎟⎠ .

(A7)
In these equations, we introduced uk = cos ωk

2 , vk = sin ωk
2

with

ωk = arctan

(2
√

γ 2
1 (kx) + γ 2

1 (ky)

ξ
(iso)
p − ξ

(iso)
d

)
(A8)

and

γ̃1x(y) = γ1(kx(y))√
γ 2

1 (kx) + γ 2
1 (ky)

. (A9)

For η → 0, we can thus express the eigenenergies in powers
of η in a textbook perturbation-theory expansion,

ξαks = ξ
(iso)
αks + ηξ

(1)
αks + η2ξ

(2)
αks + O(η3), (A10)

with

ξ
(1)
αks = 〈vα|δH|vα〉 (A11)
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and

ξ
(2)
αks =

∑
β 	=α

|〈vα|δH|vβ〉|2
ξ

(iso)
αks − ξ

(iso)
βks

. (A12)

The derivatives appearing in the self-consistency equa-
tions (20), (21), and (22) can thus all be expressed analytically
through Eq. (A10) yielding

∂ξαks

∂np

∣∣∣∣
η=0

= ∂ξ
(iso)
αks

∂np
, (A13)

∂ξαks

∂η

∣∣∣∣
η=0

= ξ
(1)
αks , (A14)

∂2ξαks

∂η2

∣∣∣∣
η=0

= 2ξ
(2)
αks . (A15)

Evaluating the derivatives for the oxygen hole density in
Eq. (20), we find using Eq. (A13),

∂ξ1ks

∂np

∣∣∣∣
η=0

=
(

Ũp

4
+ Ũd

2

)
vk − Ũd

2
, (A16)

∂ξ2ks

∂np

∣∣∣∣
η=0

= Ũp

4
= Ũp

4
+ Ũd

2
− Ũd

2
, (A17)

∂ξ3ks

∂np

∣∣∣∣
η=0

=
(

Ũp

4
+ Ũd

2

)
uk − Ũd

2
. (A18)

Using these derivatives, the self-consistency equation for the
oxygen occupation number simplifies to

np = 1

N

∑
k,s

{
v2

knF
(
ξ

(iso)
1ks

)
+ nF

(
ξ

(iso)
2ks

) + u2
knF

(
ξ

(iso)
3ks

)}
. (A19)
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