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Cubic and noncubic multiple-q states in the Heisenberg antiferromagnet on the pyrochlore lattice
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The ordering of the classical Heisenberg model on the pyrochlore lattice with the antiferromagnetic nearest-
neighbor interaction J1 and the ferromagnetic next-nearest-neighbor interaction J2 is investigated by means
of a mean-field analysis and a Monte Carlo simulation. For a moderate J2/J1 value, the model exhibits a
first-order transition into an incommensurate multiple-q ordered state where multiple Bragg peaks coexist in
the spin structure factor. We show that there are two types of metastable multiple-q states: a cubic symmetric
sextuple-q state and a noncubic symmetric quadruple-q state. Based on a Monte Carlo simulation, we find that the
cubic sextuple-q state appears just below the first-order transition temperature, while another transition from the
cubic sextuple-q state to the noncubic quadruple-q state occurs at a lower temperature.
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I. INTRODUCTION

Recently, geometrically frustrated magnets have at-
tracted much interest due to their unconventional ordering
behaviors.1–3 Spin systems on the pyrochlore lattice, which
consists of a three-dimensional network of corner-sharing
tetrahedra (Fig. 1), are typical examples of such geometrically
frustrated magnets. The classical Heisenberg magnet with
the antiferromagnetic nearest-neighbor (NN) interaction is
known to exhibit no magnetic long-range order even at zero
temperature.4–7 This is due to the macroscopic degeneracy
of the ground state induced by geometrical frustration. Since
such a high degeneracy is realized via a fine balance among
frustrated interactions, it might be lifted by introducing small
perturbations, e.g., the further-neighbor interactions,8–12 the
quenched randomness,13–17 or the lattice distortion.18–20 The
lifting of the degeneracy as a result of small perturbations
might lead to an exotic magnetic state peculiar to geometrical
frustration.

In this paper, we focus on the effects of the next-nearest-
neighbor (NNN) interaction on the pyrochlore-lattice classical
Heisenberg model. Effects of the further-neighbor interactions
were investigated within a mean-field approximation by
Reimers et al. up to the fourth neighbors.8 In the case of the
NNN interaction J2 only, they showed that a q = 0 order was
stabilized for the antiferromagnetic NNN interaction J2 < 0,
while an incommensurate q order was stabilized for the
ferromagnetic NNN J2 > 0. Since then, several Monte Carlo
(MC) simulations on this J1-J2 pyrochlore Heisenberg model
were performed.9–11

For the antiferromagnetic J2 < 0, these works revealed
that the system exhibited a first-order transition from the
paramagnetic phase to the q = 0 ordered phase with a collinear
up-up-down-down spin structure.9,11 Selection of such a
collinear structure among possible q = 0 states might be due
to “order-by-disorder” mechanism, where thermal fluctuations
lift the degeneracy through an entropic contribution to the free
energy.21

For the ferromagnetic J2 > 0, on the other hand, the situa-
tion seemed to be more subtle. Tsuneishi et al. observed that
the model with J2/J1 = −0.1 exhibited a first-order transition
into a peculiar ordered state, where enhanced spin fluctuations

apparently coexisted with sharp Bragg peaks associated with a
multiple-q structure.9 Chern et al. studied the case of smaller
J2/|J1| � 0.09 and showed that there occurred successive
phase transitions with an intermediate phase characterized
by a finite nematic order parameter and a layered structure,
which was not predicted in the mean-field analysis.11 Chern
et al. also pointed out that the low-temperature phase was
a multiple-q state, which was basically the same as the one
observed by Tsuneishi et al. In any case, the explicit spin
configuration of the multiple-q state was not identified so
far.

In this paper, we investigate the nature of the multiple-q
state observed in the J1-J2 pyrochlore-lattice Heisenberg an-
tiferromagnet with the ferromagnetic NNN interaction on the
basis of a mean-field analysis and an extensive MC simulation.
Particular attention is paid to the explicit spin configuration of
the multiple-q state and the nature of spin fluctuations in such
a state. We see that there are mainly two stable multiple-q
structures, the sextuple-q state and the quadruple-q state, each
of which is characterized by whether they keep the cubic lattice
symmetry or not. A first-order transition observed in earlier
studies corresponds to the transition from the paramagnetic
state to the cubic-symmetric multiple-q (sextuple-q) state.
We predict that another phase transition might occur at a
lower temperature from the cubic-symmetric multiple-q state
to the noncubic multiple-q (quadruple-q) state. Reflecting
their characteristic spin fluctuations, internal fields in such
multiple-q states exhibit a broad distribution.

The rest of the paper is organized as follows. In Sec. II, we
describe our model and briefly review the previous results on
the model. In Sec. III, we present the result of our mean-field
calculation determining the explicit spin configurations of the
possible multiple-q states. Our MC results are presented in
Sec. IV. The results are discussed in conjunction with the
mean-field result, including the explicit spin configurations
of the multiple-q states. Finally, we summarize our results in
Sec. V.

II. MODEL

The model considered is the classical Heisenberg antifer-
romagnet on the pyrochlore lattice, the Hamiltonian of which
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FIG. 1. (Color online) A pyrochlore lattice. The nearest-neighbor
interaction J1 and the next-nearest-neighbor interaction J2 are
indicated.

is given by

H = −J1

∑
〈i,j〉

Si · Sj − J2

∑
〈〈i,j〉〉

Si · Sj , (1)

where the first and the second sums are taken over all NN
and NNN pairs J1 and J2 (see Fig. 1), respectively. We
suppose the antiferromagnetic NN interaction J1 < 0 and the
ferromagnetic NNN interaction J2 > 0 (J1-J2 model), and a

to be the length of the cubic unit cell. Note that the pyrochlore
lattice, which can be viewed as a face centered cubic (fcc)
lattice formed by regular tetrahedra of a fixed orientation, is a
non-Bravais lattice.

The ordering of this J1-J2 model was first studied by
Reimers et al. based on a mean-field approximation. There,
the full density matrix of the system was approximated by a
product of single spin density matrices with local effective
fields, which were determined so as to minimize the free
energy. Reimers et al. found that the model exhibited a phase
transition from the paramagnetic phase to a magnetically
ordered phase, where the magnetic long-range order was
characterized by 12 incommensurate wave vectors of the fcc
Bravais lattice: (q∗,q∗,0), (q∗,−q∗,0), (0,q∗,q∗), (0,q∗,−q∗),
(q∗,0,q∗), (−q∗,0,q∗) and their minus, with q∗ � 3π

2a
.8 Since

the pyrochlore lattice consists of four fcc sublattices, each wave
vector has four independent eigenmodes, and only a certain
combination of these becomes unstable at the transition point.

In fact, there are infinitely many ways to mix such 12 critical
modes. Thus, just the determination of unstable modes is not
enough to specify the explicit spin configuration of the ordered
phase. Indeed, Reimers et al. did not determine the ordered
spin configuration nor specified even whether it was a single-q
state or a multiple-q state.

A multiple-q state is generally incompatible with the fixed
spin-length condition |Si | = 1 so that it is not favored in the
classical spin system at low enough temperatures where the
fixed spin-length condition needs to be observed. Meanwhile,
the unstable critical mode of the present model entails the
magnitudes of frozen spin moments differ from one sublattice

to the other so that even a simple single-q state is incompat-
ible with the fixed spin-length condition. It means that the
multiple-q state might have a higher chance to be stabilized,
particularly at moderate temperatures where thermal fluctua-
tions play a role.

As mentioned, a multiple-q ordered state characterized by
multiple Bragg peaks in the spin structure factor was reported
in previous MC simulations on the model.9,11 Interestingly,
Tsuneishi et al. also reported that this multiple-q ordered
state accompanies only a small amount of spin freezing, and
some sort of spin fluctuations apparently coexisted with sharp
Bragg peaks. The detailed spin structure of the multiple-q state,
however, has not been clarified so far. Especially, the origin
of the spin fluctuation reported by Tsuneishi et al. remains
unsolved.

Chern et al. reported that yet another phase, a partially
ordered collinear phase, might be realized between the param-
agnetic phase and the multiple-q phase for sufficiently small
values of |J2/J1| � 0.09.11 This partially ordered collinear
phase is characterized by a finite nematic order parameter
and a layered spin structure. Note that this phase is different
from the multiple-q ordered phase discussed above where the
system retains a magnetic long-range order characterized by
sharp Bragg peaks. Although the partially ordered collinear
phase as discussed by Chern et al. is also interesting, we focus
in this paper on the nature of the multiple-q ordered state and
of the associated fluctuations in the multiple-q ordered phase.

III. MEAN-FIELD APPROXIMATION

In studying the nature of the multiple-q ordered state,
we begin by revisiting a mean-field analysis done earlier by
Reimers et al.8 Reimers et al. constructed a Landau-type free
energy F of the pyrochlore Heisenberg antiferromagnet within
a mean-field approximation up to the quartic order

F/Ns = −4T ln 4π + 1

2

∑
q

∑
μν

B(μ)
q · B(ν)

−q

(
3T δμν − Jμν

q

)

+ 9T

20

∑
μ

∑
{q}

′(
B(μ)

q1
· B(μ)

q2

)(
B(μ)

q3
· B(μ)

q4

)
, (2)

where B(μ)
q is the order parameter corresponding to the Fourier

magnetization of sublattice μ (μ = 1,2,3,4) given by

B(μ)
q = 〈

S(μ)
q

〉
, S(μ)

q = 1

Ns

∑
i

S(μ)
i exp

( − q · r (μ)
i

)
, (3)

where S(μ)
i is the spin at the site i belonging to sublattice μ, r (μ)

i

is the position vector of that site, and Ns is the number of spins
belonging to sublattice μ. The sum

∑′
{q} runs over all qi’s,

which satisfy q1 + q2 + q3 + q4 = 0, and J
μν
q is the Fourier

transform of the exchange interaction between sublattices μ

and ν. The quadratic term can be diagonalized by a unitary
matrix Uq with the eigenvalue λq :

∑
ν

J μν
q Uνi

q = λi
qU

μi
q , (4)
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where i indicates each eigenmode. By transforming the order
parameter to normal modes �i

q ,

B(μ)
q =

∑
i

Uμi
q �i

q, (5)

the Landau free energy F is reduced to

F/Ns = −4T ln 4π + 1

2

∑
q

∑
i

∣∣�i
q

∣∣2(
3T − λi

q

)

+ 9T

20

∑
ijkl

∑
{q}

′(
�i

q1
· �j

q2

)(
�k

q3
· �l

q4

)
×

∑
μ

Uμi
q1

Uμj
q2

Uμk
q3

Uμl
q4

. (6)

From the quadratic term of the free-energy expansion, one
sees that the normal mode corresponding to the maximum
eigenvalue λi

q∗ becomes unstable at Tc = 1
3λi

q∗ where q∗ is the
critical wave vector, leading to a phase transition to the ordered
state characterized by the wave vector q∗. When the maximum
eigenvalue is degenerate as in the present case, the ordered-
state spin configuration still remains largely undetermined at
the quadratic level. In such a case, there are infinitely many
ways of mixing �i

q∗ ’s with keeping the order parameter

m2 ≡
∑ ∣∣�i

q∗
∣∣2

(7)

constant. In order to specify the explicit ordered-state spin
configuration, one needs to go to the quartic term. Reimers
et al. made such an analysis only for the special case of a simple

q = 0 ordered state, whereas such an analysis has not been
made for more general cases of an incommensurate ordered
state, which is the target of our following analysis.

Now, we wish to go beyond the analysis of Reimers et al.
to derive the explicit ordered-state spin configuration of the
J1-J2 model within a mean-field approximation. For the case
of J1 < 0 and J2 > 0 of our interest, the maximum eigenvalue
of Jq appears in a symmetric direction q = (q,q,0) and its
cubic-symmetry counterparts. Along this direction, Jq has a
form

Jq = 2

⎛
⎜⎜⎜⎝

0 J (1) J (2) J (2)

J (1) 0 J (2) J (2)

J (2) J (2) 0 J (3)

J (2) J (2) J (3) 0

⎞
⎟⎟⎟⎠ , (8)

with

J (1) = J1 cos
q

2
+ 2J2,

J (2) = J1 cos
q

4
+ J2

(
cos

q

4
+ cos

3

4
q

)
, (9)

J (3) = J1 + 2J2 cos
q

2
.

The eigenvalues of this matrix are calculated as

λ1 = −2J1 cos
q

2
− 4J2, (10)

λ2 = −2J1 − 4J2 cos
q

2
, (11)

λ± = (J1 + 2J2)

(
cos

q

2
+ 1

)
±

√
(J1 − 2J2)2

(
cos

q

2
− 1

)2

+ 16

[
J1 cos

q

4
+ J2

(
cos

q

4
+ cos

3q

4

)]2

, (12)

with the corresponding eigenvectors given by

�U 1
q = 1√

2

⎛
⎜⎜⎜⎝

1

−1

0

0

⎞
⎟⎟⎟⎠ , �U 2

q = 1√
2

⎛
⎜⎜⎜⎝

0

0

1

−1

⎞
⎟⎟⎟⎠ , (13)

and

�U±
q = 1√

2 + 2α2±

⎛
⎜⎜⎜⎝

1

1

−α±
−α±

⎞
⎟⎟⎟⎠ , (14)

with

α±(q) = −λ± + 2
(
J1 cos q

2 + 2J2
)

4
[
J1 cos q

4 + J2
(

cos q

4 + cos 3q

4

)] . (15)

The maximum eigenvalue lies in the λ+ branch at a wave
vector q = q∗ � 3π

2a
. Note that, since |α+| 
= 1 generally in

the corresponding eigenvector �U+
q , a single-q state associated

with such an eigenvector can not satisfy the fixed spin-length

condition |Si | = 1 for all sublattices. Hence, even a pure
single-q state can not be realized at T = 0 as in multiple-q
states, although it might be realized at finite temperatures due
to thermal fluctuations.

Due to the cubic symmetry of the pyrochlore lattice, λ+(q∗)
is twelvefold degenerate. Hence, a variety of multiple-q states
might be possible in principle. Even if one is to identify two
eigenmodes corresponding to q and −q, there are still six
independent eigenmodes. Within the Landau-type free-energy
expansion (6), the free-energy difference among possible
multiple-q states arises from the quartic term

f4 = 9T

20

∑
i,j,k,l

∑
{q}

′(
�i

q1 · �
j

q2

)(
�k

q3 · �l
q4

)
×

∑
μ

U
μi

q1 U
μj

q2 U
μk

q3 U
μl

q4 , (16)

where the sum over i,j,k,l is taken over eigenmodes
(i,j,k,l = 1,2,±). Just below the transition temperature, one
might neglect in the summation

∑
ijkl

∑′
{q} the contributions
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(a) Double -q (b) Quadruple -q (c) Sextuple -q 

FIG. 2. (Color online) Schematic representation of several multiple-q states. Twelve arrows represent twelve wave vectors corresponding
to critical eigenmodes of the model. A linearly polarized spin-density wave (SDW) or a spiral depicted on each arrow demonstrate the type of
the corresponding eigenmode. (a) The double-q state, which is a superposition of two spirals of q±

i with mutually orthogonal spiral planes.
(b) The quadruple-q state, which is a superposition of two spirals of q±

i sharing a common spiral plane and two SDWs perpendicular to the
spiral plane. (c) The sextuple-q state, which is a superposition of six SDWs, where each pair of q±

i shares a common axis, while axes of
different q i’s are mutually orthogonal.

from all modes other than the 12 critical modes. Let us
represent independent critical wave vectors as

q±
1 = (q∗, ± q∗,0), q±

2 = (0,q∗, ± q∗), q±
3 = (±q∗,0,q∗).

(17)

When one gives the number of critical modes to be mixed, there
remain degrees of freedom associated with the amplitudes and
the directions of the critical modes �+

q±
i

, which should be
determined so as to minimize f4.

In case of the single-q state, f4 takes a minimum for a
simple spiral state

S(r) ∝ cos
(
qσ

i · r + θ
)
e1 ± sin

(
qσ

i · r + θ
)
e2, (18)

where σ = ± with e1 ⊥ e2 and |e1| = |e2| = 1, while the
minimized f4 is given by

f
(si)
4 = 9T

10(1 + α2)2
(1 + α4)m4, (19)

where α ≡ α+(q∗).
In addition to the simple single-q state, various types of

multiple-q states are possible depending on the number of
mixed critical modes. The multiple-q states with odd number
of critical modes, i.e., the states with three or five mixed
eigenmodes, turn out to have higher f4, and we consider here
only the multiple-q states with even number of critical modes,
i.e., the states with two, four, and six mixed eigenmodes,
which are described as the double-q, the quadruple-q, and
the sextuple-q states, respectively. For a given even number
of mixed critical modes, one needs to minimize f4 for a fixed
order parameter m2 with respect to the amplitudes and the
directions of the critical modes �+

q±
i

. Some of the details of
this minimization procedure are given in the Appendix.

In case of the double-q state, the optimized spin configura-
tion turns out to be a superposition of two distorted spirals of
q±

i , which have mutually orthogonal spiral planes as illustrated
in Fig. 2(a) (the d1 state in the Appendix). The minimized f4

is calculated to be

f
(d)
4 = 9T

40(1 + α2)2

[
3 + 4α2 + 3α4 − (1 + α4)2

(1 + α2)2

]
m4. (20)

In the case of the quadruple-q state, the optimized spin
configuration turns out to be a superposition of two spirals
q±

i sharing a common spiral plane and two linearly polarized
spin-density waves (SDW), S(r) ∝ cos(qσ

j · r + θ )e3, with its
spin polarization perpendicular to the spiral plane as illustrated
in Fig. 2(b). The minimized f4 is calculated to be

f
(q)
4 = 9T

40(1 + α2)2

[
− (1 + 12α2 + α4)2

1 + 20α2 + α4

+ 3(1 + 4α2 + α4)

]
m4. (21)

Finally, in case of the sextuple-q state, the optimized spin
configuration turns out to be a superposition of six linearly
polarized SDWs, where each pair of q±

i shares a common
axis ei , and axes of different qis are mutually orthogonal e1 ⊥
e2 ⊥ e3 as illustrated in Fig. 2(c). Note that this sextuple-q
state retains a cubic symmetry of the pyrochlore lattice, in
sharp contrast to the other multiple-q states or the single-q
state, which break the cubic lattice symmetry. The minimized
f4 is calculated to be

f
(se)
4 = 3T

40(1 + α2)2
(7 + 12α2 + 7α4)m4. (22)

In Fig. 3, we show f4/T of various states discussed
above, including the single-q state, the double-q state, the
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FIG. 3. (Color online) Quadratic terms of the free energy f4 of the
single-q state and of various types of multiple-q states, including the
double-q state (the d1 state in the Appendix), the quadruple-q state
(the q2 state in the Appendix), and the sextuple-q state, are plotted
versus the parameter α = α+(q∗) [see Eq. (15)]. The inset exhibits a
relation between α and J2/|J1|. For α � 0.518, the double-q state and
the quadruple-q state become locally unstable. Such unstable regions
are indicated by thin dotted lines. For further details of the stability,
see the Appendix.

quadruple-q state, and the sextuple-q state, as a function of
the parameter α. In fact, α depends on J2/J1 only weakly. For
the value of J2 < |J1|, α takes values around α � 0.4 (see the
inset of Fig. 3). Around this value, the free energy of the single-
q state turns out to be much higher than those of the multiple-q
states. This result is consistent with the observation of the
multiple-q states in previous MC simulations.9,11 Within the
present mean-field approximation, the double-q state becomes
most stable for α � 0.4. The free-energy difference among
various multiple-q states, however, turns out to be rather small,
and fluctuations neglected here might eventually select the
multiple-q state other than the double-q state. In order to de-
termine the true ordered state of the model, we should carefully
examine the effect of fluctuations. For this purpose, we perform
extensive MC simulations of the model in the next section.

IV. MONTE CARLO SIMULATION

In this section, we present the results of our MC simulation
on the J1-J2 pyrochlore-lattice classical Heisenberg model
with J1 < 0 and J2 > 0. As a typical example, we deal with
the case of J2/J1 = −0.2. In the phase diagram reported by
Chern et al.,11 this J2/|J1| ratio is sufficiently large so that
the partially ordered collinear phase should not appear. A
direct transition from the paramagnetic phase to the multiple-q
ordered phase is then expected.

The pyrochlore lattice contains 16 spins in its cubic unit
cell. The system size we deal with is of linear size L in units
of cubic unit cell, i.e., the system contains N = 16L3 spins
in total. Since the ordered state is generally incommensurate
with the underlying lattice, the system under periodic boundary
conditions (BC) would be subject to severe finite-size effects.
In order to examine such finite-size effects, we also consider
free BC, and carefully compare the results between these two

BC. In the case of free BC, we extend the lattice with half
of the unit cell in all three directions so that it keeps the
cubic symmetry of the lattice. Then, the system contains N =
2[(2L + 1)3 + 1] spins in total.

MC simulations are performed based on the standard heat-
bath method combined with the over-relaxation method. The
lattice size is of 8 � L � 24 for periodic BC, and of 8 �
L � 32 for free BC. The system is gradually cooled from the
high temperature. A run at each temperature contains typically
(2 − 4) × 105 MC steps per spin (MCS) and about a half of
MCS are discarded for equilibration. Our 1 MCS consists of 1
heat-bath sweep and subsequent 10 over-relaxation sweeps.

In Fig. 4, we show the temperature and size dependence of
the energy per spin. For both cases of periodic and free BC, an
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FIG. 4. (Color online) Energy per spin versus the temperature for
both cases of periodic boundary conditions (a), and free boundary
conditions (b). The interaction parameter is J2/J1 = −0.2.
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almost discontinuous change of the energy, a characteristic of
a first-order transition, is observed. Such a first-order nature
of the transition is consistent with the results of previous
calculations.9,11 We estimate the bulk transition temperature
to be Tc � 0.178|J1|.

At temperatures below Tc, several types of metastable states
are observed in our simulations, depending on the spin initial
conditions and the random-number sequences. In order to
probe the spin configurations in these metastable states, we
calculate the spin structure factor F (�q) defined by

F (q) ≡ 1

N

〈∣∣∣∣∣
∑

i

∑
μ

S(μ)
i eiq·r (μ)

i

∣∣∣∣∣
2〉

, (23)

where 〈· · ·〉 represents a thermal average. From the spin
structure factor, we find that none of the metastable states
is a single-q state. All of these are multiple-q states where the
multiple magnetic Bragg peaks coexist in the spin structure
factor.

In Fig. 5, we show the typical spin structure factors of these
metastable states calculated at a temperature T = 0.17|J1| <

Tc � 0.178|J1| under periodic BC. These metastable states
might be classified into two types according to whether they
keep the cubic symmetry or not. In the cubic-symmetric
state, there are six independent main Bragg peaks with the
same intensity at q = 2π

a
(h∗,h∗,0) and at its cubic-symmetry

counterparts with h∗ = 5/4 [see Fig. 5(a)]. The peak position
h∗ is close to the corresponding mean-field value h∗ � 1.263.
There are also other Bragg peaks related to the main peaks via
the reciprocal lattice vectors of the fcc lattice.

Since the observed cubic-symmetric state involves six
critical wave vectors, we identify this state as a sextuple-q
state. In case of periodic BC, we sometimes observe “almost-
cubic-symmetric” states where the position of the Bragg peak
shifts by 2π

L
, or one of the Bragg peaks splits into two, due to

the finite-size effects associated with periodic BC. We regard
them as modified forms of the sextuple-q state.

In the observed noncubic state, two out of six main Bragg
peaks with wave vectors on a common plane, e.g., (q,0,q) and
(−q,0,q), vanish, while the other four remain. Since there are
four critical wave vectors in this noncubic state, we identify
the state as a quadruple-q state. Two different types of the
noncubic states are observed, depending on the intensity ratio
among the remaining four main Bragg peaks. In one type
(type 1), two out of four remaining Bragg peaks with wave
vectors on a common plane, e.g., (q,q,0) and (q, − q,0), have
stronger intensity than the other two with wave vectors lying
in the other plane, e.g., (0,q,q) and (0,q, − q) [see Fig. 5(b)].
In the other type (type 2), four main Bragg peaks have equal
intensities [see Fig. 5(c)]. In this type-2 structure, all Bragg
peaks including main and submain are actually split into two,
one at (q,q,0) and the other at (q − 2π

L
,q,0).

In Fig. 6, we show the typical spin structure factors
calculated at the same temperature T = 0.17|J1| under free
BC. Similarly to the case of periodic BC, we find a cubic-
symmetric state [Fig. 6(a)] and a noncubic state of type
1 [Fig. 6(b)]. By contrast, the noncubic state of type 2 is
never observed in contrast to the case of periodic BC. [In the
noncubic state observed under free BC, the main peaks and
subpeaks appear along the direction of q = 2π

a
(h,h + δ,0),

slightly off the high symmetric direction (h,h,0) reflecting
the noncubic character of the ordered states. However, the
magnitude of the shift δ is always of order of 1/L, apparently
vanishing in the thermodynamic limit.]

We deduce that the type-1 state rather than the type-2 state
is a stable quadruple-q state due to the following two reasons.
First, the type-1 quadruple-q state appears as a metastable state
in both periodic and free BC, while the type-2 quadruple-q
state is never realized in free BC. Second, within our mean-
field analysis, the type-1-like state with the spin structure factor
of unequal peak heights, which corresponds to the q2 state
in the Appendix, has a lower free energy than the type-2-like
state with the spin structure factor of equal peak heights, which
corresponds to the q1 state in the Appendix.
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FIG. 5. (Color online) The spin structure factor of the multiple-q states along the directions of q = 2π

a
(h,h,0) and of its cubic-symmetry

counterparts, calculated at T = 0.17|J1| with J2/J1 = −0.2. The lattice is of L = 16 with periodic boundary conditions. Each curve corresponds
to different directions of wave vectors related via the cubic symmetry of the lattice. (a) The sextuple-q state where Bragg peaks appear in all
six directions with the same intensity. (b) The quadruple-q state (of type 1) where Bragg peaks appear in only four out of six directions. Half
of the main Bragg peaks corresponding to the wave vectors in the same plane (h, ± h,0) are larger in magnitude than those in the other plane
(0,h, ± h). (c) The quadruple-q state (of type 2) where Bragg peaks appear in four out of six directions with the same intensity. In this type-2
structure, all Bragg peaks (including main and submain) are split into two, one at (q,q,0) and the other at (q − 2π

L
,q,0). The peaks shown in

the figure are the one at (q,q,0).
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FIG. 6. (Color online) The spin structure factor of the multiple-q
states along the directions of q = 2π

a
(h,h,0) and of its cubic-

symmetry counterparts, calculated at T = 0.17|J1| with J2/J1 =
−0.2. The lattice is of L = 32 with free boundary conditions. Each
curve corresponds to different directions of wave vectors related via
the cubic symmetry of the lattice. (a) The sextuple-q state where
Bragg peaks appear in all six directions with the same intensity.
(b) The quadruple-q state (of type 1) where Bragg peaks appear in
only four out of six directions. In (b), the main peaks and subpeaks
appear along the direction q = 2π

a
(h,h + δ,0), slightly off the high

symmetric direction (h,h,0), where δ = 1/(L + 1) is simply the mesh
size of our measurements in the wave-vector space. The peak height
shown here is of the one at (h,h + δ,0), while the peak position is set
at h = √

[h + (h + δ)2]/2.

In contrast to the mean-field result for J2/J1 � −0.2, we
do not observe in our MC simulation the double-q metastable
state below Tc. Since the double-q state can continuously
be changed into the quadruple-q state, the double-q state
is probably unstable toward the quadruple-q state in this
parameter region.

Next, we wish to determine that either the cubic sextuple-q
state or the noncubic quadruple-q state is stable below Tc.
Since both states are metastable states surviving for a very
long time in the course of MC simulation, it is extremely
difficult to identify which state is thermodynamically stable
by performing fully thermalized simulation below Tc. In order
to identify the truly stable state below Tc, we then employ the
mixed-phase method.11,22 In this method, one prepares as an
initial state a two-phase coexisting state, where the sextuple-q
state or the quadruple-q state occupies each half of the lattice.
By thermalizing such a state and by monitoring which ordered
state expands during the course of the subsequent simulation,
one can determine which phase is more stable.

In Fig. 7, we show an example of the MC time evolution of
such a two-phase coexisting initial state in our MC simulations.
We look at the time evolution of the cubic-symmetry-breaking
order parameter mc for each half of the lattice, defined by

mc ≡ 2

〈
max

( ∑
i Si · Si+δ

)〉 − 〈
min

( ∑
i Si · Si+δ

)〉
〈
max

( ∑
i Si · Si+δ

)〉 + 〈
min

( ∑
i Si · Si+δ

)〉 , (24)

where max(
∑

i Si · Si+δ) and min(
∑

i Si · Si+δ) represent
the maximum and the minimum values of the sum of the
inner product Si · Si+δ among three nearest-neighbor bonds,
denoted by δ, emanating from a given site i. This quantity
measures the extent of the cubic-symmetry breaking in the spin
configuration: it tends to be large for a noncubic quadruple-q
state, while it tends to be small for a cubic sextuple-q state.
As can be seen from the MC time dependence of mc shown
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FIG. 7. (Color online) The Monte Carlo time evolution of the
cubic-symmetry-breaking order parameter mc defined by Eq. (24),
calculated at T = 0.15|J1| for an L = 48 lattice with free boundary
conditions. The interaction parameter is J2/J1 = −0.2. Initially, a
half side of the system is prepared to be a sextuple-q state, while
the other half a quadruple-q state. The two curves represent the
subsequent time evolution of the cubic-symmetry-breaking order
parameter mc, each calculated at each half side of the system. The
data indicate that the cubic state expands as the simulation goes on.

from Fig. 7, at the measuring temperature T = 0.15|J1|,
the sextuple-q state expands its area, and the system finally
settles in the sextuple-q state with smaller mc. By performing
such a mixed-phase method for various system sizes up to
L = 24 for periodic BC, and up to L = 48 for free BC,
we find that the sextuple-q state is stable at least in the
temperature range T � 0.15J1. Unfortunately, the dynamics
of the system becomes so slow with further lowering the
temperature that the domain wall between the two ordered
states hardly moves, which hampers to determine the stable
state at lower temperatures T < 0.15J1.

In the low-temperature limit, the entropy contribution to the
free energy becomes smaller, while the energy contribution
becomes dominant. Thus, the state that has the lower energy
should be realized. In Fig. 8, we show the energy difference
between the sextuple-q state and the quadruple-q state versus
the temperature. For both cases of periodic and free BCs, the
energy of the quadruple-q state becomes lower than that of
the sextuple-q state at low enough temperatures. It means that
the quadruple-q state should be realized as a stable state at
sufficiently low temperatures.

By combining the results of the energy analysis with
those of the mixed-phase method, we conclude the ordering
behavior of the J1-J2 model with J2/J1 = −0.2 as follows.
With decreasing the temperature, the system first exhibits a
phase transition from the paramagnetic phase to the sextuple-
q ordered state at a temperature T = Tc1 � 0.178|J1|. The
transition is of first order. Note that the cubic symmetry of the
lattice is still fully respected even below Tc1 in spite of the
existence of the magnetic long-range order characterized by
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FIG. 8. (Color online) Energy difference between the sextuple-q
state and the quadruple-q state plotted versus the temperature for
both cases of periodic and free boundary conditions. The interaction
parameter is J2/J1 = −0.2. In the case of periodic boundary
conditions, we choose a pair of metastable states that have the lowest
energy among several “almost-cubic-symmetric” states or “almost-
quadruple-q (type-1)” states where peak shift or peak splitting occur
due to finite-size effects.

sharp Bragg peaks. With further decreasing the temperature,
another phase transition occurs at T = Tc2 < 0.15|J1| into the
quadruple-q state. It accompanies the breaking of the cubic
symmetry of the lattice. This transition is probably of weakly
first order.

Now, we turn to the determination of the detailed spin
configurations in the multiple-q states identified above. We
begin with the cubic-symmetric sextuple-q state. Guided by
our mean-field result and by inspecting the spin configurations
obtained by MC simulations, we observe that the ordered spin
configuration in the sextuple-q state can be represented by the
superposition of six linearly polarized SDWs as

S(μ)
x (r) = I

[
U

μ

q+
1

cos(q+
1 · r + θ+

1 )

+U
μ

q−
1

cos(q−
1 · r + θ−

1 )
]
,

S(μ)
y (r) = I

[
U

μ

q+
2

cos(q+
2 · r + θ+

2 )
(25)+U

μ

q−
2

cos(q−
2 · r + θ−

2 )
]
,

S(μ)
z (r) = I

[
U

μ

q+
3

cos(q+
3 · r + θ+

3 )

+U
μ

q−
3

cos(q−
3 · r + θ−

3 )
]
,

where S(μ)(r) = [S(μ)
x (r),S(μ)

y (r),S(μ)
z (r)] represent the spin at

the position r belonging to sublattice μ. Any spin configuration
generated from the one given by Eq. (25) via global spin
rotation in spin space is equally allowed. The coefficient U

μ
q

takes a value unity or −α, depending on whether the site on
the sublattice μ has a NN bond in the direction of the wave
vector q = q±

i (Uμ

q±
i

= 1) or not (Uμ

q±
i

= −α). Indeed, the spin

configuration given by Eq. (25) is fully consistent with the
mean-field result shown in Sec. III and the Appendix.

In the the case of the quadruple-q state, inspection of
the MC data leads us to the ordered-state spin configuration
represented by the superposition of two spirals and two linearly
polarized SDWs as

S(μ)
x (r) = Ixy

[
Ũ

μ

q+
1

cos(q+
1 · r + θ+

1 )

+ Ũ
μ

q−
1

cos(q−
1 · r + θ−

1 )
]
,

S(μ)
y (r) = Ixy

[
Ũ

μ

q+
1

sin(q+
1 · r + θ+

1 )
(26)+ Ũ

μ

q−
1

sin(q−
1 · r + θ−

1 )
]
,

S(μ)
z (r) = Iz

[
Ũ

μ

q+
2

cos(q+
2 · r + θ+

2 )

+ Ũ
μ

q−
2

cos(q−
2 · r + θ−

2 )
]
,

where the two wave vectors with stronger intensity in the
spin structure factor are associated with q±

1 and those with
weaker intensity with q±

2 . Any spin configuration generated
from the one given by Eq. (26) via global spin rotation in spin
space is equally allowed. The same rule given above for the
sextuple-q state is understood also for the coefficient Ũ

μ
q . This

spin configuration is also fully consistent with the mean-field
result of Sec. III and the Appendix.

In order to investigate the nature of fluctuation in the ordered
state, we compute the time-dependent spin overlap q(2)(t)
defined by

q(2)(t) ≡
∑
α,β

[∑
i

∑
μ

S(μ)
α

(
r (μ)

i ,t0
)
S

(μ)
β

(
r (μ)

i ,t0 + t
)]2

, (27)

which measures an overlap between the spin configurations at
time t0 and at time t0 + t . Note that q(2)(t) is defined so as to
be invariant under any global spin rotation in spin space.

We also employ this quantity to check the validity of the
proposed spin structures given by Eqs. (25) and (26). For this
purpose, we compute q(2)(t) in the following two ways: The
two spin configurations at time t0 and at subsequent time t0 + t

are taken either (i) from the raw spin configuration data of
our equilibrium MC simulations or (ii) from the the proposed
model spin structure described by Eqs. (25) or (26), which
is evaluated by Fourier transforming the raw MC data and
by extracting the amplitudes (I , Ixy , and Iz) and the phases
(θ±

i ) associated with the critical mode at q±
i . In the procedure

(ii), the α factor associated with U or Ũ is also taken as a
fitting parameter, not a given constant, while the contribution
of other noncritical modes is simply neglected. If the proposed
model structures properly represent the ordered-state spin
configuration, the q(2)(t)’s calculated in the above two ways
(i) and (ii) should agree.

In Fig. 9, we show the MC time dependence of q(2)(t)
calculated in the two ways (i) and (ii) for the sextuple-q state
[Fig. 9(a)] and for the quadruple-q state [Fig. 9(b)]. Indeed,
in both cases of the sextuple-q and the quadruple-q states,
q(2)(t) calculated in the two ways agrees with high precision,
indicating that our model spin structures (25) and (26) properly
represent the actual ordered-state spin configurations. Second,
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FIG. 9. (Color online) The Monte Carlo time dependence of the overlap q (2)(t) defined by Eq. (27), calculated at T = 0.17|J1| for an
L = 16 lattice with periodic boundary conditions, in the cases of (a) the sextuple-q state and of (b) the quadruple-q state. The interaction
parameter is J2/J1 = −0.2. Two curves in the figure represent q (2)(t) calculated either directly from the raw Monte Carlo data or from the
proposed model spin structure evaluated from the Monte Carlo data (see the text for further details). In both cases of (a) and (b), the two curves
agree with high precision.

the computed q(2)(t) exhibit a significant time variation,
indicating that the spin configuration changes considerably in
the course of our MC simulation. Indeed, as can be seen from

Fig. 10, this time dependence comes from the time dependence
of the phase factor θ±

i , whereas the amplitude turns out to be
nearly time independent.
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FIG. 10. (Color online) The Monte Carlo time dependence of the amplitudes I , Ixy , and Iz [(a) and (c)] and the phase factors θ±
i [(b) and

(d)] for the cases of the sextuple-q state [(a) and (b)] and of the quadruple-q state [(c) and (d)], as obtained by fitting the raw Monte Carlo data
to the model spin structures of Eqs. (25) and (26). Concerning the amplitudes, plotted here are the average intensities over sublattices μ, i.e.,

Iav =
√∑

μ[IU
μ
q ]2/4. The temperature is T = 0.17|J1| and the lattice is L = 16 with periodic boundary conditions. The interaction parameter

is J2/J1 = −0.2. The amplitudes, which contribute to the Bragg intensity, are kept nearly constant in time, whereas the phase factors fluctuate
a lot.
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Establishing the spin configuration of the ordered state, we
wish to further investigate the nature of spin fluctuations in the
ordered state. Two kinds of spin fluctuations associated with
the identified spin structures are observed. The first one is a
fluctuation of the phase factors θ±

i as mentioned above. While
the amplitudes I , Ixy , and Iz, which contribute to the Bragg
intensity, turn out to be nearly constant in time [see Figs. 10(a)
and 10(c)], the phase factors θ±

i fluctuate a lot even when the
system exhibits sharp Bragg peaks [see Figs. 10(b) and 10(d)].
The second type of spin fluctuation is a necessary outcome
of the distribution of ordered spin moments in the multiple-q
state, where some spins should reduce their frozen moments
exhibiting large fluctuations.

First, we examine the effect of phase fluctuations. As we
have seen in the dynamics of θ±

i (t) shown in Figs. 10(b) and
10(d), phase fluctuations do occur in finite-size systems. The
question to be addressed is whether such phase fluctuations
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FIG. 11. (Color online) (a) The Monte Carlo time dependence
of the phase θ±

1 autocorrelation function in the quadruple-q state
at T = 0.17J1. The lattices are L = 8,12,16, and 20 with periodic
boundary conditions. (b) The phase autocorrelation time obtained as
in (a) is plotted versus the inverse system size 1/N . The dotted line
exhibits a liner fit of the data.

disappear or not in the thermodynamic limit. For this purpose,
we define the phase autocorrelation function by

C(t) ≡ 〈cos[θ (t) − θ (0)]〉, (28)

where θ (t) represents θ±
i (t). In Fig. 11(a), we show the

phase autocorrelation function of θ±
1 in the quadruple-q

state. As can be seen from the figure, the relaxation of
the phase becomes slower with increasing the system size,
suggesting that the phase motion might eventually be locked
in the thermodynamic limit. The computed phase relaxation
follows a simple exponential decay characterized by the phase
correlation time τ . In Fig. 11(b), we plot 1/τ as a function of
the inverse system size 1/N . As can be seen from the figure,
the phase relaxation time diverges almost linearly with N , and
we conclude that the phase motion will eventually be locked
in the thermodynamic limit. Hence, spin fluctuations arising
from phase fluctuations are finite-size effects and are expected
to vanish in the thermodynamic limit.

Next, we discuss the second source of spin fluctuations.
Even when phase fluctuations vanish in the thermodynamic
limit, spin fluctuations associated with the multiple-q nature
of the ordering should still remain. Remember that the
multiple-q order entails the existence of certain fraction of
spins with reduced frozen moments, which should be caused
by significant local spin fluctuations.

Such spin fluctuations intrinsic to the multiple-q order
might be observable experimentally via local probes such as
NMR. In Fig. 12, we exhibit the distribution of internal fields
in the sextuple-q [Eq. (25)] and the quadruple-q [Eq. (26)]
states probed at an O site of a pyrochlore oxide A2B2O6O′
with the oxygen-location x parameter x = 0.319.23 We assume
here that the B site is magnetic, and internal fields are borne
by the dipolar interaction. As can be seen from the figure,
both the sextuple-q and the quadruple-q states exhibit broad
internal-field distributions, in contrast to the one associated
with a simple all-in or all-out structure shown in the inset.
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FIG. 12. (Color online) An internal field distribution at an O
site of a pyrochlore oxide A2B2O6O′ with the oxygen-location x

parameter x = 0.319, where the B site is magnetic, calculated for
an ideal sextuple-q state [Eq. (25)] and quadruple-q state [Eq. (26)],
respectively. Dipolar interactions are assumed as an origin of internal
fields. The inset exhibits an internal field distribution corresponding
to a commensurate all-in or all-out structure on the pyrochlore lattice.
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The latter exhibits a sharp delta-function-like distribution.
The observed broad distributions of internal fields mean
that the magnitude of frozen spin moments are spatially
distributed, as expected from the multiple-q nature of the
ordering.

V. SUMMARY AND DISCUSSION

We studied the nature of the multiple-q ordered states
realized in the J1-J2 pyrochlore-lattice Heisenberg model by
means of a mean-field analysis and a Monte Carlo simulation.

By performing a mean-field analysis beyond the previous
analysis by Reimers et al.,4 we could explicitly determine the
possible multiple-q spin structures of the model, which include
a cubic-symmetric sextuple-q state, a noncubic quadruple-q
state, and a noncubic double-q state. We have found that these
multiple-q states have considerably lower free energy than that
of the single-q spiral, while the free-energy difference between
these different multiple-q states is rather small.

With reference to the mean-field results, we also performed
extensive MC simulations of the model, mainly for the case of
J2/J1 = −0.2, to determine which state is really stabilized
as an ordered phase. As expected from the mean-field
analysis, we found that the system exhibited a phase transition
from the paramagnetic phase to the multiple-q ordered state
characterized by the multiple peaks in the spin structure factor.
Recent studies have revealed that such multiple-q states are
also stabilized in other frustrated Heisenberg magnets, e.g.,
the triangular lattice Heisenberg antiferromagnet with the
next-nearest- or the third-neighbor interactions under magnetic
fields.24 With the help of the mixed-phase method, we
found that the cubic-symmetric sextuple-q state is stabilized
just below the transition temperature T = Tc1 � 0.178|J1|
down to at least T = 0.15|J1|, while, at sufficiently low
temperatures, the noncubic quadruple-q state becomes stable.
Hence, another phase transition from the sextuple-q state
to the quadruple-q state should occur at a temperature T =
Tc2 < 0.15|J1|.

The nature of each transition was also examined. The
transition at T = Tc1 is first order, as was already indicated
by previous studies. Note that, at this transition, the cubic
symmetry of the lattice is still fully preserved. It is remarkable
that, in spite of the incommensurate and rather complex nature
of the spin order, the cubic symmetry of the lattice is fully
respected in the ordered state. The second transition at T = Tc2

is weakly first order, and it accompanies a spontaneous
breaking of the cubic symmetry of the lattice.

It should be noticed that the phase transition between the
sextuple-q and the quadruple-q states analyzed in this paper
is distinct from the transition between the paramagnetic state
and the nematic state (or the one between the nematic state
and the multiple-q state) as discussed by Chern et al.11 We
also performed MC simulations for several smaller values of
J2/|J1| < 0.1, where Chern et al. observed the nematic phase.
In such a smaller-J2/|J1| region, we found as metastable states
both the sextuple-q and the quadruple-q states in the parameter
region where Chern et al. reported the multiple-q state (Chern
et al. did not specify the type of the multiple-q state). Thus,
there remains a possibility that, even for smaller J2/|J1|

values where the nematic phase appears at higher temperature
region, another phase transition from the sextuple-q state to
the quadruple-q state occurs at a lower temperature.

We also determined the explicit spin configuration of the
multiple-q ordered state. The sextuple-q state is a superpo-
sition of six SDWs running along the wave vector (q∗,q∗,0)
and its cubic-symmetry counterparts. In this sextuple-q state,
the system fully retains a cubic symmetry of the lattice. By
contrast, the quadruple-q state is a superposition of two helices
and two SDWs. This state spontaneously breaks the cubic
symmetry of the lattice as one can easily see from the fact
that two out of six critical wave vectors should vanish in this
state. Both the sextuple-q and the quadruple-q spin configu-
rations are consistent with those obtained in our mean-field
analysis.

In both cases of the sextuple-q and the quadruple-q
states, a broad distribution of internal fields was observed.
Such broad distributions reflect the distribution of frozen
spin moments, which arise from the multiple-q nature of
the ordering. Hence, if the pyrochlore magnets are in the
multiple-q ordered phase we proposed, one should observe
two apparently conflicting features, i.e., the coexistence of
sharp Bragg peaks measured by neutron diffraction and of
enhanced spin fluctuations measured by local probes such as
NMR. Experimental observation of the multiple-q states as
revealed here remains most interesting.
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APPENDIX: DETAILS OF THE MEAN-FIELD
APPROXIMATION

In this Appendix, we present the details of our mean-field
analysis. We consider here 12 critical eigenvectors only,
corresponding to 6 wave vectors of Eq. (17). As mentioned
in Sec. III, the free-energy difference between different types
of multiple-q states arises at the quartic term of the free energy
(16). Thus, we calculate here the quartic term of the free energy
f4 for several multiple-q structures.

For simplicity, we abbreviate �+
qσ

i
as �iσ , where i = 1,2,3

and σ = ±. The quartic term f4 consists of the following four
terms A1, A2, A′

2, and A4 as

f4 = 9T

80(1 + α2)2
[(2 + 2α4)A1 + 32α2A2

+ 8(1 + 2α2 + α4)A′
2 + 64α2A4], (A1)
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where Ai may be regarded to represent the interaction among
i distinct wave vectors, and are given by

A1 =
3∑

i=1

∑
σ=±

[
4�4

iσ + 2|�iσ · �iσ |2], (A2)

A2 =
3∑

i=1

[
�2

i+�2
i− + |�i+ · �i−|2 + |�i+ · �∗

i−|2], (A3)

A′
2 =

∑
〈i 
=j〉

∑
σ,σ ′

[
�2

iσ�2
jσ ′ + |�iσ · �jσ ′ |2 + |�iσ · �∗

jσ ′ |2],
(A4)

and

A4 =
∑
〈i 
=j〉

′
Re[(�i+ · �i−)(�∗

j+ · �j−) + (�i+ · �∗
j+)

× (�i− · �j−) + (�i+ · �j−)(�i− · �∗
j+)], (A5)

where �iσ = |�iσ | and Re[· · ·] means a real part, while
∑′

〈i 
=j〉
means the summation over (i,j ) = (1,3), (2,1), (3,2). The
A4 term represents interactions of four wave vectors such as
q+

1 , q−
1 , q+

3 ,q−
3 , which satisfy q+

1 + q−
1 − q+

3 + q−
3 = 0.

1. Single-q state

In the case of the single-q state, only the A1 term contributes
to f4. If we fix the amplitude �2

iσ = m2 associated with the
wave vector qσ

i , f4 takes a minimum when �iσ satisfy

�iσ · �iσ = 0. (A6)

This condition means that �iσ is given by

�iσ = meiθ (e1 + ie2), (A7)

where e1 and e2 are orthogonal unit vectors in spin space. In
the real space, this �iσ means a spiral,

S(r) ∝ cos
(
qσ

i · r + θ
)
e1 − sin

(
qσ

i · r + θ
)
e2. (A8)

By substituting this condition into Eq. (A1), we get the
minimized free energy for the single-q state as

f
(si)
4 = 9T

10(1 + α2)2
(1 + α4)m4. (A9)

2. Double-q state

In mixing two wave vectors, there are two possible ways:
one is to mix a pair of q+

i and q−
i , and the other is to mix q±

i

and q±
j with i 
= j . For α < 1, the former always minimizes

the free energy since the coefficients of A2 are smaller than
that of A′

2. Hence, we consider below a mixture of q+
i and q−

i .
In this situation, the A′

2 term vanishes identically.
The A2 term is minimized for

�i+ · �i− = 0, �i+ · �∗
i− = 0. (A10)

If we assume that �i+ forms a spiral given by Eq. (A7), these
conditions are satisfied when �i− is perpendicular to the spiral
plane formed by �i+, i.e.,

�i− ∝ eiθ e3, (A11)

where e3 is a unit vector perpendicular to the spiral plane
formed by �i+, i.e., e3 = e1 × e2. In this situation, the spin
configuration corresponding to �i− forms a spin-density wave
(SDW)

S(r) ∝ cos(q−
i · r + θ )e3. (A12)

Hence, the A2 term favors a mixture of a spiral and a SDW.
As we have seen for the case of the single-q state, A1 is

minimized when �iσ forms a spiral. The competition between
the A1 and the A2 terms often causes a distortion of a spiral
structure, i.e.,

�iσ = eiθiσ (Riσ + i I iσ ), (A13)

where Riσ and I iσ are orthogonal real vectors

Riσ ⊥ I iσ , (A14)

while the amplitudes Riσ = |Riσ | and Iiσ = |I iσ | are gen-
erally different from each other. Note that such a distorted
(or elliptical) spiral can continuously be transformed to an
isotropic spiral (Riσ = Iiσ ) and a SDW (Riσ = 0 or Iiσ = 0).
Thus, we assume both �i+ and �i− form distorted spirals
[Eq. (A13)] and minimize f4 with respect to the directions of
spiral planes, the phase factors θiσ , and the amplitudes Riσ

and Iiσ .
Under this situation, the A2 term is minimized when the

two spiral planes are mutually orthogonal, i.e.,

(Ri+ × I i+) ⊥ (Ri− × I i−). (A15)

Then, �i+ and �i− are given by

�i+ = eiθi+ (Ri+e1 + iκi+Ii+e2),
(A16)

�i− = eiθi− (Ri−e3 + iκi−Ii−e1),

where κiσ = ±1 represents the chirality of each spiral. In this
structure, the two spirals share one of the basis vectors e1 while
the other two basis vectors e2 and e3 are mutually orthogonal.

By substituting �iσ into Eq. (A1), f4 is obtained as

f4 = 9T

80(1 + α2)2

(
2(1 + α2)

{
4
(
�4

i+ + �4
i−

)
+ 2

[(
R2

i+ − I 2
i+

)2 + (
R2

i− − I 2
i−

)2]}
+ 32α2

[
�2

i+�2
i− + 2R2

i+I 2
i−

])
. (A17)

Note that this f4 is independent of the phase factor θiσ and the
chirality κiσ . By minimizing f4 with keeping �2

i+ + �2
i− = m2

fixed, we find that there are two types of double-q structure,
i.e., a mixture of two spirals (the d1 state) and a mixture of a
spiral and a SDW (the d2 state).

In the case of a mixture of two spirals (the d1 state), f4

takes an extremum

f (d1) = 9T

40(1 + α2)2

[
3 + 4α2 + 3α4 − (1 + α4)2

(1 + α2)2

]
m4,

(A18)

for

Ri+ = Ii−, Ii+ = Ri−,
(A19)

R2
i+ = 1 + α4

4(1 + α2)2
m2, I 2

i+ = 1 + 4α2 + α4

4(1 + α2)2
m2.
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In the d1 state, two spirals are distorted (Ri+ < Ii+, Ii− <

Ri−) to lower the A2 term. For α2 < α2
c = (2 − √

3) (αc �
0.518), this d1 state becomes a minimum of f4, while for
α > αc, it becomes locally unstable.

In the case of a mixture of a spiral with q+
i and a SDW

with q−
i (the d2 state), f4 takes an extremum when the spiral

is isotropic and the SDW is orthogonal to the spiral as

Ri+ = Ii+, Ii− = 0, R2
i+ = 3 − 4α2 + 3α4

2(5 − 8α2 + 5α4)
m2,

(A20)

R2
i− = 2 − 4α2 + 2α4

5 − 8α2 + 5α4
m2,

where f4 is calculated to be

f
(d2)
4 = 9T

20(1 + α2)2

[
− (3 − 4α2 + 3α4)2

5 − 8α2 + 5α4
+ 3(1 + α4)

]
m4.

(A21)

For α2 > α2
c = (2 − √

3) (αc � 0.518), this d2 state becomes
a minimum of f4, while for α < αc, it becomes locally
unstable.

In Fig. 13, we plot f4/T of the single-q spiral state (the
s state) and of the two kinds of double-q states (the d1 and
d2 states) as a function of α. Note that the critical value αc

(α2
c = 2 − √

3) of the stability is in common between the d1
and the d2 states. Thus, the mixture of two spirals (the d1 state)
is stable for α < αc � 0.518, while the mixture of a spiral and
a SDW (the d2 state) is stable for α > αc. Since α is in the
range of α � 0.4 for the realistic parameter value of J2/J1, the
mean-field approximation favors the d1 state over the d2 state
in the J1-J2 model.
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FIG. 13. (Color online) Quartic terms of the free energy f4 of the
single-q spiral state (the s state), of the two kinds of double-q states
(the d1 and d2 states), and of the two kinds of quadruple-q states (the
q1 and q2 states) are plotted versus the parameter α. For α � 0.518,
the d1 and q2 states become unstable, while for α � 0.518, the d2
and the q1 states become unstable. The unstable regions are indicated
by the thin dotted lines.

3. Quadruple-q state

When four wave vectors coexist, the A4 term contributes
to the free energy. Since the increase of the number of mixed
wave vectors tends to enhance the contribution of the A2 and
the A′

2 terms, it is necessary to lower the A4 term to stabilize the
quadruple-q state. As an example, we consider here a mixture
of q±

1 and q±
3 .

Since spiral structures tend to lower the A1 term, while
SDW structures tend to lower the A2 and the A′

2 terms, we
again assume that four �iσ ’s form distorted spirals described
by Eq. (A13) and minimize f4 with respect to the directions
of spiral planes, the phase factors θiσ , and the amplitudes Riσ

and Iiσ .
First, we optimize the spiral plane. In order to lower the

A2 and the A′
2 terms, the ideal situation would be that four

spiral planes are mutually orthogonal. However, this is simply
impossible for the Heisenberg spin. Since the coefficient of A2

is smaller than that of A′
2, the next way might be that a pair of

q±
1 (or q±

3 ) shares a common spiral axis, which is orthogonal
to the others such as

(R1+ × I1+) ‖ (R1− × I1−),

(R1+ × I1+) ⊥ (R3+ × I3+), (A22)

(R1+ × I1+) ⊥ (R3− × I3−).

The remaining spiral planes of q±
3 prefer to be orthogonal to

each other if we consider only the A2 term. However, if we
consider also the A4 term, the sum of the A2 and the A4 terms
takes a minimum when the pair of q±

3 also shares a common
spiral plane orthogonal to that of q±

1 such as

(R3+ × I3+) ‖ (R3− × I3−), (A23)

as long as they are not reduced to the double-q or the single-q
states. Thus, four �iσ s are given by

�1+ = eiθ1+ (R1+e1 + iκ1+I1+e2),

�1− = eiθ1− (R1−e1 + iκ1−I1−e2),
(A24)

�3+ = eiθ3+ (R3+e3 + iκ3+I3+e1),

�3− = eiθ3− (R3−e3 + iκ3−I3−e1),

where κiσ = ±1 represents the chirality of the spiral.
Next, we optimize the phase factor θiσ and the chirality

κiσ . Although the A1, A2, and A′
2 terms are independent of

the phase factor and the chirality, the A4 term depends on
them. By substituting Eq. (A24) into Eq. (A5), the A4 term is
calculated as

A4 = cos(θ1+ + θ1− − θ3+ + θ3−)[(R1+R1− − κ1+κ1−I1+I1−)

× (R3+R3− + κ3+κ3−I3+I3−)

+ 2κ3+κ3−R1+R1−I3+I3−] (A25)

Then, the A4 term is minimized for

cos(θ1+ + θ1− − θ3+ + θ3−) = −1,
(A26)

κ1+κ1− = −1, κ3+κ3− = 1,

where A4 is given by

A4 = −[(R1+R1− + I1+I1−)(R3+R3− + I3+I3−)

+ 2R1+R1−I3+I3−]. (A27)
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By substituting Eqs. (A24) and (A26) into Eq. (A1), the
optimized f4 is given by

f4 = 9T

80(1 + α2)2

{
2(1 + α4)

∑
i=1,3

∑
σ=±

[
4�4

iσ + 2
(
R2

iσ − I 2
iσ

)2]
+ 32α2

∑
i=1,3

[
�2

i+�2
i− + 2

(
R2

i+R2
i− + I 2

i+I 2
i−

)]
+ 8(1 + 2α2 + α4)

∑
σ=±

∑
σ ′=±

[
�2

1σ�2
3σ ′ + 2R2

1σ I 2
3σ ′

]
− 64α2[(R1+R1− + I1+I1−)(R3+R3− + I3+I3−)

+ 2R1+R1−I3+I3−]

}
. (A28)

By minimizing f4 for a fixed �2
1+ + �2

1− + �2
3+ + �2

3− =
m2, we find that there are two types of quadruple-q structure,
i.e., a mixture of four distorted spirals (the q1 state) and a
mixture of two spirals and two SDWs (the q2 state).

In the case of a mixture of four spirals (the q1 state), f4

takes an extremum

f
(q1)
4 = 9T

80(1 + α2)2

[
5 + 4α2 + 5α4

− 1 − 8α2 − 14α4 − 8α6 + α8

2(1 + α2)2

]
m4, (A29)

with
R1+ = R1− = I3+ = I3−, I1+ = I1− = R3+ = R3−,

(A30)

R2
1+ = 1 + 4α2 + α4

16(1 + α2)2
m2, I 2

1+ = 3 + 4α2 + 3α4

16(1 + α2)2
m2.

In this q1 state, similarly to the d1 state, the four spirals are
distorted (R1σ < I1σ , I3σ < R3σ ) to lower the A′

2 term. For
α2 > α2

c = (2 − √
3) (αc � 0.518), this q1 state becomes a

minimum of f4, while for α < αc, it becomes locally unstable.
Next, we consider a mixture of two spirals and two SDWs

(the q2 state). In the q2 state, a set of �i+ and �i− (i = 1 or
3) form spirals, while the other set of �j+ and �j− (j 
= i)
form SDWs perpendicular to the spiral plane. As an example,
we choose here a mixture of two spirals characterized by q1±
and two SDWs characterized by q3±. In this situation, f4 takes
an extremum when two spirals are isotropic,

R1+ = I1+, R1− = I1−, (A31)

and two SDWs are perpendicular to the spiral plane,

I3+ = 0, I3− = 0. (A32)

In addition, their amplitudes satisfy

R2
1+ = R2

1− = 1 + 12α2 + α4

4(1 + 20α2 + α4)
m2,

(A33)

R2
3+ = R2

3− = 4α2

1 + 20α2 + α4
m2.

The optimized f4 is then calculated to be

f
(q2)
4 = 9T

40(1 + α2)2

[
− (1 + 12α2 + α4)2

1 + 20α2 + α4

+ 3(1 + 4α2 + α4)

]
m4. (A34)

For α2 < α2
c = (2 − √

3) (αc � 0.518), this q2 state becomes
a minimum of f4, while for α > αc, it becomes locally
unstable.

Thus, for the quadruple-q state, we find two metastable
structures, q1 and q2. In Fig. 13, we plot f4/T of these two
metastable quadruple-q structures, given by Eqs. (A29) and
(A34), respectively, as a function of α. Note that the critical
value αc � 0.518 (α2

c = 2 − √
3) of the stability is common

between the q1 and the q2 states. Since α is in the range of
α ∼ 0.4 for the realistic parameter value of J2/J1, the structure
characterized by a mixture of two spirals and two SDWs
(the q2 state) is the stable one between the two metastable
quadruple-q structures.

4. Sextuple-q state

We finally discuss the case where all six wave vectors
coexist, i.e., the sextuple-q state. In this situation, although
almost all types of combinations of spirals and SDWs turn out
to be unstable, a mixture of six SDWs can be locally stable.

For a mixture of six SDWs, f4 is minimized when SDWs
of q+

i and q−
i run along a common axis, while SDWs of q±

i

and q±
j (i 
= j ) are mutually orthogonal, i.e.,

�i± = �i±eiθi± ei (i = 1,2,3). (A35)

As in the case of the quadruple-q state, the phase factors are
optimized to minimize the A4 term. By substituting Eq. (A35)
into Eq. (A5), the A4 term is calculated as

A4 = cos(θ1+ + θ1− − θ3+ + θ3−)�1+�1−�3+�3−
+ cos(θ2− + θ2+ − θ1+ + θ1−)�2+�2−�1+�1−
+ cos(θ3− + θ3+ − θ2+ + θ2−)�3+�3−�2+�2−.

(A36)

Then, the A4 term is minimized for

cos(θ1+ + θ1− − θ3+ + θ3−) = −1,

cos(θ2+ + θ2− − θ1+ + θ1−) = −1, (A37)

cos(θ3+ + θ3− − θ2+ + θ2−) = −1,

where A4 is given by

A4 = −�1+�1−�3+�3− − �2+�2−�1+�1−
−�3+�3−�2+�2−. (A38)

From Eqs. (A35) and (A37), the optimized f4 is given by

f4 = 9T

80(1 + α2)2

[
12(1 + α4)

∑
i

(
�4

i+ + �4
i−

)
+ 96α2

∑
i

�2
i+�2

i− + 8(1 + 2α2 + α4)

×
∑
〈i,j〉

∑
σ,σ ′=+,−

�2
iσ�2

jσ ′ − 64α2
∑
〈i,j〉

�i+�i−�j+�j−

]
.

(A39)
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If we fix the total amplitude m2 = ∑
i

∑
σ �2

iσ , f4 is mini-
mized when the amplitudes of six SDWs are in common, i.e.,

�2
iσ = m2

6
. (A40)

In this situation, f4 of the sextuple-q state is reduced to

f
(se)
4 = 3T

40(1 + α2)2
(7 + 12α2 + 7α4)m4. (A41)
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