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Intrinsic anomalous Hall effect in nickel: A GGA + U study
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The electronic structure and intrinsic anomalous Hall conductivity of nickel have been calculated based on the
generalized gradient approximation (GGA) plus on-site Coulomb interaction (GGA + U ) scheme. The highly
accurate all-electron full-potential linearized augmented plane-wave method is used. It is found that the intrinsic
anomalous Hall conductivity (σH

xy ) obtained from the GGA + U calculations with U = 1.9 eV and J = 1.2 eV
is in nearly perfect agreement with that measured recently at low temperatures while, in contrast, the σH

xy from
the GGA calculations is about 100% larger than the measured one. This indicates that, as for the other spin-orbit
interaction (SOI)-induced phenomena in 3d itinerant magnets, such as the orbital magnetic magnetization and
magnetocrystalline anisotropy, the on-site electron-electron correlation, though moderate only, should be taken
into account properly in order to get the correct anomalous Hall conductivity. The intrinsic σH

xy and the number
of valence electrons (Ne) have also been calculated as a function of the Fermi energy (EF ). A sign change is
predicted at EF = −0.38 eV (Ne = 9.57), and this explains qualitatively why the theoretical and experimental
σH

xy values for Fe and Co are positive. It is also predicted that fcc Ni(1-x)Co(Fe,Cu)x alloys with x being small
would also have the negative σH

xy with the magnitude being in the range of 500–1400 �−1 cm−1. The most
pronounced effect of including the on-site Coulomb interaction is that all the d-dominant bands are lowered in
energy relative to the EF by about 0.3 eV, and consequently, the small minority spin X2 hole pocket disappears.
The presence of the small X2 hole pocket in the GGA calculations is attributed to be responsible for the large
discrepancy in the σH

xy between theory and experiment.
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I. INTRODUCTION

Anomalous Hall effect (AHE) refers to the transverse
charge current generation in solids in a ferromagnetic phase
by the electric field and has received intensive renewed
interest in recent years mainly because of its close connection
with spin transport phenomena.1 There are several competing
mechanisms proposed for the AHE. Extrinsic mechanisms
of skew scattering2 and side jump3 refer to the modified
impurity scattering caused by the spin-orbit interaction (SOI).
Another mechanism arises from the transverse velocity of the
Bloch electrons induced by the SOI, discovered by Karplus
and Luttinger,4 and thus is of intrinsic nature. This intrinsic
AHE has recently been reinterpreted in terms of the Berry
curvature of the occupied Bloch states.5–8 Furthermore, recent
quantitative first-principles studies based on the Berry phase
formalism showed that the intrinsic AHE is important in
various materials.9 In particular, in itinerant ferromagnets such
as Fe and Co, the intrinsic anomalous Hall conductivity given
by first-principles calculations9,10 has been found to agree
with the experimental anomalous Hall conductivity11–13 within
30%, thereby demonstrating the dominance of the intrinsic
mechanism. Nonetheless, the physical origin of the AHE in
nickel is still not fully understood. Recent first-principles
density-functional calculations with the generalized gradient
approximation (GGA) predicted a large intrinsic anomalous
Hall conductivity of −2203 �−1 cm−1 in Ni,10 which is more
than three times larger than the corresponding experimental
value of −646 �−1 cm−1 (Ref. 14) at room temperature. In
the latest experiment,15 the intrinsic Hall conductivity was
found to be −1100 �−1 cm−1 at low temperatures. Though
this value is significantly larger than that of the much earlier
experiment,14 it is still only half of the calculated intrinsic Hall
conductivity.10

First-principles GGA calculations have been rather suc-
cessful in describing many physical properties such as crystal
structure, elastic constant, and spin magnetic moment, of
itinerant ferromagnets Fe, Co, and Ni (see, e.g., Ref. 16
and references therein). However, GGA calculations fail in
describing some relativistic SOI-induced phenomena in these
itinerant magnets. For example, the theoretical values of orbital
magnetic moment account for only about 50% of the measured
ones in Fe and Co,17 and the calculated magnetocrystalline
anisotropy energy of Ni is even wrong in sign.18 This
failure of the GGA is generally attributed to its incorrect
treatment of the moderate 3d electron-electron correlation in
these systems. Several theoretical methods that go beyond
the density-functional theory (DFT) with the local-density
approximation (LDA) or GGA, such as the orbital-polarization
correction19 and LDA/GGA plus on-site Coulomb interaction
U (LDA/GGA + U )20–22 schemes, have been developed for
better description of the SOI-induced phenomena in magnetic
solids. Indeed, the orbital-polarization correction has been
found to bring the calculated orbital moments in many
itinerant magnets such as Fe and Co in good agreement with
experiments.17 Furthermore, it has been demonstrated that the
correct easy axes and the magnitudes of the magnetocrystalline
anisotropy energy of Fe and Ni can be obtained within the
LDA + U scheme.23

Therefore, in this work, we perform GGA + U calcula-
tions for nickel to better understand the mechanism of its
anomalous Hall effect. We use the highly accurate all-electron
full-potential linearized augmented plane-wave (FLAPW)
method.24 We find that including on-site electron-electron cor-
relation in nickel has a significant effect on its anomalous Hall
effect as well as its electronic structure near the Fermi level. In
particular, the calculated anomalous Hall conductivity reduces
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from −2200 �−1 cm−1 (GGA) to −1066 �−1 cm−1, and the
latter value is in very good agreement with the measured low-
temperature intrinsic Hall conductivity of −1100 �−1 cm−1

from the latest experiments.15

This paper is organized as follows. In the next section, we
briefly describe how the intrinsic anomalous Hall conductivity
is calculated within the linear-response Kubo formalism as
well as the numerical method and computational details used
in the present work. In Sec. III, we first present the calculated
anomalous Hall conductivity, magnetic moments, and also
relativistic band structure. We then compare our results with
available experiments and also previous calculations. Finally,
we make some predictions about the intrinsic anomalous
Hall conductivity for fcc Ni(1-x)Co(Fe,Cu)x alloys with small
Co(Fe,Cu) concentration x, within the rigid-band approxima-
tion. In Sec. IV, we summarize the main conclusions drawn
from the present work.

II. THEORY AND COMPUTATIONAL DETAILS

The intrinsic anomalous Hall conductivity of a solid can
be evaluated by using the Kubo formula.25 The intrinsic
Hall effect comes from the static limit (ω = 0) of the off-
diagonal element of the optical conductivity.25,26 Following
the procedure for the calculation of the intrinsic spin Hall
conductivity,26 we first calculate the imaginary part of the
off-diagonal element of the optical conductivity

σ (2)
xy (ω) = πe2

ωVc

∑
k

∑
n�=n′

(fkn − fkn′ )

× Im[〈kn|vx |kn′〉〈kn|vy |kn′〉]δ(h̄ω − εn′n), (1)

where Vc is the unit-cell volume, h̄ω is the photon energy,
|kn〉 is the nth Bloch state with crystal momentum k, vx(y)

is the velocity operator, and εn′n = εkn′ − εkn. We then obtain
the real part from the imaginary part by a Kramers-Kronig
transformation,

σ (1)
xy (ω) = − 2

π
P

∫ ∞

0
dω′ ω

′σ (2)
xy (ω′)

ω
′2 − ω2

, (2)

where P denotes the principle value of the integral. The
intrinsic anomalous Hall conductivity σH

xy is the static limit
of the off-diagonal element of the optical conductivity σ (1)

xy

(ω = 0). We notice that the anomalous Hall conductivity of
bcc Fe calculated in this way9,27 is in quantitative agreement
with that calculated directly by accounting for the Berry phase
correction to the group velocity.9

Since all the intrinsic Hall effects are caused by the SOI,
first-principles calculations must be based on a relativistic
band theory. Here the relativistic band structure of fcc Ni
is calculated using the highly accurate FLAPW method,
as implemented in the WIEN2K code.28 The self-consistent
electronic structure calculations are based on the DFT with
the GGA for the exchange-correlation potential.29 To further
take d-electron correlation into account, we include on-site
Coulomb interaction U in the GGA + U approach.20 The so-
called around-mean-field (AMF) scheme for double counting
correction22 is adopted here. U = 1.9 eV and J = 1.2 eV,
which were found to give the correct sign and magnitude of
magnetocrystalline anisotropy energy for fcc Ni,23 are used.

Furthermore, the GGA + U calculations using the double
counting correction scheme designed for approximate self-
interaction correction (SIC) for strongly correlated systems
such as transition-metal oxides21 have also been performed.
Nevertheless, the theoretical anomalous Hall conductivities
from the GGA + U calculations using both double counting
correction schemes are almost identical (see Table I below).
Since the AMF scheme is believed to be more suitable for
metallic systems,22 here we will concentrate on the results of
the AMF calculations. Moreover, the GGA + U calculations
with a larger U value of 2.5 eV are also performed to see how
the variation of U may affect the calculated anomalous Hall
conductivity.

The experimental lattice constant a = 3.52 Å (Ref. 30)
is used here. The muffin-tin sphere radius (Rmt) used is
2.2 a.u. The wave function, charge density, and potential
were expanded in terms of the spherical harmonics inside
the muffin-tin spheres, and the cutoff angular momentum
(Lmax) used is 10, 6, and 6, respectively. The wave function
outside the muffin-tin spheres was expanded in terms of the
augmented plane waves, and a large number of augmented
plane waves (APWs) (about 70 APWs per atom, i.e., the
maximum size of the crystal momentum Kmax = 8/Rmt) were
included in the present calculations. The improved tetrahedron
method is used for the Brillouin-zone integration.31 To obtain
accurate ground-state charge density as well as spin and orbital
magnetic moments, a fine 56 × 56 × 56 grid of 185 193 k

points in the first Brillouin zone was used.

III. RESULTS AND DISCUSSION

Like the calculation of the magnetocrystalline anisotropy
energy of bulk magnets,18 a very fine k-point mesh is needed
for the anomalous Hall conductivity calculation.9,10 Therefore
we perform the σH

xy calculations using several extremely fine k-
point meshes with the finest k-point mesh being 106 × 106 ×
106. The calculated σH

xy is plotted as a function of the inverse
of the number (Nk) of k points in the first Brillouin zone in

TABLE I. Calculated anomalous Hall conductivity
σH

xy (�−1 cm−1) as well as spin magnetic moment ms (μB/atom)
and orbital magnetic moment mo (μB/atom). Superscripts of SIC
indicate that the values are obtained from the GGA + U calculations
with the SIC double counting correction scheme (see Sec. II). The
corresponding experimental values as well as previous theoretical
σH

xy are also listed for comparison.

GGA GGA + U GGA + U Expt.
U = 1.9 eV U = 2.5 eV

σH
xy −2200 −1066 −960 −646a

−2203b −1107SIC −945SIC −1100c

ms 0.639 0.661 0.675 0.57d

0.685SIC 0.707SIC

mo 0.051 0.066 0.071 0.05d

0.069SIC 0.076SIC

aReference 14.
bReference 10.
cReference 15.
dReference 32.
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FIG. 1. (Color online) Calculated anomalous Hall conductivity
σH

xy as a function of the inverse of the number of k points in the
Brillouin zone (Nk). The dashed lines are a polynomial fit to the
calculated values to get the extrapolated value of σH

xy at Nk = ∞.
For comparison, the theoretical value by Wang et al. (Ref. 10) and
the experimental value by Ye et al. (Ref. 15) are also shown as the
horizontal dotted and dot-dashed lines, respectively.

Fig. 1. The calculated values of σH
xy are fitted to a polynomial

to get the converged theoretical σH
xy (i.e., the extrapolated value

of σH
xy at Nk = ∞) (see Fig. 1). The theoretical σH

xy obtained
in this way as well as the calculated spin (ms) and orbital (mo)
magnetic moments are listed in Table I. Also listed in Table
I are the available experimental and previous theoretical σH

xy ,
ms , and mo.

Table I shows that the theoretical σH
xy from the GGA is

−2200 �−1 cm−1, and is much larger than the experimental
value of −646 �−1 cm−1 at room temperature14 and also the
experimentally derived intrinsic value of −1100 �−1 cm−1

at low temperatures.15 Nevertheless, the present result is in
very good agreement with the previous GGA calculations,10

as it should be (see Table I and Fig. 1). Interestingly, when
the on-site Coulomb interaction is taken into account via the
GGA + U scheme, the calculated σH

xy reduces significantly.
In particular, when U = 1.9 eV and J = 1.2 eV, which were
found to give rise to the correct easy axis and magnitude of
the magnetocrystalline anisotropy energy,23 the theoretical σH

xy

becomes −1066 �−1 cm−1. This good agreement between
the present GGA + U calculation and the low-temperature
measurements15 (Table I and Fig. 1) indicates that the intrinsic
AHE dominates in nickel and that the 3d electron-electron
correlation in itinerant magnets such as nickel has an important
effect on the AHE, although being only moderate. Further
increasing U to 2.5 eV reduces the calculated σH

xy slightly
(Table I and Fig. 1). As expected, the GGA + U calculations
increase the theoretical spin and orbital magnetic moments,
and hence enlarge somewhat the discrepancies between the
calculations and experiments (Table I). Nonetheless, with
U = 1.9 eV and J = 1.2 eV, the theoretical spin and orbital
magnetic moments are still in reasonable agreement with the
experiments (Table I).

To help understand how the on-site electron-electron
correlation affects the electronic band structure and AHE
in nickel, we plot in Figs. 2 and 3 the relativistic energy
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FIG. 2. (Color online) Relativistic GGA and GGA + U band
structures. The GGA + U band structure was obtained using U =
1.9 eV and J = 1.2 eV. The Fermi level (dotted horizontal line) is at
0 eV. The thick curves denote band 8’s, which are also indicated by
the arrowed lines.

bands along the high-symmetry lines in the Brillouin zone
calculated both without and with on-site Coulomb interaction
U . The relativistic band structure may be regarded as the
result of a superposition of the corresponding scalar-relativsitic
spin-up and spin-down band structures with many accidental
band crossings (degeneracies) lifted by the SOI. In nickel,
nevertheless, these SOI-induced splittings are generally much
smaller than the exchange splittings, and thus can be treated
as a perturbation.33 Also, including the SOI would lower the
symmetry of the system. In the present work, the magnetization
is assumed to be along the [001] direction, and the symmetry of
the system becomes the tetragonal one. The six high-symmetry
X points, which are equivalent in the nonrelativistic (or
scalar-relativistic) case, now form two inequivalent groups,
namely, two equivalent ±Z points and four equivalent ±X

and ±Y points. Therefore the energy bands near the Z point
are slightly different from that near the X and Y points, as
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FIG. 3. (Color online) Relativistic band structure (a), anomalous
Hall conductivity (σH

xy ) (b), and number of valence electrons (Ne)
(c), calculated with (solid blue lines) and without (dashed red lines)
on-site Coulomb interaction U . Both σH

xy and Ne were calculated
using the fine k-point mesh of 106 × 106 × 106. The GGA + U

results were obtained using U = 1.9 eV and J = 1.2 eV. The Fermi
level (dotted horizontal line) is at 0 eV. In (a), the thick curves denote
band 8’s, which are also indicated by the arrowed lines.
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shown in Figs. 2 and 3. The relativistic band structure and
Fermi surface of Ni have been reported by several researchers
before by using different band-structure calculation methods
(see, e.g., Refs. 10,18,23,33). In particular, Wang and Callaway
analyzed in detail the energy-band characters and Fermi-
surface sheets.33 The present GGA relativistic band structure
(the red dashed curves in Figs. 2 and 3) is very similar to that
reported by Wang and Callaway.33 For example, in both cases,
there are five bands (bands 8–12) crossing the Fermi level,
and there is a small down-spin-dominant hole pocket (band
8, noted as X2) centered at the X(Y,Z) symmetry point (see
Figs. 2 and 3, and also Fig. 1 in Ref. 33). However, the small
X2 hole pocket was not found in the de Haas–van Alphen
experiments.34

Now let us focus on the changes in the relativistic band
structure caused by including the on-site Coulomb interaction.
A pronounced change is that all the d-dominant bands are
lowered in energy relative to the Fermi level, when the on-site
Coulomb interaction is taken into account in the GGA + U

scheme (see Figs. 2 and 3). In other words, the binding energy
of the d-dominated valence bands is increased by about 0.3 eV.
In particular, the down-spin band 8 is now pushed completely
below the Fermi level and the small X2 hole pocket disappears.
The absence of the X2 hole pocket is consistent with the de
Haas–van Alphen experiments.34 In Ref. 23, the absence of the
X2hole pocket caused by the on-site Coulomb interaction was
regarded as the main reason that the LDA + U calculations
predicted the correct easy axis for nickel. As will be shown
below, this band 8 near the Fermi level calculated without
the on-site Coulomb interaction gives rise to a pronounced
contribution to the anomalous Hall conductivity, and thus the
absence of the small X2 hole pocket in the GGA + U band
structure is also the main cause for the significant reduction of
the calculated anomalous Hall conductivity.

In Fig. 3, we display the anomalous Hall conductivity
(σH

xy ) and the number of valence electrons (Ne) as a function
of the Fermi level (EF ), together with the relativistic band
structure, from the GGA + U calculations using U = 1.9 eV
and J = 1.2 eV. The fine k-point mesh of 106 × 106 × 106
is used. Clearly, the magnitude of the σH

xy peaks just above
the true Fermi level (EF = 0 eV), with a large value of
−1420 �−1 cm−1 at 0.16 eV (Ne =∼10.3). The peak may
be related to the flat band (band 10) along the W − L − � line
near the L point just above the Fermi level [see Fig. 3(a)].
As the Fermi level is further artificially raised, the size of
the σH

xy decreases steadily and becomes rather small (within
200 �−1 cm−1) above 0.75 eV. When the EF is artificially
lowered, the magnitude of the σH

xy initially decreases gradually,
and then drops sharply starting at EF = −0.35 eV. The
resultant shoulder at −0.35 eV can be attributed to the presence
of the top segment of band 8 near the X(Y,Z) point in this
energy region [see Fig. 3(a)]. The σH

xy then changes its sign
at −0.38 eV (or Ne = ∼9.57). As the EF is further lowered,
the σH

xy increases sharply and then peaks at −0.74 eV (or
Ne =∼ 8.90) with a large value of 2635 �−1 cm−1. Beyond
this point, the σH

xy decreases and fluctuates but remains positive
as the EF is further lowered, and it then changes its sign again at
−2.28 eV (or Ne = ∼4.78). For the EF being below −3.80 eV,
the magnitude of the σH

xy is small. Note that the energy bands

below −4.0 eV and above 0.75 eV are predominantly of
4s4p character and thus the effects of the SOI and exchange
interaction are small.

Experimentally, the measured anomalous Hall resistivity
ρxy is often analyzed in terms of two distinctly different
resistivity (ρxx)-dependent terms,1 i.e., ρxy = aρxx + bρ2

xx .
Since usually ρxy � ρxx , the total anomalous Hall conductiv-
ity σxy = −ρxy/(ρ2

xy + ρ2
xx) ≈ aσxx + b, where the first linear

σxx-dependent term (aσxx) was attributed to the extrinsic
skew scattering mechanism (σSK

xy ).2 The skew scattering
contribution has been found to become dominant in dilute
impurity metals at low temperatures.1 Indeed, recent ab initio
calculations for the alloy systems Fe1-xPdx and Ni1-xPdx

indicated that in the small Pd concentration x region, the σ SK
xy

can be several times larger than the b, and can also differ in
sign.35 The second scattering-independent term b was usually
further separated into the intrinsic contribution σH

xy ,4 which
can be obtained from band-structure calculations,1 as done
here for nickel, and also the extrinsic side jump mechanism
(σ SJ

xy ).3 Therefore when one compares the calculated σH
xy with

the experimental scattering-independent term b, one should
be aware of the possible side jump contribution σ SJ

xy . Recent
theoretical calculations for the two-dimensional (2D) Rashba
and 3D Luttinger Hamiltonians using a Gaussian disorder
model potential suggested that the AHE in the (III,Mn)V
ferromagnetic semiconductors at low temperatures could be
dominated by the σ SJ

xy .36 However, more recent ab initio
calculations show that in fcc Fe1-xPdx and Ni1-xPdx , the σ SJ

xy

is generally two orders of magnitude smaller than both the
σ SK

xy and σH
xy , thus being negligible.35 This is consistent with

the recent experimental finding of the negligible σ SJ
xy in fcc

Ni (Ref. 15) using a newly established empirical σxx-scaling
formula for σxy .13

Let us now return to the calculated σH
xy as a function of

the EF described above and also presented in Fig. 3. We
find that it can explain qualitatively within the rigid-band
approximation the known AHE experiments on 3d transition-
metal ferromagnets and their alloys.11–14 For example, the sign
of the σH

xy of both Fe and Co were found to be positive.11–13

Interestingly, the calculated σH
xy at Ne = 8.0 (EF = −1.02 eV)

is 758 �−1 cm−1, being in very good agreement with the
previous ab initio calculations for Fe.9 Of course, this nearly
perfect agreement may be accidental because Fe crystallizes
in the bcc structure and also has a much larger spin magnetic
moment, and hence the rigid-band model should not work very
well here. We note that the calculated σH

xy is 2548 �−1 cm−1

at Ne = 9.0 (EF = −0.71 eV), which is much larger than
the previous theoretical σH

xy value for fcc Co (Ref. 37) and
also the experimental σH

xy value for polycrystalline hcp Co.38

Nickel forms substitutional alloys in fcc structure with low
concentration of Fe, Co, and Cu. The present calculations
(Fig. 3) predict that fcc Ni(1-x)Co(Fe,Cu)x alloys (x being
small) would have the negative intrinsic σH

xy with the magnitude
being in the range of 500–1400 �−1 cm−1. Of course, when
comparing this prediction with the AHE experiments on fcc
Ni(1-x)Co(Fe,Cu)x alloys, one should take into account the
non-negligible skew scattering contribution σ SK

xy .35 Indeed, as
mentioned earlier, Fig. 3(b) shows a sign change of σH

xy at
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Ne ≈ 9.570 (EF = −0.38 eV), whereas the sign change of
the σxy in fcc Ni1-xFex alloys with x ≈ 0.13 (i.e., Ne ≈ 9.74)
was experimentally found.2 This experimentally found sign
change at the lower Fe concentration could be attributed to the
presence of the positive σ SK

xy in fcc Ni1-xFex alloys.
As mentioned before, the most pronounced effect of

including the on-site Coulomb interaction is that all the
d-dominant bands are lowered in energy relative to the EF

by about 0.3 eV. Consequently, the down-spin band 8 is now
pushed completely below the EF and the small X2 hole pocket
disappears. Now the top of band 8 is located at −0.20 eV on
the X(Y,Z) point (Figs. 2 and 3). To see clearly the effect of
the on-site Coulomb interaction on the σH

xy , we also display in
Fig. 3 the anomalous Hall conductivity (σH

xy ) and the number
of valence electrons (Ne) as a function of EF , together with the
relativistic band structure, from the GGA calculations using
the fine k-point mesh of 106 × 106 × 106. Strikingly, the σH

xy

exhibits a pronounced negative peak right at the EF with
the value being about −2178 �−1 cm−1 [see Fig. 3(b)]. The
remarkable difference in the σH

xy at 0.0 eV from the GGA and
GGA + U calculations can be attributed to the presence of
the above-mentioned X2 hole pocket in the GGA calculation
(Fig. 3). Another major difference is the absence of the clear
shoulder at −0.35 eV in the GGA σH

xy spectrum. This is because
of the absence of the top segment of band 8 near the X(Y,Z)
point in this energy region in the GGA band structure [see
Fig. 3(a)]. In fact, Fig. 3 shows that as the EF is lowered
from the true Fermi level (0 eV), the GGA σH

xy decreases in
magnitude steeply to zero and changes its sign at −0.30 eV
(Ne = 9.55). Nevertheless, in both cases, the σH

xy changes its
sign near Ne = 9.56. The other pronounced difference (by
about 700 �−1 cm−1) in the two calculated σH

xy spectra is the
height of the positive peak near −0.70 eV. In the rest of the
energy region, the two σH

xy spectra look rather similar.

IV. CONCLUSIONS

In summary, we have calculated the electronic structure
and intrinsic anomalous Hall conductivity of nickel with both

the GGA and GGA + U schemes. The highly accurate all-
electron FLAPW method is used. We find that the theoretical
anomalous Hall conductivity (σH

xy ) obtained from the GGA
calculations (Table I) is about 100% larger than the intrinsic
σH

xy recently measured at low temperatures.15 In contrast, the
theoretical σH

xy from the GGA + U calculations with U =
1.9 eV and J = 1.2 eV is in almost perfect agreement with the
measured one (Table I). This indicates that, as for other SOI-
induced magnetic phenomena in 3d itinerant magnets such
as the orbital magnetic magnetization and magnetocrystalline
anisotropy, the on-site electron-electron correlation, though
moderate only, should be taken into account properly in order
to get the correct anomalous Hall conductivity. The most
significant effect of including the on-site Coulomb interaction
is that all the d-dominant bands are lowered in energy relative
to the EF by about 0.3 eV. Consequently, the down-spin band
8 is now pushed completely below the EF and the small
X2hole pocket disappears. The presence of the small X2 hole
pocket in the LDA and GGA calculations is found to be the
main reason why the large discrepancy in the σH

xy between
theory and experiment exists. The intrinsic anomalous Hall
conductivity (σH

xy ) has also been calculated as a function of
the Fermi level EF (or the number of valence electrons Ne)
in the GGA + U scheme. A sign change is predicted at
EF = −0.38 eV (or Ne = 9.57), and this explains qualitatively
why the theoretical and experimental σH

xy values for Fe and Co
are positive. Finally, the present calculations (Fig. 3) indicate
that fcc Ni(1-x)Co(Fe,Cu)x alloys (x being small) would also
have the negative intrinsic σH

xy with the magnitude being in the
range of 500–1400 �−1 cm−1.
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