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Defect formation preempts dynamical symmetry breaking in closed quantum systems
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The theory of spontaneous symmetry breaking—one of the cornerstones of modern condensed-matter
physics—underlies the connection between a classically ordered object in the thermodynamic limit and its
microscopic quantum-mechanical constituents. However, a large, but not infinitely large, system requires a
finite symmetry-breaking perturbation to stabilize a symmetry-broken state over the exact quantum-mechanical
ground state, respecting the symmetry. Here, we use the example of a particular antiferromagnetic model system
to show that no matter how slowly such a symmetry-breaking perturbation is driven, the adiabatic limit can never
be reached. Dynamically induced collective excitations—“quantum defects”—preempt the symmetry-breaking
phenomenon and trigger the appearance of a symmetric nonequilibrium state that recursively collapses into
the classical equilibrium state, breaking the symmetry at punctured times. The presence of this state allows
“quantum-classical” transitions to be investigated and controlled in mesoscopic devices by externally supplying
a proper dynamical symmetry-breaking perturbation.
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I. INTRODUCTION

The relation between quantum physics at microscopic
scales and the classical behavior of macroscopic bodies has
been debated since the inception of quantum theory. The
fundamental difference is that while in quantum mechanics all
configurations equivalent by symmetry have the same status, in
classical physics one of them is singled out. This spontaneous
symmetry breaking causes a macroscopic body under equilib-
rium conditions to have less symmetry than its microscopic
building blocks.1 Superconductors, antiferromagnets, liquid
crystals, Bose-Einstein condensates, and crystals all exhibit
spontaneously broken symmetries. The general idea is that
when the number of microscopic quantum constituents N ,
which, depending on the system, corresponds to the number
of Cooper pairs, particles, or spins, goes to infinity, the
quantum system undergoes a phase transition into a state
that violates the microscopic symmetries.1,2 From a purely
theoretical perspective, spontaneous symmetry breaking is
thus related to a singularity of the thermodynamic limit. If
this thermodynamic singularity is present, a symmetry-broken
ground state exists. This observation can be formalized into an
exact statement on the existence of a broken-symmetry state,2,3

but it makes no assertion on whether or how it can evolve out
of the symmetric state in a macroscopic body with N finite,
nor on the dynamics of “quantum-classical” transitions. So
the question remains how a continuous symmetry is broken
dynamically.

We investigate this by considering a symmetry-breaking
field slowly injected into an arbitrary large but finite system.
If the symmetry-breaking process were fully adiabatic, the
effect of the driving would correspond to subjecting the system
to a quasistatic symmetry-breaking field. In this case the
time scale at which quantum physics reduces to classical
behavior and the correspondent symmetry-broken state is
singled out becomes shorter and shorter as the size of the
system grows. However, that the time evolution be adiabatic
is not evident. The adiabatic theorem states that under slow
enough external perturbations, there are no transitions between

different energy levels. When the distance between energy lev-
els is exponentially small, the adiabatic evolution is hampered
and transitions between levels become unavoidable. Such
dynamically induced excitations—“quantum defects”—can in
principle strongly affect the symmetry-breaking process. Here
we show that no matter how slowly a symmetry-breaking
perturbation is driven, the adiabatic limit cannot be reached.
Defect formation turns out to be so pervasive that it preempts
an adiabatic symmetry breaking in macroscopic systems. The
existence of this nonadiabatic regime is consistent with the
breakdown of the adiabatic limit in low-dimensional gapless
systems.4

The far-from-equilibrium time evolution caused by a
symmetry-breaking field has remarkable consequences. We
will show that in any large finite system the nonequilibrium
state does not break the symmetry. However, it recursively
collapses into the purely classical state: It breaks the symmetry
at punctured times, resulting in a Dirac comb of symmetry-
broken, classical states. This Dirac comb of quantum-classical
transitions can be investigated in mesoscopic devices by sup-
plying a proper dynamical symmetry-breaking perturbation.
In ultracold atom systems, for instance, the necessary exper-
imental prerequisites such as isolation from the environment,
together with the possibility of real-time control of system
parameters, are fulfilled.5

Even if a priori spontaneous symmetry breaking is an
intractable problem involving a near infinity of interacting
quantum degrees of freedom, there is a representative, in-
tegrable model that exhibits spontaneous symmetry break-
ing: the Lieb-Mattis model.6–8 It is the effective collective
Hamiltonian that underlies the breaking of the SU(2) spin
rotation symmetry in generic Heisenberg models with short-
range interactions. Very similar collective models underlie
the breaking of other continuous symmetries as the gauge
invariance in superconductors9 or the translational symmetry
in quantum crystals.10 We therefore use the Lieb-Mattis
antiferromagnet as a model system for dynamical symmetry
breaking.
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II. STATIC SYMMETRY BREAKING

The symmetry-breaking transition is manifest in the Lieb-
Mattis model once a symmetry-breaking field H , in this
case a staggered magnetic field, is introduced. Before turning
to dynamical symmetry breaking, we first summarize a
few essential features of the Lieb-Mattis Hamiltonian. The
Hamiltonian is defined for spins 1/2 on a bipartite lattice with
sublattices A and B, where SA,B is the total spin on the A/B

sublattice with z projection Sz
A/B :

H = 2|J |
N

SA · SB − H
(
Sz

A − Sz
B

)
. (1)

Every spin on sublattice A interacts with all spins on sublattice
B and vice versa with an interaction strength 2|J |/N (which
depends upon the number of sites N ). Taking H = 0, the
model can be solved by introducing the total spin operator
S = SA + SB . The eigenstates of the Hamiltonian are then
|SA,SB,S,M〉, where S,M indicate the total spin and its z axis
projection, whereas SA,B are the total sublattice spin quantum
numbers. The ground state is symmetric and corresponds to
an overall S = 0 singlet with SA,B maximally polarized and is
characterized by zero staggered magnetization.

The S �= 0 quantum numbers label a tower of states with
energy scale Ethin = J/N , which is also referred to as the
thin spectrum. It is thin because it contains states that are
so sparse and of such low energy that their contribution
to thermodynamic quantities vanish in the thermodynamic
limit.9,10 Nevertheless, when N → ∞, the thin spectrum
excitations collapse and form a degenerate continuum of
states. Within this continuum, even an infinitesimally small
symmetry-breaking perturbation H is enough to stabilize
the fully ordered symmetry-broken ground state—the system
is inferred to spontaneously break its symmetry. The finite
symmetry-breaking field H couples the thin spectrum states so
that the eigenstates |n〉 = ∑

S un
S |S〉 of the Lieb-Mattis model

become wave packets of total spin states. In the continuum
limit, where N is large and 0 � S � N , the corresponding
low-energy effective Hamiltonian is3

HLM = HN

4h̄2 �2 + J

N
S2, (2)

where � is the conjugate momentum of the total spin S. The
eigenstates un

S are harmonic oscillator states of order n, with
n odd in order to meet the boundary condition S � 0. In
this case Ed

thin = √
JH represents the typical energy of the

excitations labeled by n that now act as the thin spectrum
in the symmetry-broken Hamiltonian. One can easily show
the singular nature of the thermodynamic limit in the n = 1
ground state by calculating the expectation value of the order
parameter10

〈
Sz

A − Sz
B

〉 � N

2

∫ ∞

1
u1

Su
1
S−1 dS � N

2
e−ωS , (3)

where the dimensionless parameter ωS = N−1√4J/H . When
sending first H → 0 and then N → ∞, the singlet state
appears as the ground state, which respects the spin rotational
symmetry, i.e., 2〈Sz

A − Sz
B〉 ≡ 0. Taking the limits in opposite

order, one finds that the ground state corresponds to the fully
polarized antiferromagnetic Neél state with a fully developed

order parameter 2〈Sz
A − Sz

B〉 ≡ N . Strictly speaking, Eq. (3)
only allows truly infinite size systems to spontaneously select
a direction for their sublattice magnetization. A large, but not
infinitely large, system requires a finite symmetry-breaking
staggered magnetic field to stabilize the symmetry-broken
state over the exact spin singlet ground state. The strength of
the required field obviously becomes increasingly weaker as
the size of the antiferromagnet grows, and can be provided
in practice by a magnetic impurity phase or by a second
antiferromagnet.11

III. DYNAMIC SYMMETRY BREAKING:
ADIABATIC-IMPULSE APPROACH

Let us now consider the dynamical case and turn on the
symmetry-breaking field linearly in time H (t) = δt, with ramp
rate δ. At initial time t0 we start out with a field H (t0) = H0

(see the inset of Fig. 1) and the wave function of the system
corresponding to this static ground state. We introduce H0

in order to have a cutoff that guarantees the continuity
of the wave-function basis. Later on we will consider the
limit H0 → 0, which corresponds to an initial state that is
a completely symmetric singlet. To capture the dynamics of
the symmetry-breaking transition we first use the quantum
Kibble-Zurek (KZ) theory.12–14 The essence of the KZ theory
of nonequilibrium phase transitions15,16 is a splitting of the
dynamics into a nearly critical impulse regime, where the
system’s state is effectively frozen and a quasiadiabatic regime
far from the critical point. This splitting defines the so-called
adiabatic-impulse approximation.17 In particular, the critical
impulse regime occurs whenever the characteristic relaxation
time τ (t) = h̄/Ed

thin(t) is much larger than the time scale t

on which the Hamiltonian is changed. On the contrary, for
τ (t) � t , the system’s state is able to adjust to the changing
symmetry-breaking field, and the transitions among the dual
thin spectrum excitations can be neglected. The crossover
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Defect creation

H(t)

H0

t0 t

t0 /  t
^

t / t
^

t / t ~ 1
^

FIG. 1. (Color online) The three different regimes for the
behavior of the density of defects in the t-t0 plane. Times have been
measured in units of the freeze-out time t̂ . The bold lines indicate the
crossover among the different regimes, whereas the straight line limits
the physical region with t > t0. The gray arrows indicate different
time trajectories. The inset shows the setup of the symmetry-breaking
field.
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FIG. 2. (Color online) (a) Asymptotic value of the density of
defects as a function of the initial time t0 over freeze-out time t̂ in
the KZ theory. (b) Time evolution of the density of defects in the
Lieb-Mattis model for different values of the initial time t0. Times
are measured in units of the freeze-out time t̂ . The continuous lines
correspond to the exact quantum theory whereas the dashed lines
indicate the time evolution in the KZ scheme. (c), (d) Same as (a),
(b) for the fidelity of the ground-state wave function.

between the two regimes is determined by Zurek’s equation12

τ (t̂) = t̂ and defines the freeze-out time

t̂ =
[

h̄2

Jδ

]1/3

. (4)

For an initial time t0 � t̂ , the system’s dynamics will thus
be nearly adiabatic (cf. Fig. 1). Strictly speaking, in the true
adiabatic limit (t0/t̂ → ∞), the probability of switching thin
spectrum levels will be vanishingly small. This, in turn, implies
that the fidelity of the snapshot ground-state wave function [cf.
Figs. 2(c) and 2(d)]

f (t) = ∣∣〈u1
S(t)

∣∣ψ(t)
〉∣∣2 � 1,

where ψ(t) is the actual ground-state wave function. We can
also quantify the adiabaticity of the dynamical process by
calculating the number of dynamically induced thin spectrum
excitations, the density of “quantum defects”

D(t) = 〈ψ(t)|n̂ − 1|ψ(t)〉
vanishing in the truly adiabatic limit (cf. Fig. 2). The ramp rate
of a nearly defect-free quench, however, is seen to be bounded

by δ �
√

H 3
0 J/h̄ [cf. Eq. (4)]. Therefore, the limits δ → 0

and H0 → 0 do not commute. In other words, no matter how
slowly one drives the symmetry-breaking field, if the initial
symmetry breaking field H0 is sufficiently small, the adiabatic
limit can never be reached.

Besides just an adiabatic time evolution, the KZ analysis
renders two nontrivial quantum dynamical regimes (cf. Fig. 1).
First the evolution takes place in the impulse regime (t0 � t �
t̂), where the initial state is effectively frozen and changes only
by a trivial overall phase factor. The time evolution of both the
density of defects and the fidelity of the snapshot ground-state
wave function can be analyzed as follows: We expand the

frozen initial ground state as a superposition of instantaneous
thin spectrum eigenstates as

u1
s (t0) =

∑
n

cnu
n
s (t), (5)

where the coefficients cn are nonzero only for odd values of
the quantum number n and depend on the ratio t0/t as

cn

(
t0

t

)
= 4

√
n!

2n

1(
n−1

2

)
!

(
t

t0

)3/8

[
1 −

√
t
t0

](n−1)/2

[
1 +

√
t
t0

]n/2+1 . (6)

For the fidelity of the snapshot ground-state wave function we
then have

f (t) = 8

(
t

t0

)3/4 1[
1 +

√
t
t0

]3 ,

whose behavior is shown in Fig. 2(d) for different values of the
initial time t0. The density of dynamically generated defects
instead grows continuously in time [cf. Fig. 2(b)] as

D(t) = 3

4

√
t0

t

[√
t

t0
− 1

]2

. (7)

This evolution lasts until t > t̂ . At the freeze-out time t̂ , defect
formation stops and the defect density saturates [cf. Fig. 2(a)]

to D(t̂) ∼ 3
4

√
t̂
t0

. The defect density thus diverges for a small
enough initial symmetry-breaking field H0. Similarly, the
fidelity saturates to f (t̂) ∼ 8(t0/t̂)3/4 [cf. Fig. 2(c)], which tends
arbitrary close to 0 for a small enough initial time t0. In this
case the system actually reaches a state that is a superposition
of a very large number of thin spectrum excitations. The
symmetry-breaking process is thus accompanied by massive
defect formation.

In the subsequent regime t � t̂ no additional excitations
are created. Since the evolution is considered to be adiabatic,
we may write the time evolution of the wave function as

ψS(t) =
∑

n

cn

(
t0

t̂

)
un

S(t)e−i�n(t),

where we have defined the dynamical phase

�n(t) = h̄−1
∫ t

t̂

Ed
thin(t ′)

(
n + 1

2

)
dt ′

= 2

3

(
n + 1

2

)
[(t/t̂)3/2 − 1].

As the time increases, the various thin spectrum eigenstates
all pick up a different dynamical phase leading to quantum
interference. However, for tk = (1 + 3kπ

2 )2/3 t̂ with k integer,
the interference is fully constructive and the wave function
corresponds to the instantaneous ground state u1

S(t t0/t̂), as
can be straightforwardly verified. The system’s state then
corresponds precisely to the snapshot ground state of a
symmetry-broken Lieb-Mattis model subject to a renormalized
staggered magnetic field HR = H × H0/[h̄2δ2/(2J )]1/3. Thus
when the initial symmetry-breaking field H0 vanishes, the
symmetric singlet state becomes fact at any recursion time
and the SU(2) spin rotation symmetry is preserved.
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IV. EXACT TIME EVOLUTION OF SYMMETRY
BREAKING

A full description of the interference effects in a highly
nonadiabatic state within the adiabatic-impulse method is,
in practice, impossible. We can, however, explicitly monitor
quantum phase interference effects by constructing the exact
nonequilibrium wave function.

The dynamics of the time-dependent Hamiltonian Eqs. (2)
indeed represents a simple example of generalized time-
dependent harmonic oscillators whose exact quantum theory
has been extensively studied in the literature.18–30 Within the
Feynman path integral approach, it can be shown29 that the
propagator has a spectral decomposition G(SB,tB |SA,tA) =∑

n 	n

SA

(tA)	n
SB

(tB) in terms of a complete set of wave
functions of the form

	n
S (t) =

√
1

2n−1n!

[
Re[ω(t)]

π

]1/4

e−i(n+ 1
2 )φ(t)

×Hn[
√

Re[ω(t)]S]e− S2

2 ω(t), (8)

where the quantum number n takes only odd values in order to
meet the boundary condition S � 0, the Hn’s are the usual
Hermite polynomials, and Re(ω) > 0 to guarantee square
integrability. The time-dependent dimensionless parameter
ω can be explicitly obtained by identifying two linearly
independent solutions to the classical Euler-Lagrange equation
of motion

S̈cl
1,2(t)

2h̄2

δtN
− Ṡcl

1,2(t)
2h̄2

δNt2
+ 2J

N
Scl

1,2(t) ≡ 0. (9)

Then the real and imaginary parts of the complex time-
dependent dimensionless parameter ω read

Re[ω(t)] = 2h̄

δNt

Scl
1 (t)Ṡcl

2 (t) − Scl
2 (t)Ṡcl

1 (t)

Scl
1 (t)2 + Scl

1 (t)2
,

Im[ω(t)] = − 2h̄

δNt

Scl
1 (t)Ṡcl

1 (t) + Scl
2 (t)Ṡcl

2 (t)

Scl
1 (t)2 + Scl

1 (t)2
, (10)

whereas the quantal phase is determined by the differential
equation

φ̇(t) = Re[ω(t)]
δNt

2h̄
.

The classical equation of motion can be simplified by first
changing the independent variable t to z = 2/3(t/t̂)3/2 with
t̂ the freeze-out time. Under this transformation Eq. (9) is
equivalent to

S̈cl(z) − 1

3z
Ṡcl(z) + Scl(z) = 0, (11)

which can be explicitly solved in terms of Bessel functions

Scl(z) = C1z
2/3Y2/3(z) + C2z

2/3J2/3(z), (12)

with C1,2 arbitrary real constants. The choice of these constants
gives rise to different sets of wave functions.29 Note that the
propagator, however, does not depend upon this degree of
freedom. To proceed further, we choose two classical solutions
of the form Eq. (12) by taking {C1,C2} = {λ1,1},{1,λ2}. From
Eq. (10) the real and imaginary parts of the dimensionless
parameter ω can be recast as

Re[ω(t)] = 2h̄

Nδt̂2

3

π

(
3

2
z

)− 4
3 1 − λ1λ2(

1 + λ2
2

)
J 2

3
(z)2 + 2(λ1 + λ2)J 2

3
(z)Y 2

3
(z) + (

1 + λ2
1

)
Y 2

3
(z)2

,

Im[ω(t)] = 2h̄

Nδt̂2

(
3

2
z

)− 1
3

{ (
1 + λ2

2

)
J− 1

3
(z)J 2

3
(z) + (

1 + λ2
1

)
Y− 1

3
(z)Y 2

3
(z)(

1 + λ2
2

)
J 2

3
(z)2 + 2(λ1 + λ2)J 2

3
(z)Y 2

3
(z) + (

1 + λ2
1

)
Y 2

3
(z)2

+
(λ1 + λ2)[J 1

3
(z)Y− 1

3
(z) + J− 1

3 (z)Y 2
3
(z)](

1 + λ2
2

)
J 2

3
(z)2 + 2(λ1 + λ2)J 2

3
(z)Y 2

3
(z) + (

1 + λ2
1

)
Y 2

3
(z)2

}
.

The free parameters λ1,2 can be regarded as integration
constants specified by the initial conditions. Indeed, they can
be tuned in such a way that at the initial time Re[ω(t0)] ≡
ωS(t0) and Im[ω(t0)] ≡ 0. This, in turns, implies that the
wave function will always remain an n = 1 state of the form
Eq. (8) whose time dependence is completely adsorbed into
the evolution of the dimensionless complex parameter ω.
Having obtained the exact time evolution of the wave function,
we can calculate the exact time dependence of the density
of defects and the fidelity of the instantaneous ground-state
wave function whose behavior is shown with the full lines in
Figs. 2(b) and 2(d). The main features are well described by
the foregoing adiabatic-impulse approximation and confirms
the far-from-equilibrium dynamics for small enough initial
symmetry-breaking fields H0.

The resulting time dependence of the real part of ω for
different values of t0 is shown in Fig. 3(a). By decreasing the

initial time, it develops a series of sharp peaks whose position
can be determined by the approximate form

Re[ω(t)] ∼ α
1

N

√
J

δ

√
t0 t̂

t2
J 2

3

[
2

3

(
t

t̂

) 3
2

]−2

, (13)

with the numerical constant α ∼ 1.13. In the t0 → 0 limit,
it eventually leads to a Dirac comb structure [cf. Fig. 4(a)]
with singularities at the zeros of the J2/3 Bessel function tRk �
t̂( 3

2kπ + 13π
8 )

2
3 . The imaginary part of ω has a time dependence

as in Fig. 3(c). As the initial time decreases, it approaches a
characteristic tangent-like behavior [cf. Fig. 4(b)]

Im[ω(t)] = 1

N

√
J

δ

1√
t

J− 1
3

[
2
3

(
t
t̂

) 3
2

]
J 2

3

[
2
3

(
t
t̂

) 3
2

] , (14)

144423-4



DEFECT FORMATION PREEMPTS DYNAMICAL SYMMETRY . . . PHYSICAL REVIEW B 84, 144423 (2011)

FIG. 3. (Color online) (a) Time dependence of the real part of the
dimensionless parameter ω for different values of the initial time t0 for
N = 102 spins and a freeze-out time t̂ = 1. All times are measured
in units of 4J/δ. (b) Same for a fixed initial time t0 = 10−2 and
different values of the number of sites N . (c), (d) Same as (a), (b) for
the imaginary part of the dimensionless parameter ω.

with singularities appearing precisely at the Dirac deltas of
Re(ω) and zeros at the punctured instants t Ik � t̂( 3

2kπ + 7π
8 )

2
3 .

The limiting behavior of ω is universal since it scales with N−1

as the number of sites is varied [cf. Figs. 3(b) and 3(d)]. As a
result, any large but finite system displays the fully symmetric
singlet state and the classical symmetry-broken ground state
at the punctured times tRk and t Ik , respectively. In between, the
system’s state has an intermediate structure characterized by
a vanishing real part and a finite imaginary part that preserves
the SU(2) spin rotation symmetry, as we show below.

We can in fact obtain the exact evolution of the order
parameter by considering that the expectation value of the
staggered magnetization is given by

〈
Sz

A − Sz
B

〉 =
∑
S,S ′

	1
S	

1

S ′ 〈S ′|Sz

A − Sz
B |S〉. (15)

FIG. 4. (Color online) Asymptotic behavior of the real (a) and
the imaginary (b) part of the dimensionless parameter ω in the limit
t0 → 0. (c) Asymptotic behavior of the order parameter as a function
of time measured in units of the freeze-out time t̂ .

The matrix elements are nonzero for consecutive thin spectrum
levels alone10 〈S ′|Sz

A − Sz
B |S〉 = fS ′+1δS ′,S−1 + fS ′δS ′,S+1. In

the continuum limit where N is large and 1 � S � N , one
has10 fS ∼ N/4 and consequently the expectation value of the
order parameter is determined by the evolution of the complex
dimensionless parameter ω via

2
〈
Sz

A − Sz
B

〉
N

= 4 Re(ω)3/2

√
π

∫ ∞

1
dS S(S − 1)

× cos

[
Im(ω)

2
(2S − 1)

]
e− Re(ω)

2 [S2+(S−1)2].

A vanishing real part of ω accompanied by a finite value
Im(ω) guarantees that the spin rotation symmetry is unbroken.
A Dirac comb structure for the time evolution of the order
parameter is the result:

2
〈
Sz

A − Sz
B

〉 = N
∑
k�0

δt,tIk
, (16)

as is shown in Fig. 4(c).

V. CONCLUSIONS

The exact time development reveals that when a symmetric
Lieb-Mattis system is subject to a symmetry-breaking field,
a nonequilibrium state forms that is intermediate between
a pure quantum symmetric and a pure classical state. It
is a vast superposition of thin spectrum excitations with
complex amplitudes. This state does not break the spin rotation
symmetry, as direct computation of the order parameter
demonstrates. As time evolves, this nonequilibrium state
develops smoothly, until at a certain moment the system’s
state corresponds precisely to a fully developed classical
ground state. This classical state forms at punctured times
where the imaginary part of ω vanishes. At any other instant,
the spin rotation symmetry is restored. This is in agreement
with the adiabatic-impulse analysis which does not allow
symmetry breaking of a symmetric state when quantum phase
interference effects are neglected.

As a result, the time evolution of the order parameter
is characterized by a comb structure [cf. Fig. 4(c)], which
corresponds to the periodic emergence of the symmetry-
broken states at punctured times. These instants are related
to the freeze-out time alone, indicating the nonequilibrium
nature of this dynamical symmetry-breaking phenomenon.
The freeze-out time can be experimentally tuned by chang-
ing the ramp rate of the symmetry-breaking field, and a
quantum-classical transition can be induced in individual
mesoscopic quantum objects by supplying a proper dynamical
symmetry-breaking perturbation. In the case of an infinitely
sudden quench (δ → ∞), the freeze-out time vanishes and
the punctured times of symmetry-broken classical states
collapse onto each other. In the contrary, asymptotically
adiabatic limit (δ → 0), the first punctured time of the
symmetry-broken state diverges: The system never breaks its
symmetry.

In the dynamical realm the quantum-classical symmetry-
breaking transition is thus characterized by far-from-
equilibrium processes. The exact continuum theory shows
that no matter how slowly the symmetry-breaking process is
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driven, defect formation prevents an adiabatic time evolution.
In a closed system, therefore, a stable symmetry-broken state

cannot evolve out of a symmetric quantum state—neither
spontaneously nor by driving it.
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