
PHYSICAL REVIEW B 84, 144417 (2011)

Role of Tracy-Widom distribution in finite-size fluctuations of the critical temperature of the
Sherrington-Kirkpatrick spin glass
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We investigate the finite-size fluctuations due to quenched disorder of the critical temperature of the
Sherrington-Kirkpatrick spin glass. In order to accomplish this task, we perform a finite-size analysis of the
spectrum of the susceptibility matrix obtained via the Plefka expansion. By exploiting results from random
matrix theory, we obtain that the fluctuations of the critical temperature are described by the Tracy-Widom
distribution with a nontrivial scaling exponent 2/3.
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I. INTRODUCTION

The characterization of phase transitions in terms of a
nonanalytic behavior of thermodynamic functions in the
infinite-size limit has served as a milestone1–5 in the physical
understanding of critical phenomena. In laboratory and numer-
ical experiments, the system size is always finite so that the
divergences that would result from such a nonanalytic behavior
are suppressed, and are replaced by smooth maxima occurring
in the observation of physical quantities as a function of the
temperature. In disordered systems, the pseudocritical tem-
perature, defined as the temperature at which this maximum
occurs, is a fluctuating quantity depending on the realization
of the disorder. A question naturally arises: Can the fluctu-
ations of the pseudocritical temperature be understood and
determined with tools of probability theory? Several efforts
have been made to study the fluctuations of the pseudocritical
temperature for disordered finite-dimensional systems6–9 and
their physical implications. For instance, recently Sarlat et al.10

showed that the theory of finite-size scaling, which is valid
for pure systems, fails in fully-connected disordered models
because of strong sample-to-sample fluctuations of the critical
temperature.

The extreme value statistics of independent random vari-
ables is a well-established problem with a long history
dating from the original work of Gumbel,11 while less results
are known in the case where the random variables are
correlated. The eigenvalues of a Gaussian random matrix
are an example of strongly-correlated random variables.12

Only recently, Tracy and Widom calculated13–16 exactly the
probability distribution of the typical fluctuations of the
largest eigenvalue of a Gaussian random matrix around its
infinite-size value. This distribution, known as Tracy-Widom
distribution, appears in many different models of statistical
physics, such as directed polymers17,18 or polynuclear growth
models,19 showing profound links between such different
systems. Conversely, to our knowledge no evident connections
between the Tracy-Widom distribution and the physics of spin
glasses have been found heretofore.20

The purpose of this work is to try to fill this gap. We consider
a mean-field spin glass model, the Sherrington-Kirkpatrick
(SK) model,21 and propose a definition of finite-size critical
temperature inspired by a previous analysis.8 We investigate
the finite-size fluctuations of this pseudocritical temperature

in the framework of extreme value statistics and show that the
Tracy-Widom distribution naturally arises in the description
of such fluctuations.

II. THE MODEL

The SK model21 is defined by the Hamiltonian

H [{Si},{xij }] = − J

N1/2

N∑
i>j=1

xijSiSj +
N∑

i=1

hiSi, (1)

where Si = ±1, the couplings {xij }i>j=1,...,N ≡ {x}, xji ≡
xij∀i > j are distributed according to normal distribution with
zero mean and unit variance

P (x) = 1√
2π

e− x2

2 , (2)

and J is a parameter tuning the strength of the interaction
energy between spins.

The low-temperature features of the SK model have been
widely investigated in the past and are encoded in Parisi’s
solution,22–27 showing that the SK has a finite-temperature
spin glass transition at Tc = J in the thermodynamic limit
N → ∞. The critical value Tc can be physically thought of as
the value of the temperature where ergodicity breaking occurs
and the spin glass susceptibility diverges.25–27

While Parisi’s solution has been derived within the replica
method framework, an alternative approach to study the SK
model had been previously proposed by Thouless, Anderson,
and Palmer (TAP).28 Within this approach, the system is
described in terms of a free energy at fixed local magnetization,
and the physical features derived in terms of the resulting
free-energy landscape. Later on, Plefka29 showed that the
TAP free energy can be obtained as the result of a systematic
expansion in powers of the parameter

α ≡ βJ

N1/2
,

where β is the inverse temperature of the model. This α

expansion, known as Plefka expansion, has thus served as
a method for deriving the TAP free energy for several classes
of models, and has been extensively used in different contexts
in physics, from classical disordered systems,30–32 to general
quantum systems.33–36 It is a general fact that, if the model is
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defined on a complete graph, the Plefka expansion truncates to
a finite order in α, because higher-order terms should vanish
in the thermodynamic limit. In particular, for the SK model,
the orders of the expansion larger than three are believed37 to
vanish in the limit N → ∞ in such a way that the expansion
truncates, and one is left with the first three orders of the α

series, which reads

−βf ({mi},β) = −
∑

i

[
1 + mi

2
ln

(
1 + mi

2

)
+ 1 − mi

2

× ln

(
1 − mi

2

)]
+ α

∑
i>j

xijmimj

+ α2

2

∑
i>j

x2
ij

(
1 − m2

i

)(
1 − m2

j

)
, (3)

where mi ≡ 〈Si〉 is the local magnetization, i.e., the thermal
average 〈〉 of the spin Si performed with the Boltzmann weight
given by Eq. (1) at fixed disorder {x}.

In the thermodynamic limit N → ∞, for temperatures T >

Tc, the only minimum of βf ({m},β) is the paramagnetic one
mi = 0 ∀i. Below the critical temperature, the TAP free energy
has exponentially many different minima: the system is in a
glassy phase. In this framework, the phase transition at Tc can
be characterized by the inverse susceptibility matrix, which is
also the Hessian of βf

βχ−1
ij ≡ β

∂hi

∂mj

= ∂2(βf )

∂mi∂mj

. (4)

The inverse susceptibility matrix in the paramagnetic mini-
mum at leading order in N is

βχ−1
ij = (1 + β2J 2)δij − αxij . (5)

Random-matrix theory states that the average density of
eigenvalues of x,

ρN (λ) ≡ Ex

[
1

N

N∑
i=1

δ(λ − λi({x}))
]

, (6)

has a semicircular shape38 on a finite support [−2
√

N,2
√

N ],
whereEx denotes expectation value with respect to the random
bonds {x}, and λi({x}) is the ith eigenvalue of x. Equation
(6) is nothing but the density of eigenvalues of the Gaussian
orthogonal ensemble (GOE) of Gaussian random matrices.12,39

Due to self-averaging properties, the minimal eigenvalue of
βχ−1 in the paramagnetic minimum is λ = (1 − βJ )2. This
shows that, for T > Tc, λ is strictly positive and vanishes at
Tc, implying the divergence25 of the spin glass susceptibility
1/β2Tr[χ2]. Since λ is also the minimal eigenvalue of the
Hessian matrix of βf in the paramagnetic minimum, we
deduce that this is stable for T > Tc and becomes marginally
stable at Tc.

This analysis sheds some light on the nature of the spin glass
transition of the SK model in terms of the minimal eigenvalue
λ of the inverse susceptibility matrix (Hessian matrix) in
the thermodynamic limit. In this paper we generalize such
analysis to finite sizes, where no diverging susceptibility nor
uniquely-defined critical temperature exists, and the minimal
eigenvalue λ acquires fluctuations due to quenched disorder.

We show that a finite-size pseudocritical temperature can
be suitably defined and investigate its finite-size fluctuations
with respect to disorder. As a result of this work, these
fluctuations are found to be described by the Tracy-Widom
distribution.

The rest of the paper is structured as follows. In Sec. III, we
generalize Eq. (5) to finite sizes, in the simplifying assumption
that the Plefka expansion can be truncated up to order α2,
which is known as the TAP approach. We then study the
finite-size fluctuations of the minimal eigenvalue λ of the
susceptibility matrix, and show that they are governed by the
TW distribution. In Sec. IV, we extend this simplified approach
by taking into account the full Plefka expansion, by performing
an infinite re-summation of the series. Hence, in Sec. V,
we give a suitable definition of a finite-size pseudocritical
temperature, and show that its fluctuations are governed by
the TW distribution. In Sec. VI, this result is discussed in
the perspective of generalizing it to more realistic spin glass
models.

III. FINITE-SIZE ANALYSIS OF THE SUSCEPTIBILITY IN
THE TAP APPROXIMATION

In this section, we study the finite-size fluctuations due to
disorder of the minimal eigenvalue of the inverse susceptibility
matrix βχ−1 at the paramagnetic minimum mi = 0 ∀i, by
considering the free energy f in the TAP approximation,
Eq. (3). We want to stress the fact that large deviations
of thermodynamics quantities of the SK model have been
already studied heretofore. For example, Parisi et al. have
studied40,41 the probability distribution of large deviations of
the free energy within the replica approach. The same authors
studied the probability of positive large deviations of the free
energy per spin in general mean-field spin-glass models,42 and
showed that such fluctuations can be interpreted in terms of
the fluctuations of the largest eigenvalue of Gaussian matrices,
in analogy with the lines followed in the present work.

Back to the TAP equations (3), the inverse susceptibility
matrix in the paramagnetic minimum for finite N reads

βχ−1
ij = −αxij + δij

⎛
⎝1 + α2

∑
k 	=i

x2
ki

⎞
⎠

= −αxij + δij (1 + β2J 2) + δij

(βJ )2

√
N

zi
2, (7)

where

zi
2 ≡

√
N

⎛
⎝ 1

N

∑
k 	=i

x2
ki − 1

⎞
⎠ . (8)

According to Eq. (8), zi
2 is given by the sum of N − 1

independent identically-distributed random variables x2
ij . By

the central limit theorem, at leading order in N the variable zi
2

is distributed according to a Gaussian distribution with zero
mean and variance 2

pN

(
zi

2 = z
) N→∞→ 1√

4π
e−z2/4, (9)
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where pN (zi
2 = z) denotes the probability that zi

2 is equal to z

at finite size N .
We set

βχ−1
ij ≡ δij (1 + β2J 2) + αMij . (10)

According to Eq. (8), the diagonal elements of Mij are
random variables correlated to out-of-diagonal elements. The
statistical properties of the spectrum of a random matrix whose
entries are correlated to each other has been studied heretofore
only in some cases. For instance, Stäring et al.43 studied
the average eigenvalue density for matrices with a constraint
implying that the row sum of matrix elements should vanish,
and other correlated cases have been investigated both from a
physical44 and mathematical45 point of view.

In recent years, a huge amount of results has been obtained
on the distribution of the minimal eigenvalue of a N × N

random matrix drawn from Gaussian ensembles, such as GOE.
In particular, Tracy and Widom13–16 deduced that for large N ,
small fluctuations of the minimal eigenvalue λGOE of a GOE
matrix around its leading-order value −2

√
N are given by

λGOE = −2
√

N + 1

N1/6
φGOE, (11)

where φGOE is a random variable distributed according to
the Tracy-Widom (TW) distribution for the GOE ensemble
pGOE(φ). It follows that for βJ = 1 if zi

2 was independent on
{x}, the matrix Mij would belong to the GOE ensemble, and
the minimal eigenvalue λ of βχ−1 would define a variable φ

according to

λ = 1

N2/3
φ, (12)

and φ would be distributed according to the TW distribution
pGOE(φ).

As shown in Appendix A, this is indeed the case for zi
2,

which can be treated, at leading order in N , as a random
variable independent on xij . The general idea is that zi

2 is given
by the sum of N − 1 terms all of the same order of magnitude,
and only one amongst these N − 1 terms depends on xij . It
follows that at leading order in N , zi

2 can be considered as
independent on xij . Since in Eq. (7) zi

2 is multiplied by a
sub-leading factor 1/

√
N , in Eq. (7) we can consider zi

2 at
leading order in N , and treat it as independent on xij .

To test this independence property, we set βJ = 1, generate
numerically S 
 1 samples of the N × N matrix βχ−1, and
compute the average density of eigenvalues of βχ−1, defined
as in Eq. (6), together with the distribution of the minimal
eigenvalue λ for several sizes N . The eigenvalue distribution
ρN (λ) as a function of λ is depicted in Fig. 1, and tends to the
Wigner semicircle as N is increased, showing that the minimal
eigenvalue λ tends to 0 as N → ∞.

The finite-size fluctuations of λ around 0 are then investi-
gated in Fig. 2. Defining φ in terms of λ by Eq. (12), in Fig. 2 we
depict the distribution pN (φ) of the variable φ for several sizes
N , and show that for increasing N , pN (φ) approaches the TW
distribution pGOE(φ). Let us introduce the central moments

μN
1 ≡ EN [φ],

μN
i ≡ EN [(φ − EN [φ])i] ∀i > 1
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FIG. 1. (Color online) Density of eigenvalues ρN (λ) of the matrix
βχ−1 for N = 64,128,256,512,1024 (in red, blue, yellow, green, vio-
let respectively), βJ = 1 and S = 16 × 103, and Wigner semicircular
law ρSC(λ) = 1/(2π )

√
4 − (2 − λ)2 (black) as a function of λ. ρN (λ)

approaches ρSC(λ) as N is increased.

of pN (φ), and the central moments

μGOE
1 ≡ EGOE[φ],

μGOE
i ≡ EGOE[(φ − EGOE[φ])i] ∀i > 1

of the TW distribution, where

EN [·] ≡
∫

dφ pN (φ) · ,

EGOE[·] ≡
∫

dφ pGOE(φ) · .

In the inset of Fig. 2 we depict μN
i for several sizes N and

μGOE
i as a function of i, showing that μN

i converges to μGOE
i

as N is increased.
In Fig. 3, this convergence is clarified by depicting �μN

i ≡
(μN

i − μGOE
i )/μGOE

i for several values of i > 1 as a function
of N . �μN

i is found to converge to 0 for large N . In the inset
of Fig. 3, we depict �μN

1 as a function of N , showing that
the convergence of the first central moment with N is much
slower than that of the other central moments. It is interesting
to observe that a slowly-converging first moment has been
recently found also in experimental46 and numerical47 data
of models of growing interfaces where the TW distribution
appears.

The analytical argument proving the independence property
of zi

2 has been thus confirmed by this numerical calculation.
Hence, the main result of this section is that the finite-size
fluctuations of the minimal eigenvalue of the susceptibility
matrix βχ−1 in the TAP approximation for βJ = 1 are of
the order of N−2/3 and are distributed according to the TW
law. These fluctuations have already been found to be of
the order of N−2/3 in a previous work,48 and more recently
reconsidered,49 following an independent derivation based on
scaling arguments, even though the distribution has not been
worked out. Our approach sheds some light on the nature of
the scaling N−2/3, which is nontrivial, since it comes from the
N−1/6 scaling of the TW distribution, which is found to govern
the fluctuations of λ. Moreover, the fact that we find the same
scaling as that found in such previous works can be considered
as a consistency test of our calculation.
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FIG. 2. (Color online) Distribution pN (φ) for N = 128,256,512,1024,2048,4096 (in red, yellow, blue, brown, violet, green respectively)
and 105 � S � 4 × 105 samples, and the Tracy-Widom distribution pGOE(φ) for the GOE ensemble (black), as a function of φ. For increasing
N , pN (φ) approaches pGOE(φ), confirming the asymptotic independence of the diagonal elements (11) by each of the off-diagonal elements xij

for large N . Inset: μN
i for sizes N = 128,256,512,1024,2048,4096 (in red, yellow, blue, brown, violet, green respectively), 105 � S � 4 × 105,

and μGOE
i (black) as a function of i > 1.

We now recall that both the derivation of this section and
the previously-developed analysis of Bray and Moore48 rely
on the TAP approximation, i.e., neglect the terms of the Plefka
expansion (13) of order larger than 2 in α. As we will show
in the following section, these terms give a non-negligible
contribution to the finite-size corrections of the TAP equations,
and so to the finite-size fluctuations of the critical temperature,
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Δ
μ

N i

N
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FIG. 3. (Color online) Relative difference �μN
i between the

central moments μN
i of the distribution pN (φ) for 105 � S � 4 × 105,

and the central moments μGOE
i of the Tracy-Widom distribution as

a function of N = 128,256,512,1024,2048,4096, for i = 2,3,4,5
(in red, blue, black, orange respectively). For increasing N , μN

i

approaches μGOE
i , confirming the asymptotic independence of zi

2 by
each of the off-diagonal elements xij for large N . Inset: relative
difference of the first central moment �μN

1 as a function of N (brown).
�μN

1 approaches 0 very slowly as N is increased.

and thus must be definitely taken into account in a complete
treatment.

IV. FINITE-SIZE ANALYSIS OF THE SUSCEPTIBILITY
WITHIN THE FULL PLEFKA EXPANSION

In this section, we compute the inverse susceptibility matrix
βχ−1 by taking into account all the terms of the Plefka
expansion, in the effort to go beyond the TAP approximation
of Sec. III. Notwithstanding its apparent difficulty, here we
show that this task can be pursued by a direct inspection of
the terms of the expansion. Indeed, let us formally write the
free-energy f as a series29 in α,

f ({m},β) =
∞∑

n=0

αnfn({m},β). (13)

For n < 3, the fn’s are given by Eq. (3). For n > 3, fn is given
by the sum of several different addends,37 which proliferate
for increasing n.

It is easy to show that at leading order in N , there is just one
term contributing to fn, and that such a term can be written
explicitly as

fn({m},β)
N→∞≈

∑
i1>···>in−1

xi1i2xi2i3 · · · xin−1i1

× (
1 − m2

i1

) × · · · × (
1 − m2

in−1

)
. (14)
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It follows that by plugging Eq. (14) into Eq. (13) and
computing βχ−1 for mi = 0, one obtains a simple expression
for the inverse susceptibility at the paramagnetic solution

βχ−1
ij = −αxij + δij

(
1 + α2

∑
k 	=i

x2
ki + 2

∞∑
n=3

αn

×
∑

i1>···>in−1

xii1xi1i2 · · · xin−1i

)

= −αxij + δij (1 + β2J 2) + δij

1√
N

×
[

(βJ )2zi
2 + 2

∞∑
n=3

(βJ )n√
(n − 1)!

zi
n

]
. (15)

where

zi
n ≡

√
(n − 1)!

N
n−1

2

∑
i1>···>in−1

xii1xi1i2 · · · xin−1i ,∀n > 2. (16)

According to Eq. (16), one has that at leading order in N ,

Ex

[
zi
n

] = 0 ∀n > 2,
(17)

Ex

[(
zi
n

)2] = 1 ∀n > 2,

where in the second line of Eq. (17) the multiple sum defining
zi
n has been evaluated at leading order in N .

We observe that the random variables zi
n and xjk in Eq. (15)

are not independent, since each zi
n depends on the bond

variables {x}. Following an argument similar to that given in
Sec. III for zi

2, we observe that, by Eq. (16) and at leading order
in N , zi

n is given by a sum of O(Nn−1) terms which are all of the
same order of magnitude. Each term is given by the product of
n − 1 bond variables xii1xi1i2 · · · xin−1i forming a loop passing
by site i. For any fixed i, j, k, and n, only O(Nn−2) terms
amongst the O(Nn−1) terms of zi

n are entangled with the
random bond variable xjk . It follows that at leading order in
N , zi

n can be considered as independent by xjk . Since the sum
in the second line of Eq. (15) has a 1/

√
N factor multiplying

each of the zi
n’s, we can consider the zi

n at leading order in
N . Hence, in Eq. (15) we can consider each of the zi

n’s as
independent on xjk .

In Appendix B we show that at leading order in N , the
distribution of zi

n is a Gaussian with zero mean and unit
variance for every i and n > 2, while in Appendix C we
show that at leading order in N the variables {zi

n}n,i are
mutually independent. Both these predictions are confirmed by
numerical tests, illustrated in Appendix B and C respectively.

Hence, at leading order in N the term in square brackets
in Eq. (15) is nothing but the sum of independent Gaussian
variables, and is thus equal to a random variable σ × ζi , where
ζi is Gaussian with zero mean and unit variance, and

σ 2 = 2(βJ )4 + 4
∞∑

n=3

(βJ )2n

(n − 1)!

= 2(βJ )2{2(e(βJ )2 − 1) − (βJ )2}.

It follows that Eq. (15) becomes

βχ−1
ij = −αxij + δij

(
1 + β2J 2 + σ√

N
ζi

)
= −αx ′

ij + δij (1 + β2J 2), (18)

where

x ′
ij ≡ xij − δij

σ

βJ
ζi. (19)

Because of the additional diagonal term in Eq. (19), the matrix
x ′

ij does not belong to the GOE ensemble. Notwithstanding this
fact, it has been shown by Soshnikov50 that the presence of
the diagonal elements in Eq. (19) does not alter the universal
distribution of the maximal eigenvalue of x ′

ij , which is still
distributed according to the TW law. Hence, denoting by λ the
minimal eigenvalue of βχ−1, we have

λ = (1 − βJ )2 + βJ

N2/3
φGOE, (20)

where φGOE is a random variable depending on the sample xij ,
and distributed according to the TW law.

In this section, we have calculated the inverse susceptibility
matrix βχ−1, by considering the full Plefka expansion. In
this framework, additional diagonal terms are generated that
were not present in the TAP approximation. These additional
terms can be handled via a resummation to all orders in the
Plefka expansion. As a result, we obtain that the fluctuations
of the minimal eigenvalue λ of the susceptibility βχ−1 are
still governed by the TW law, as in the TAP case treated in
Sec. III.

V. FINITE SIZE FLUCTUATIONS OF THE CRITICAL
TEMPERATURE

We can now define a finite-size critical temperature, and
investigate its finite-size fluctuations due to disorder. In the
previous sections, we have shown that for a large but finite
size N , the minimal eigenvalue of the inverse susceptibility
matrix, i.e., the Hessian matrix of βf ({m},β) evaluated in
the paramagnetic minimum mi = 0, is a function of the
temperature and of a quantity φGOE, which depends on
the realization of the disorder {x}. Since the TW law, i.e., the
distribution of φGOE, has support for both positive and negative
values of φGOE, the subleading term in Eq. (20) can be positive
or negative. Accordingly, for samples {x} such that φGOE < 0,
there exists a value of βJ ≈ 1 such that λ(βJ ) = 0, in such
a way that the spin-glass susceptibility in the paramagnetic
minimum diverges. This fact is physically meaningless, since
there cannot be divergences in physical quantities at finite
size. This apparent contradiction can be easily understood by
observing that if λ(βJ ) = 0, the true physical susceptibility
is no more the paramagnetic one, but must be evaluated in
the low-lying nonparamagnetic minima of the free energy,
whose appearance is driven by the emergent instability of
the paramagnetic minimum. According to this discussion, in
the following we will consider only samples {x} such that
φGOE > 0.
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For these samples, the spectrum of the Hessian matrix at
the paramagnetic minimum has positive support for every
temperature: The paramagnetic solution is always stable, and
the paramagnetic susceptibility matrix χ is physical and finite.
We define a pseudoinverse critical temperature βcJ as the value
of βJ such that λ has a minimum at βcJ :

dλ

dβJ

∣∣∣∣
βJ=βcJ

≡ 0

= −2(1 − βcJ ) + 1

N2/3
φGOE, (21)

where in the second line of Eq. (21), Eq. (20) has been
used. This definition of pseudocritical temperature has a
clear physical interpretation: The stability of the paramagnetic
minimum, which is encoded into the spectrum of the Hessian
matrix βχ−1, has a minimum at β = βc. According to Eq. (21),
the finite-size critical temperature βc is given by

βcJ = 1 − 1/2

N2/3
φGOE, (22)

where φGOE depends on the sample {x}, and is distributed
according to the TW law.

Eq. (22) shows that the pseudocritical temperature of the
SK model is a random variable depending on the realization
of the quenched disorder. Finite-size fluctuations of the
pseudocritical temperature are of the order of N−2/3, and are
distributed according to the TW law. This has to be considered
the main result of this paper.

VI. DISCUSSION AND CONCLUSIONS

In this paper, the finite-size fluctuations of the critical
temperature of the Sherrington-Kirkpatrick spin glass model
have been investigated. The analysis is carried on within the
framework of the Plefka expansion for the free energy at fixed
local magnetization. A direct investigation of the expansion
shows that an infinite resummation of the series is required to
describe the finite-size fluctuations of the critical temperature.
By observing that the terms in the expansion can be treated
as independent random variables, one can suitably define a
finite-size critical temperature. Such a critical temperature
has a unique value in the infinite-size limit, while it exhibits
fluctuations due to quenched disorder at finite sizes. These
fluctuations with respect to the infinite-size value have been
analyzed, and have been found to be of the order of N−2/3,
where N is the system size, and to be distributed according to
the Tracy-Widom distribution.

The exponent 2/3 describing the fluctuations of the pseu-
docritical temperature stems from the fact that the finite-
size fluctuations of the minimal eigenvalue λ of the inverse
susceptibility matrix are of the order of N−2/3. Such a scaling
for λ at the critical temperature had already been obtained
in a previous work,48 where it was derived by a completely
independent method, by taking into account only the first three
terms of the Plefka expansion. The present work shows that
a more careful treatment, including an infinite resummation
of the expansion, is needed to handle finite-size effects. The

exponent 2/3 derived by Bray and Moore48 is here rederived
by establishing a connection with recently-developed results in
random matrix theory, showing that the scaling N−2/3 comes
from the scaling of the Tracy-Widom distribution, which was
still unknown when the paper by Bray and Moore48 was
written.

As a possible development of the present work, it would be
interesting to study the fluctuations of the critical temperature
for a SK model where the couplings are distributed according
to a power law. Indeed, in a recent work52 the distribution of
the largest eigenvalue λ of a random matrix M whose entries
Mij are power-law distributed as p(Mij ) ∼ M

−1−μ

ij has been
studied. The authors show that if μ > 4, the fluctuations of λ

are of the order of N−2/3 and are given by the TW distribution,
while if μ < 4 the fluctuations are of the order of N−2/μ−1/2

and are governed by Fréchet’s statistics. This result could be
directly applied to a SK model with power-law distributed
couplings. In particular, it would be interesting to see if there
exists a threshold in the exponent μ separating two different
regimes of the fluctuations of Tc.

Another interesting perspective would be to generalize the
present approach to realistic spin glass models with finite-
range interactions. For instance, a huge amount of results has
been quite recently obtained for the three-dimensional Ising
spin glass,53–60 and for the short-range p-spin glass model in
three dimensions,61 yielding evidence for a finite-temperature
phase transition. It would be interesting to try to generalize
the present work to that systems, and compare the resulting
fluctuations of the critical temperature with sample-to-sample
fluctuations observed in these numerical works. Accordingly,
the finite-size fluctuations deriving from the generalization of
this work to the three-dimensional Ising spin glass could be
hopefully compared with those observed in experimental spin
glasses,62 such as Fe0.5Mn0.5TiO3.

Finally, a recent numerical analysis63 inspired by the
present work has investigated the sample-to-sample fluctua-
tions of a given pseudocritical temperature for the SK model,
which is different from that defined in this work. Even though
the relatively small number of samples did not allow for a
precise determination of the probability distribution of that
pseudocritical point, the analysis yields a scaling exponent
equal to 1/3, which is different from that of the pseudocritical
temperature defined here. As a consequence, the general scal-
ing features of the pseudocritical temperature seem to depend
on the actual definition of the pseudocritical point itself, even
though different definitions of the pseudocritical temperature
must all converge to the infinite-size pseudocritical tempera-
ture as the system size tends to infinity. As a future perspective,
it would be interesting to investigate which amongst the fea-
tures of the pseudocritical point are definition-independent, if
any.
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APPENDIX A: PROOF OF THE ASYMPTOTIC
INDEPENDENCE OF xi j AND zi

2

Here we show that at leading order in N , the variables xij

and zi
2 are independent, i.e., that at leading order in N

pN

(
xij = x,zi

2 = z
) = pN (xij = x) × pN

(
zi

2 = z
)
. (A1)

Let us explicitly write the left-hand size of Eq. (A1) as

pN

(
xij = x,zi

2 = z
)

= E{xik}k 	=i

[
δ(xij − x)δ

(
zi

2 − z
)]

,

= Exij

⎡
⎣δ(xij − x)E{xik}k 	=i,k 	=j

×
⎧⎨
⎩ δ

⎡
⎣√

N

⎛
⎝ 1

N

∑
k 	=i,k 	=j

x2
ki − 1

⎞
⎠ − z

ij

2

⎤
⎦

⎫⎬
⎭
⎤
⎦ , (A2)

where Exlm,xno,··· denotes the expectation value with respect
to the probability distributions of the variables xlm,xno, . . ., δ

denotes the Dirac delta function, and

z
ij

2 ≡ z − x2
ij√
N

. (A3)

Proceeding systematically at leading order in N , the second
expectation value in the second line of Eq. (A2) is nothing
but the probability that the variable

√
N ( 1

N

∑
k 	=i,k 	=j x2

ki − 1)

is equal to z
ij

2 . We observe that according to the central limit
theorem, at leading order in N this probability is given by

E{xik}k 	=i,k 	=j

⎡
⎣δ

⎛
⎝√

N

⎛
⎝ 1

N

∑
k 	=i,k 	=j

x2
ki − 1

⎞
⎠ − z

ij

2

⎞
⎠

⎤
⎦

= 1√
4π

e− (z
ij
2 )2

4 . (A4)

By plugging Eq. (A4) into Eq. (A2) and using Eq. (A3), one
has

pN

(
xij = x,zi

2 = z
) = 1√

4π

∫
dxijP (xij )δ(xij − x)

×e− (z−x2
ij

/
√

N)2

4

= P (x)
1√
4π

e− (z−x2/
√

N)2

4 (A5)

= pN (xij = x) × pN

(
zi

2 = z
)
,

where in the first line we explicitly wrote the expectation value
with respect to xij in terms of the probability distribution (2),
while in the third line proceeded at leading order in N , and
used Eq. (9).

APPENDIX B: COMPUTATION OF THE PROBABILITY
DISTRIBUTION OF zi

n

Here we compute the probability distribution of zi
n at lead-

ing order in N . Let us define a super index L ≡ {i1, . . . ,in−1},
where L stands for loop, since L represents a loop passing by
the site i. Let us also set XL ≡ xii1xi1i2 · · · xin−1i . By Eq. (16)

one has

zi
n =

√
(n − 1)!

N
n−1

2

∑
L

XL,∀n > 2. (B1)

We observe that the probability distribution of XL is the same
for every L. Hence, according to Eq. (B1), zi

n is given by the
sum of equally distributed random variables. Now pick two of
these variables, XL and XL′ . For some choices of L,L′, XL and
XL′ are not independent, since they can depend on the same
bond variables xij . If one picks one variable XL, the number
of variables appearing in the sum (B1) which are dependent
on XL are those having at least one common edge with the
edges of XL. The number of these variables, at leading order
in N , is O(Nn−2), since they are obtained by fixing one of the
n − 1 indexes i1, . . . ,in−1. The latter statement is equivalent to
saying that if one picks at random two variables XL and XL′ ,
the probability that they are correlated is

O(Nn−2/Nn−1) = O(N−1). (B2)

Hence, at leading order in N , we can treat the ensemble of the
variables {XL}L as independent. According to the central limit
theorem, at leading order in N , the variable

√
(n − 1)!

N
n−1

2

zi
n = 1

Nn−1

(n−1)!

∑
L

XL

is distributed according to a Gaussian distribution with mean
Ex[XL] = 0 and variance

Ex

[(√
(n − 1)!

N
n−1

2

zi
n

)2
]

= Ex

[
X2

L

]
Nn−1

(n−1)!

= 1
Nn−1

(n−1)!

, (B3)

where in Eq. (B3) Eq. (2) has been used. It follows that at
leading order in N , zi

n is distributed according to a Gaussian
distribution with zero mean and unit variance

pN

(
zi
n = z

) N→∞→ 1√
2π

e− z2

2 , (B4)

where pN (zi
n = z) is defined as the probability that zi

n is equal
to z at size N .

Eq. (B4) has been tested numerically for the first few values
of n: pN (zi

n = z) has been computed by generating S 
 1
samples of {x}, and so of zi

n. For n = 3 and 4, the resulting
probability distribution pN (zi

n = z) converges to a Gaussian
distribution with zero mean and unit variance as N is increased,
confirming the result (B4). This convergence is shown in Fig. 4,
where pN (z1

4 = z) is depicted for different values of N together
with the right-hand side of Eq. (B4), as a function of z.

APPENDIX C: INDEPENDENCE OF THE zi
n’s AT LEADING

ORDER IN N

Let us consider two distinct variables zi
n and z

j
m, and proceed

at leading order in N . Following the notation of Appendix B,
we write Eq. (16) as

zi
n =

√
(n − 1)!

N
n−1

2

∑
L

XL, (C1)

zj
m =

√
(m − 1)!

N
m−1

2

∑
L′

XL′ , (C2)
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FIG. 4. (Color online) Probability distribution pN (z1
4 = z) for

S = 105 and different values of N = 64,128,256,512,1024 (in red,
blue, yellow, green, violet respectively) together with a Gaussian
distribution 1/

√
2πe−z2/2 with zero mean and unit variance (black),

as a function of z. As N is increased, pN (z1
4 = z) converges to

1/
√

2πe−z2/2, as predicted by the analytical calculation, Eq. (B4).
Inset: zoom of the above plot explicitly showing the convergence of
pN (z1

4 = z) to 1/
√

2πe−z2/2 as N is increased.

where L,L′ represent a loop of length n,m passing by the site
i,j respectively. Some of the variables XL depend on some of
the variables XL′ , because they can depend on the same bond
variables xij . Let us pick at random one variable XL appearing
in zi

n, and count the number of variables XL′ in z
j
m that are

dependent on XL. At leading order in N , these are given by
the number of XL′ having at least one common bond with XL,
and are O(Nm−2). Hence, if one picks at random two variables
XL,XL′ in Eqs. (C1), (C2) respectively, the probability that
XL,XL′ are dependent is

O(Nm−2/Nm−1) = O(N−1).
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FIG. 5. (Color online) p1024(z1
3 = z,z1

4 = z′) for S = 105 samples
(red), and the N → ∞ limit of the right-hand side of Eq. (C3) (black),
as a function of z,z′. For large N , pN (z1

3 = z,z1
4 = z′) equals pN (z1

3 =
z) × pN (z1

4 = z′), as predicted by Eq. (C3). Hence, at leading order
in N , the variables z1

3 and z1
4 are independent.

It follows that zi
n and z

j
m are independent at leading order

in N , i.e., for N → ∞
pN

(
zi
n = z,zj

m = z′) = pN

(
zi
n = z

) × pN

(
zj
m = z′), (C3)

where pN (zi
n = z,z

j
m = z′) denotes the joint probability that

zi
n equals z and z

j
m equals z′, at fixed size N .

Eq. (C3) has been tested numerically for n = 3,m = 4:
pN (z1

3 = z,z1
4 = z′) has been computed by generating S 
 1

samples of {x}, and so of z1
3,z

1
4. As a result, the left-hand

side of Eq. (C3) converges to the right-hand side as N is
increased, confirming the predictions of the above analytical
argument. This is shown in Fig. 5, where p1024(z1

3 = z,z1
4 =

z′) is depicted together with the N → ∞ limit of the
right-hand side of Eq. (C3) [see Eq. (B4)], as a function
of z,z′.
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