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Ultrafast magnetization dynamics rates within the Landau-Lifshitz-Bloch model
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Ultrafast laser-induced magnetization dynamics is analyzed in terms of the Landau-Lifshitz-Bloch (LLB)
equation for different values of spin S. Within the LLB model the ultrafast demagnetization time (τM ) and
the transverse damping (α⊥) are parametrized by the intrinsic coupling-to-the-bath parameter λ, defined by the
microscopic spin-flip rate. We show that the LLB model is equivalent to a recently introduced M3TM model
[B. Koopmans et al., Nature Mat. 9, 259 (2010)] with S = 1/2 within the assumption that the intrinsic scattering
mechanism is the phonon-mediated Elliott-Yafet scattering. As a result, for this process λ is proportional to
the ratio between the nonequilibrium phonon and electron temperatures, in contrast to previous models with
λ = const. We investigate the influence of the finite spin number and the scattering rate parameter λ on the
ultrafast magnetization dynamics. The differences in the demagnetization time scale in transition metals and Gd
are attributed to the fact that this parameter is almost two orders of magnitude smaller in the latter case. The
relation between the femtosecond demagnetization rate and the perpendicular picosecond–nanosecond damping,
provided by the LLB theory, is checked based on the available experimental data. A good agreement is obtained
for Ni, Co, and Gd, providing validation of the LLB model.
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I. INTRODUCTION

Magnetization precession and spin-phonon relaxation rates
on picoseconds time scale were considered to be the limiting
factors for the speed of the magnetization switching,1,2 until
it was demonstrated that optical excitation with fs pulsed
lasers could influence the magnetization on femtosecond
timescale.3–6 Ultrafast laser-induced demagnetization imme-
diately became a hot topic in solid state physics due to an
appealing possibility to further push the limits of operation of
magnetic devices.7 This ultrafast process has now been shown
to proceed with several important characteristic time scales:6

(i) a femtosecond demagnetization with time scale τM , (ii) a
picosecond recovery with time scale τE , and (iii) a hundred-
picosecond to nanosecond magnetization precession and
relaxation, traditionally characterized by the ferromagnetic
resonance frequency ωFMR and the Landau-Lifshitz-Gilbert
damping parameter αLLG (α⊥) (see Fig. 1).

The correct account for the physics of the magnetization
changes on femtosecond time scales is obviously not trivial and
requires the time-dependent relativistic quantum mechanics
within a many-body approach. An important problem is the
open question of the role of different subsystems (photons,
phonons, electrons, and spins) in the ultrafast angular momen-
tum transfer.8 This common goal is stimulated by experimental
findings provided by X-ray Magnetic Circular Dichroism
(XMCD) measurements showing the important role of spin-
orbit interactions.9,10 While some degree of understanding
has been achieved in ab initio modeling of the ultrafast
demagnetization (τM ) scale,9,11–15 modeling all three ultrafast
magnetization dynamics rates within the same approach is
outside the possibilities of quantum mechanical approaches.

The three-temperature (3T) phenomenological model in-
volves the rate equations for the electron, phonon, and spin
temperatures (energies).11,16–18 It has been shown that the
introduction of the spin temperature is not adequate19 since
the spin system is not in equilibrium on the femtosecond
time scale. It has been suggested to couple the spin dynamics

to the two-temperature (2T) model for phonon and electron
temperatures.19–23 These models are based on the energy flow
picture and leave unidentified the angular momentum transfer
mechanism and the underlying quantum mechanism responsi-
ble for the spin flip.23 They essentially interpret the ultrafast
demagnetization as “thermal” processes, understanding the
temperature as energy input from photon to electron and then
to the spin system. By using these models the important role of
the linear reversal path in the femtosecond demagnetization has
been identified.24,25 The comparison with experiment seems
to indicate that in order to have magnetization switching
on the ultrafast time scale, a combined action of “heat”
and large field coming from the inverse Faraday effect is
necessary.25

The most successful recent phenomenological models
describing ultrafast magnetization dynamics are (i) Langevin
dynamics based on the Landau-Lifshitz-Gilbert (LLG) equa-
tion and the classical Heisenberg Hamiltonian for localized
atomic spin moments,19,20 (ii) Landau-Lifshitz-Bloch (LLB)
micromagnetics,22,23 and (iii) Koopmans’ magnetization dy-
namics model (M3TM).26 The spin dynamics could be coupled
to the electron temperature from the 2T model, underlying the
electronic origin of the spin-flip process19,20,22,23,25 or to both
electron and phonon temperatures, underlying the Elliott-Yafet
mechanism mediated by phonons.26 When the 2T model was
carefully parametrized from the measured reflectivity, this
approach gave excellent agreement with the experiment in
Ni (Ref. 23) using the former mechanism or in Ni, Co, and Gd
using the latter mechanism.26

In the classical derivation of the LLB equation thermal aver-
aging is performed analytically within the mean-field approx-
imation (MFA).27 Thus, the LLB equation for classical spins
(S → ∞) is equivalent to an ensemble of exchange-coupled
atomistic spins modeled by stochastic LLG equations.21,28

At the same time, in some cases the LLB equation may be
preferable with respect to the atomistic Heisenberg model,
since being micromagnetic it can incorporate the quantum
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FIG. 1. (Color online) Characteristic time scales in ultrafast laser-
induced magnetization dynamics experiments. The curve is obtained
by the integration of the Landau-Lifshitz-Bloch equation coupled to
the two-temperature model with the parameters from Ref. 22. For the
modeling of precession the applied field Hap = 1 T at 30 degrees was
used.

nature of magnetism and the quantum derivation of LLB also
exists.29 In particular, the limits of validity for the statistical
mechanics based on the classical Heisenberg model for the
description of materials with delocalized magnetism of d
electrons in transition metals or magnetism of f electrons in
rare earths are not clear. An alternative statistical simplified
description of d metals consists of a two-level system with
spin-up and spin-down bands (i.e., S = ±1/2), as has been
proposed by Koopmans et al.26 Their model, as we show
in the present paper, is also equivalent to the quantum
LLB equation with spin S = 1/2. An additional advantage
of using the LLB equation is the possibility of modeling
larger spatial scales.21,22 Therefore LLB micromagnetics is
an important paradigm within the multiscale magnetization
dynamics description. The LLB equation has been shown to
describe correctly the three stages of ultrafast demagnetization
processes: the subpicosecond demagnetization, the picosecond
magnetization recovery, and the nanosecond magnetization
precession21–23 (see Fig. 1).

The intrinsic quantum mechanical mechanisms responsible
for ultrafast demagnetization in the LLB model are included
in the intrinsic coupling-to-the-bath parameter λ.23,29 The
coupling process is defined by the rate of spin flip. Several
possible underlying quantum mechanisms are currently under
debate: the Elliott-Yafet (EY) electron scattering mediated by
phonons or impurities14,26 or other electrons15 and electron-
electron inelastic exchange scattering.30,31 By combining the
macroscopic demagnetization equation (M3TM model) with
the rate of spin flip calculated on the basis of the full
Hamiltonian, Koopmans et al.26 have been able to relate the
ultrafast demagnetization time τM with the spin flip rate of the
phonon-mediated Elliott-Yafet scattering. The authors fitted
experimental demagnetization rates in Ni, Co, and Gd to
the phenomenological M3TM model and found them to be

consistent with the values estimated on the basis of ab initio
theory.14 The coupling-to-the-bath parameter λ (microscopic
damping parameter in the atomistic LLG model) should be
distinguished from that of the macroscopic damping αLLG

(α⊥ in the LLB model), a more complicated quantity which
includes the magnon-magnon processes.

The first attempt to relate the subpicosecond demagne-
tization time to the macroscopic damping processes was
given by Koopmans et al.,6 who suggested the relation
τM ∼ 1/αLLG. Subsequently and with the aim of checking
this relation, several experiments in doped permalloy were
performed.32–34 The permalloy thin films were doped with
rare-earth impurities, allowing the damping parameter αLLG

to be increased in a controlled way. The effect on the
demagnetization time τM was shown to be opposite34 or null,32

in contrast to the above relation. However, it should be noted
that the analysis leading to this expression was performed
in terms of the Landau-Lifshitz-Gilbert equation, relating the
ultrafast demagnetization time τM to the transverse damping
without taking into account their temperature dependence.
Moreover, one should take into account that the rare-earth
impurities may introduce a different spin-flip mechanism with
a slower time scale.33

Partially based on the above-mentioned experimental re-
sults and from a general point of view, the longitudinal relax-
ation (the ultrafast demagnetization rate τM ) and the transverse
relaxation (the LLG damping αLLG) may be thought to be
independent quantities. Indeed, different intrinsic and extrinsic
mechanisms can contribute to the magnetization dynamics
rates at different time scales. One can, for example, mention
that during the femtosecond demagnetization the electron
temperature is often raised to the Curie temperature.23,25

At this moment, high-frequency terahertz spin waves35,36

including Stoner excitations31 contribute. At the same time,
the transverse relaxation is related to the homogeneous
precessional mode at lower temperatures. The LLB equation
takes care of the different natures of longitudinal and transverse
relaxation, arising from the spin disordering. The LLB model
calculates them independently but based on the same intrinsic
scattering mechanism parametrized by the parameter λ. The
increment of the number of scattering events is mimicked by
the increase of the electron temperature. Consequently, the
relation between the ultrafast demagnetization and precession
remains valid but with a temperature-dependent correction. If
this relation is confirmed experimentally, a unique intrinsic
coupling parameter means that the same main microscopic
mechanism is acting on both time scales. This would also
confirm the validity of the LLB model. In the present paper we
will show that the analysis of the available experimental data
seems to indicate this possibility, at least in pure transition
metals such as Ni or Co and in the rare-earth metal Gd.
We did not find validity for the corresponding relation
in Fe.

Up to now only a classical version (S → ∞) of the
LLB equation was used to model ultrafast demagnetization
processes.20–22,25 In the present paper we show the important
role of the choice of the quantum spin value, resulting in
the differences in the corresponding longitudinal relaxation
times. We also investigate the influence of coupling to the bath
parameter on the ultrafast magnetization dynamics rates and
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show that this parameter, being the only free parameter in the
LLB model, defines to a large extent the diversity of different
materials. The influence of other parameters is also discussed.

The paper is organized as follows. In Sec. II we present
the quantum LLB model and its main features for different
spin values S. In Sec. III we present results on the modeling
of the demagnetization processes within LLB models with
different choices of the quantum spins number S and of the
intrinsic scattering mechanisms. In Sec. IV we present our
attempts to link the ultrafast magnetization dynamics rates in
transition metals and Gd and make a comparison with available
experimental data. A good agreement validates the future use
of LLB micromagnetics. Section V concludes the paper. In the
Appendix we demonstrate the equivalence of the LLB model
with S = 1/2 and the M3TM model by Koopmans et al.26

II. THE LANDAU-LIFSHITZ-BLOCH MODEL
WITH QUANTUM SPIN NUMBER S

The LLB equation for a quantum spin interacting with an
environment was derived from the density matrix equation
approach.29 Spin-spin interactions were taken into account
in the mean-field approximation, by considering that the
exchange field is the strongest one acting in the system.
The resulting dynamical equation interpolates between the
standard micromagnetics (the macroscopic Landau-Lifshitz-
Gilbert equation) at low temperatures and the Bloch equation
(at high temperatures). Unlike the traditional Bloch equation,
which is widely used in the description of the nuclear magnetic
resonance, the LLB equation describes the dynamics of a
strongly coupled system.

The macroscopic (“micromagnetic”) equation for the mag-
netization dynamics, valid at all temperatures, is written in the
following form:

ṅ = γ [n × Heff] + γα‖
n2

[n · Heff]n − γα⊥
n2

[n × (n × Heff)],

(1)

where γ is the ferromagnetic ratio, T is the bath tempera-
ture, n = M/Me(T ) = m/me is the reduced magnetization,
normalized to the equilibrium value Me at given temperature
T , and m = M/Me(T = 0K). The internal field Hint contains
all usual micromagnetic contributions (Zeeman, anisotropy,
exchange, and magnetostatic) and is augmented by the contri-
bution coming from the temperature,

Heff = Hint + me

2χ̃‖
(1 − n2)n, (2)

where χ̃‖(T ) = ∂m/∂H is the longitudinal susceptibility.
The LLB equation contains temperature-dependent material-
specific parameters. These can be taken from the multiscale de-
scription, parametrizing the Heisenberg Hamiltonian through
ab initio models21 and evaluating the temperature dependence
of macroscopic parameters,37,38 or simply measured exper-
imentally. In the present paper they are calculated within
the mean-field approach.39 In particular, the temperature-
dependent magnetization was taken from the Billouin func-

tion BS for the corresponding spin S and the longitudinal
susceptibility reads

χ̃S,‖(T ,H ) = μat

S2J0

βS2J0B
′
S

1 − βS2J0B
′
S

. (3)

where β = 1/(kBT ), kB is Bolzmann’s constant, μat is the
atomistic moment, J0 = zJ , J is the exchange parameter, and
z is the number of nearest neighbors.

The LLB equation contains two relaxational parameters:
transverse α⊥ and longitudinal α‖, related to the intrinsic
coupling-to-the-bath parameter λ. In the quantum description
the coupling parameter λ contains the matrix elements repre-
senting the scattering events and, thus, is proportional to the
spin-flip rate due to the interaction with the environment. This
parameter, in turn, could be temperature dependent and, in
our opinion, it is this microscopic parameter which should be
related to the Gilbert parameter calculated through ab initio
calculations as in Refs. 40 and 41, since the contribution
coming from the spin disordering is not properly taken into
account in these models.

In the quantum case the temperature dependence of the LLB
damping parameters is given by the following expressions:

α‖ = λ

me

2T

3TC

2qS

sinh (2qS)
=⇒
S→∞

λ

me

2T

3TC

, (4)

α⊥ = λ

me

[
tanh (qS)

qS

− T

3TC

]
=⇒
S→∞

λ

me

[
1 − T

3TC

]
, (5)

with qS = 3TCme/[2(S + 1)T ], where S is the quantum
spin number and TC is the Curie temperature. In the case
S → ∞ the damping coefficients have the forms used in
several previously published works;39 these are suitable for the
comparison with the Langevin dynamics simulations based on
the classical Heisenberg Hamiltonian and in agreement with
them.21,28

Equation (1) is singular for T � TC ; in this case it is
more convenient to use the LLB equation in terms of the
variable m = M/Me(T = 0 K).28 The corresponding LLB
equation is indistinguishable from Eq. (1) but with different
relaxational parameters α̃‖ = meα‖, α̃⊥ = meα⊥, and α̃⊥ = α̃‖
for T � TC ; in this case the contribution of temperature to Heff

[the second term in Eq. (2)] is (−1/χ̃‖)[1 − 3TCm2/5(T −
TC)m]m. Although this formulation is more suitable for
modeling the laser-induced demagnetization process, during
which the electronic temperature is usually raised higher
than TC , it is the expression (5) which should be compared
with the transverse relaxation parameter αLLG due to the
similarity of the formulation of Eq. (1) with the macromagnetic
LLG equation. In the classical case and far from the Curie
temperature, T 	 TC , λ ≈ α⊥ ≈ α̃⊥ (αLLG).

The most important feature of the LLB equation is the
presence of two relaxational terms: longitudinal and trans-
verse. As a result of the consideration of atomic spin-spin
interactions, these macroscopic parameters are temperature
dependent. In the LLB model the nature of the longitudi-
nal and the transverse relaxation differs from the point of
view of characteristic spin-wave frequencies. The transverse
relaxation (known as the LLG damping) is basically the
relaxation of the ferromagnetic resonance (FMR) mode.
The contribution of other spin-wave modes is reduced to the
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FIG. 2. (Color online) (Top) The transverse damping parameter
α⊥ (αLLG) as a function of temperature within the LLB model for
different spin values S. The intrinsic coupling parameter was set to
λ = 0.03. (Bottom) The longitudinal relaxation time τ‖ as a function
of temperature within the LLB model for different spin values
S. The temperature-dependent magnetization and the longitudinal
susceptibility χ̃‖ were evaluated in both cases in the MFA approach
using the Brillouin function.

thermal averaging of the micromagnetic parameters and the
main effect comes from the decrease of the magnetization
at high temperature. Consequently, the transverse damping
parameter increases with temperature (see Fig. 2), consistent
with atomistic modeling results28 and well-known FMR
experiments.42,43

In contrast, the main contribution to the longitudinal
relaxation comes from the high-frequency spin waves. This
process occurs in a strong exchange field. As a result,
the longitudinal relaxation time (the inverse longitudinal
relaxation rate) is much faster and increases with temperature;
this effect is known as critical slowing down (see Fig. 2).
This slowing down has been shown to be responsible for the
slowing down of the femtosecond demagnetization time τM

as a function of laser pump fluence.19,23 The characteristic
longitudinal time scale is defined not only by the longitudinal
damping parameter (4) but also by the temperature-dependent
longitudinal susceptibility χ̃‖(T ),28 according to the following
equation:

τ‖(T ) = χ̃‖(T )

γ α̃‖(T )
. (6)

Note that χ̃‖(T ) is a function of magnetic moment μat and the
exchange parameter J ∝ TC ; it diverges at TC and at T > TC

χ̃‖(T ) ∝ μat/J .

As can be observed in Fig. 2 the transverse relaxation
parameter α⊥(αLLG) and the longitudinal relaxation time τ‖
have a strong dependence on the quantum spin number S.
Particularly, quite different relaxation rates occur for the two
extreme cases S = 1/2 and S = ∞.

III. RESULTS

A. Ultrafast magnetization dynamics within the LLB approach
coupled to the two-temperature model

For modeling ultrafast demagnetization we have to specify
the origin of the external bath whose role is to produce
an energy input. In the spirit of Refs. 20–23 and 26 the
modeling of ultrafast magnetization dynamics is based on
some reasonable assumptions about the energy transfers taking
place among different subsystems; electrons, phonons, and
spins. The 2T model assumes that the absorbed energy
from the laser pump pulse goes to the electron system,
which thermalizes (�10 fs) to an internal quasiequilibrium
distribution at a well-defined temperature Te, whereas there is
still a nonequilibrium energy transfer between electrons and
the lattice, which is also assumed to be in a local thermal
quasiequilibrium with temperature Tp. Finally, the electron-
phonon coupling, Gep, drives both systems to a final common
temperature. Within this model16,44–46 the electron and phonon
dynamics is described by two differential equations:

Ce

dTe

dt
= −Gep(Te − Tp) + P (t),

(7)

Cp

dTp

dt
= Gep(Te − Tp),

where Ce = γeTe (γe = const) and Cp are the specific heats
of the electrons and the lattice. The Gaussian source term
P (t) is a function which describes the laser power density
absorbed in the material. The 2T model is external for the LLB
dynamics and can be checked from the measured reflectivity
for some materials such as Ni.23 The dynamics of the electron
temperature can also be measured directly in the time-resolved
photoemission experiment.47

In all previous works on the modeling of ultrafast processes
within the LLB model as well as within the atomistic
LLG approach,19–25 it has been assumed that the bath is
produced by the electron systems and thus T = Te. This
idea follows along the lines of a pure electronic spin-flip
mechanism and has been shown to adequately describe
ultrafast dynamics in relation to experiments. The possibility of
an intrinsic temperature dependence of the spin-flip probability
is normally disregarded, under the assumption that λ = const.
Therefore, in this approach the longitudinal relaxation time
τ‖ ∼ χ̃‖/λTe [see Eq. (6)] is defined by the dynamics of the
electron temperature Te, until a temperature close to the Curie
temperature where the critical slowing down, provided by the
longitudinal susceptibility χ̃‖, starts to play a role.

Recently, Koopmans et al. have used a similar approach
to describe ultrafast demagnetization dynamics,26 called the
M3TM model, obtained through the general master equation
for the dynamics of the populations of a two-level system (in
which spin S = 1/2 was used) with the spin-flip probability
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of the phonon-mediated EY scattering events, asf. The M3TM
model reads

dm

dt
= Rm

Tp

TC

[
1 − m coth

(
mTC

Te

)]
. (8)

Here R is a material-specific parameter linearly proportional
to the spin-flip probability: R ∼ asf. Equation (8) is coupled
to the 2T model (7). The use of the M3TM model has allowed
the values of R (and, thus asf) in Ni, Co, and Gd (Ref. 26) to
be extracted from the experimental ultrafast demagnetization
curves.

In the Appendix, we rewrite the M3TM equation (8) in the
form of the LLB (S = 1/2) equation and show that in this case

λ = 3R

2γ

μat

kBTC

Tp

Te

= λ0
Tp

Te

, (9)

Thus, the Koopmans’ model coincides with the LLB equation
with S = 1/2 where the Elliott-Yafet scattering mechanism
is incorporated from the beginning in its functional form.
Consequently, if a phonon-mediated EY process was acting,
this would correspond to the use of a temperature-dependent
coupling rate (9) in the LLB equation, in contrast to previous
works with λ = const.

Oppositely to the pure electronic process, in the case of a
phonon-mediated EY process, the longitudinal relaxation time
scale is defined by the dynamics of the phonon temperature,
leading to τ‖ ∼ χ̃‖(Te)/RTp, again at electron temperatures
not close to TC where the critical slowing down starts to play
an important role. The linear dependence of demagnetization
rate in Tp originates from the linear increase of the phonon
occupation number nE with temperature nE ∼ Tp within the
Einstein model, since h̄ωE 	 kBTp is assumed in the M3TM
model. In contrast, at low temperatures, not considered in
Eq. (8), we would get τ‖ ∼ 1/T 3

p .
Therefore, in the phonon-mediated EY picture, in Ref. 26

the classification of materials on the basis of the “magnetic
interaction strength” parameter μat/J was proposed. This
is in agreement with the LLB model [Eq. (6)]. Indeed,
the longitudinal susceptibility in Eq. (6) is defined by the
values of the atomic moment μat and J and by the fact
that this function rapidly increases with temperature and
diverges close to TC ∝ J . At T � TC one obtains a simple
linear relation28 χ̃‖ ∝ μat/J , thus showing the dependence of
the demagnetization rate on this parameter, as suggested in
Ref. 26. However, we should note also the importance of the
microscopic spin-flip rate λ ∼ asf .

We now present modeling of the ultrafast magnetization
dynamics following the laser pulse excitation using the
LLB model coupled to the electron temperature Te. We
perform simultaneous integration of Eqs. (1) and (7) with the
material-specific parameters taken from Refs. 23 (Ni) and 26
(Gd) and initial condition M(t = 0) = Me(300 K). The model
adequately describes all three stages of the ultrafast mag-
netization dynamics rates: subpicosecond demagnetization,
picosecond recovery, and subnanosecond precession22,23 (see
Fig. 1).

The most important parameter defining the diversity of the
ultrafast demagnetization in different materials is the coupling
to the bath parameter λ. Thus, it is natural first to investigate
qualitatively its influence. In Fig. 3 we show the diversity of
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FIG. 3. (Color online) The result of integration of the LLB model
(S → ∞) with different parameters λ (increasing from top to the
bottom). In this case the the 2T model parameters were taken from
Ref. 23 with laser fluence F = 30 mJ/cm2. Other material parameters
were kept constant and as for Ni.

magnetization dynamics for various values of the coupling
parameter λ, chosen to be independent of temperature. The
largest value of λ approximately corresponds to that of the
transition metals while the smallest one corresponds to rare
earths and half metals. As can be clearly observed, for
relatively large values of the spin-flip rate, corresponding to
transition metals, the magnetization dynamics can partially
follow the electronic temperature, showing a picosecond
time scale magnetization recovery. This does not happen
for small values of λ and these materials do not recover
their magnetization even at the 100-ps time scale. Thus this
parameter defines the diversity of the demagnetization rates to
a greater extent than the ratio μat/TC , suggested in Ref. 26.

B. Ultrafast demagnetization rates in different materials

In this section we qualitatively discuss the main parameters
governing the ultrafast demagnetization rates in different mate-
rials within the LLB model. Note that subpicosecond ultrafast
demagnetization generally speaking is not exponential and
cannot be described in terms of one relaxation time τM . To
comply with the existing approaches, we still discuss the
demagnetization rate in terms of a unique parameter τM .

The magnetization dynamics is determined by a large extent
by the dynamics of the bath. However, it is clear that it can only
follow the dynamics of the bath temperature if τ|| ∼ 100 fs
is faster than the characteristic time scale of the electron
dynamics. At the femtosecond time scale the magnetization
dynamics is always delayed with respect to the electrons and
phonons. At temperatures close to the Curie temperature, the
magnitude τ|| experiences a critical slowing down, and thus
the characteristic time scale τM is also slowed. Thus the value
of τ|| defines the magnetic system response.

It is clear that, independently of the nature of the spin-flip
mechanism, the most important parameter determining the
value of τ|| remains the material-specific intrinsic scattering
rate parameter λ. For the ultrafast dynamics this parameter
substitutes the Landau-Lifshitz-Gilbert parameter αLLG, which
is normally extracted from the experiment. Similarly, λ at
the present state of the art should be extracted from the
experimental measurements although, in theory, it can be also
calculated from the ab initio approach, similar to how it was
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TABLE I. The data for ultrafast magnetization dynamics rate
parameters for three different metals from ultrafast demagnetization
rates and from FMR mesurements. The third column presents the
demagnetization parameter R from Ref. 26, corrected in the case of
Gd for spin S = 7/2. The fourth column presents the value of the λ0

parameter, as estimated from the M3TM model26 and Eq. (9). The
fifth column presents the data for α⊥ estimated via the LLB model
[Eq. (5)] and the λ0 value from the third column, at room temperature
T = 300 for Co and Ni and at T = 120 K for Gd. The last column
presents the experimentally measured Gilbert damping collected from
different references.

Material S R (Ref. 48) λ0 α⊥ αLLG

Ni 1/2 17.2 0.0974 0.032 0.01948–0.02843

Co 1/2 25.3 0.179 0.025 0.00649–0.01150

Gd 7/2 0.009 0.0015 0.00036 0.000533

done for the Elliott-Yafet process.14 The available values of λ

are presented in Table I. The value of λ for Gd was found to be
1/60 that of Ni (see Table I). Such a small value of the spin-flip
rate in Gd can be qualitatively understood if we recall that
magnetism in Gd is defined by the half-filled 4f shell electrons
while the laser primarily excites 5s6d electrons. This slow
energy transfer delays the spin-flip processes. Compare the
qualitative differences observed in Fig. 3 for transition metals
with small λ and Fig. 4 for Gd.

Another parameter strongly influencing the demagnetiza-
tion rates is the electron-phonon coupling Gep defining the
rate of the electron-phonon temperatures equilibration time
τE . Indeed, in Ref. 26 the value of Gep was reported to be 20
times larger for Ni than for Gd. The small values of the two
parameters ensure the correct modeling of the experimentally
observed ultraslow demagnetization rates in TbFe alloy,51

Gd,52 and half metals53 and the two demagnetization time
scales26,52 are also well reproduced (see Fig. 4). Within this
model the two time-scale processes consist of a relatively fast
demagnetization on the order of ∼1 ps (however much slower
than ∼100 fs in Ni), defined by the electron temperature
and small value of λ, followed by a much slower process
due to a slow energy transfer from the electron to the lattice
system.

As mentioned in the previous section, the phonon-mediated
EY mechanism predicts the coupling to the bath parameter λ

to be dependent on the ratio between the phonon and electron
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FIG. 4. (Color online) The result of integration of the LLB model
(S → ∞) with constant λ = 0.0015 (see Table I). In this case the 2T
model parameters were taken from Ref. 26 corresponding to Gd. The
laser fluence was taken to be F = 30 mJ/cm2.
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FIG. 5. (Color online) Magnetization dynamics during the laser-
induced demagnetization process calculated within the LLB model
with different spin numbers and for two laser fluences F =
10 mJ/cm2 (upper curves) and F = 40 mJ/cm2 (bottom curves).
Ni parameters from Ref. 23 were used. The symbols are calculated
with the LLB equation with the intrinsic damping parameter using
a constant λ0 = 0.003 value, and the solid lines with the LLB
equation and the intrinsic coupling with the temperature-dependent
λ = λ0(Tp/Te).

temperature through the relation (9). In Fig. 5 we present
the magnetization dynamics for Ni evaluated for two laser
pulse fluences, assuming various values of the spin S and
temperature-dependent and independent λ values. Note the
quite different demagnetization rates at high fluence for two
limiting cases S = 1/2 (used in Ref. 26) and S = ∞ (used
in Ref. 23). The differences in the choice of the mechanism
are pronounced at high pump fluence but are not seen at low
fluence. One can also hope that in the experiment it would
be possible to distinguish the two situations. Considering
the experimental data from Ref. 26 for Ni for high fluence,
we have found that the case of the temperature-dependent
λ = λ0(Tp/Te) can be equally fitted with the temperature-
independent λ ≈ λ0/2. Since this is within the discrepancy
between the theoretical and experimental values, it does not
allow us to answer definitely which mechanism is acting. We
conclude that acquiring more experimental data promoting one
or another intrinsic mechanism and with varying laser fluence
is necessary.

IV. LINKING DIFFERENT TIME SCALES

Since longitudinal relaxation occurs under a strong ex-
change field and transverse relaxation occurs under an external
applied and/or anisotropy field, their characteristic time scales
are quite different. However, the LLB equation provides a
relation between the ultrafast demagnetization (longitudinal
relaxation) and the transverse relaxation (ordinary LLG damp-
ing parameter) via the parameters λ for the case λ = const or
λ0 for the case λ = λ0(Tp/Te). By separate measurements of
the two magnetization dynamics rates, relations (5) and (6)
given by the LLB theory could be checked. This can provide
validation of the LLB model, as well as the answer to the
question of whether the same microscopic mechanism is acting
on femtosecond and picosecond time scales. Unfortunately,
the damping problem in ferromagnetic materials is very
complicated and the literature reveals the diversity of measured
values in the same material, depending on the preparation
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conditions, substrate, and thin-film thickness. It has been
recently demonstrated54 that the damping of the laser-induced
precession coincides with that measured by FMR in transition
metals. Thus the two magnetization dynamics rates could
be measured independently by means of the ultrafast laser
pump-probe technique.55

To have a definite answer making measurements on the
same sample is highly desired. The measurements of both
α⊥ and τM are available for Ni (Ref. 23) where an excellent
agreement between ultrafast magnetization dynamics rates via
a unique temperature-independent parameter λ = 0.04 has
been reported.23 The results of the systematic measurements
of τM are also available for Ni, Co, and Gd,26 as well as for
Fe.56 The next problem which we encounter here is that the
demagnetization rates strongly depend on the spin value S, as
is indicated in Figs. 2 and 5. The use of the S = 1/2 value26

or S = ∞ value23 is quite arbitrary and these values do not
coincide with the atomic spin numbers of Ni, Co, and Gd.
Generally speaking, for metals the spin value is not a good
quantum number. The measured temperature dependence of
magnetization, however, is well fitted by the Brillouin function
with S = 1/2 for Ni and Co and S = 7/2 for Gd.57 These are
the values of S which we use in Table I.

In Table I we present data for the coupling parameter λ0

extracted from Ref. 53 based on the M3TM model and within
the EY mechanism. Differently from that article, for Gd we
corrected the value of the parameter R to account for a different
spin value by the ratio of the factors, i.e., RS1 = (fS2/fS1 )RS2

with

fS = 2qS

sinh (2qS)

1

m2
e,Sχ

S
‖

, (10)

where the parameters are evaluated at 120 K using the MFA
expressions for each spin value S. Using the data presented
in Table I, we estimated the value of the Gilbert damping
parameter α⊥ through formula (5) at 300 K (for Ni and Co) and
at 120 K for Gd. Note that for temperature-independent λ = λ0

the resulting λ0 and α⊥ values should be divided by a factor of
two for Ni and Co. The last column presents experimental
values for the same parameter found in the literature for
comparison with the ones in the fifth column, estimated
through measurements of the ultrafast demagnetization times
τM and the relation provided by the LLB equation.

The results presented in Table I demonstrate quite a
satisfactory agreement between the values extracted from the
ultrafast demagnetization time τM and the Gilbert damping
parameter α⊥ via one unique coupling-to-the-bath parameter
λ. The agreement is particularly good for Ni, indicating that the
same spin-flip mechanism is acting on both time scales. This is
true for both experiments in Refs. 23 and 26. For Co the value
is somewhat larger. However, if the temperature-independent
λ = λ0/2 was used, the resulting value would be half as
large and the agreement would be again satisfactory. For Ni
this would also be within the expected discrepancy among
measured FMR values. Note that the results presented in the
table are for bulk systems. For thin films an enhancement
of the damping by more than by a factor of 2 has been
reported.58,59 We note that no good agreement was obtained for
Fe. The reported damping values43 are factors of 5–10 smaller

than estimated from the demagnetization rates measured
in Ref. 56.

V. CONCLUSIONS

The Landau-Lifshitz-Bloch equation provides a micro-
magnetic tool for the phenomenological modeling of ultra-
fast demagnetization processes. Within this model one can
describe the temperature-dependent magnetization dynamics
at arbitrary temperature, including close to and above the
Curie temperature. The micromagnetic formulation can take
into account the quantum spin number. The LLB model
includes the dynamics governed by both the atomistic LLG
model and the M3TM model by Koopmans et al.26 In the
future it represents a real possibility for temperature-dependent
multiscale modeling.21

Within this model the ultrafast magnetization dynamics
rates could be parametrized through a unique temperature-
dependent or temperature-independent parameter λ, defined by
the intrinsic spin-flip rate. We have shown that for the phonon-
mediated EY mechanism the intrinsic parameter λ is dependent
on the ratio between phonon and electron temperatures and
therefore is temperature dependent on the femtosecond to
several-picosecond time scale. The magnetization dynamics
is coupled to the electron temperature through this parameter
and on the femtosecond time scale is always delayed in time.
The observed delay is higher for higher electron temperature.
This is in agreement with the experimental observation that
different materials demagnetize at different rates26,53 and that
the process is slowed down with the increase of laser fluence.
The LLB equation can reproduce slow demagnetizing rates
observed in several materials such as Gd, TbFe, and half
metals. This is in agreement with both the phonon-mediated
EY picture, since in Gd a lower spin-flip probability was
predicted, and also with the inelastic electron scattering
picture, since the electron diffusive processes are suppressed
in insulators and half metals.53,60 However, we also stress
the importance of other parameters determining the ultrafast
demagnetization rates, such as electron-phonon coupling.

The macroscopic damping parameters (longitudinal and
transverse) have different natures in terms of the involved
spin waves and in terms of the time scales. Their temperature
dependence is different; however, they are related by the
spin-flip rate. We have tried to check this relation in several
transition metals such as Ni, Co, and Fe and the rare-earth
metal Gd. A good agreement is obtained in Co and Gd and
an excellent agreement in Ni. This indicates that on both time
scales the same main microscopic mechanism is acting. In Ni
the agreement is good within both the assumptions λ = λ0 and
λ = λ0Tp/Te. In Co the agreement seems to be better with
the temperature-independent parameter λ = λ0, which does
not indicate the phonon-mediated EY mechanism. However,
given a small discrepancy and the complexity of the damping
problem, this conclusion cannot be considered definite. We
cannot exclude an additional temperature dependence of the
intrinsic spin-flip probability (i.e., the parameter λ0) for either
phonon-mediated EY or exchange scattering mechanisms
which were not taken into account. The observed agreement
of the perpendicular and transverse relaxation rates, generally
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speaking, validates the LLB theory but cannot answer the
question of which mechanism is acting.

Finally, Fähnle et al.61 have used the Fermi-surface
breathing model to link the conductivity contribution to
LLG damping and τM . Such a contribution dominates at
low temperatures and it gives a linear relation τM ∼ αLLG,
in contrast to our approach and previous approaches, where
τ‖ ∼ 1/αLLG. At room temperature both contributions seem to
be relevant. In their model the electronic properties are taken
into account in a more material-specific way, but leaving the
spin fluctuations untreated. At the present state of the art our
model does not include the conductivity contribution. In that
direction we conclude that both models are complementary
and could be combined to produce a better understanding of
the present problem.

An open question is the problem of doped permalloy where
an attempt to systematically change the damping parameter by
doping with rare-earth impurities was undertaken33 in order to
clarify the relation between the LLG damping and the ultrafast
demagnetization rate.32,34 The results are not in agreement
with the LLB model. However, in this case we think that the
hypothesis of the slow relaxing impurities presented in Ref. 34
might be a plausible explanation. Indeed, if the relaxation time
of the rare-earth impurities is high, the standard LLB model
is not valid since it assumes an uncorrelated thermal bath.
The correlation time could be introduced in the classical spin
dynamics via the Landau-Lifshitz-Miyasaki-Seki approach.62

It has been shown that the correlation time of the order of
10 fs slows down the longitudinal relaxation independently of
the transverse relaxation. Thus, in this case, modification of
the original LLB model to account for the colored noise is
necessary.
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APPENDIX

To show the equivalence between the LLB model with
S = 1/2 and the M3TM model,26 we compare the relaxation
rates resulting from both equations. We start with the M3TM
equation

dm

dt
= −R

Tp

TC

{
1 − m coth

[(
TC

Te

)
m

]}
m, (A1)

where we identify the Brillouin function for the case S = 1/2,
B1/2 = tanh (q) with q = q1/2 = (TC/Te) m. Now, we use the
identity B1/2 = 2/B ′

1/2 sinh (2q) to write

dm

dt
= −R

Tp

TC

[
2

sinh (2q)

](
1 − B1/2

m

B ′
1/2

)
m2. (A2)

We multiply and divide by qμatβ to obtain

dm

dt
= −R

Tp

TC

μat

kBTC

[
2q

sinh (2q)

](
1 − B1/2

m

μatβB ′
1/2

)
m. (A3)

We expand around equilibrium me = B1/2(qe) the small
quantity 1 − B1/2/m to get

1 − B1/2(q)

m
∼= δm

me

[
1 −

(
TC

Te

)
B ′

1/2(qe)

]
, (A4)

where δm = m − me. Next, we expand m around m2
e , obtain-

ing

m = me + 1

2

(
m2 − m2

e

)
me

=⇒ δm

me

=
(
m2 − m2

e

)
2m2

e

(A5)

and

1 − B1/2/m

βμatB
′
1/2

≈ 1

2χ̃‖

(
m2 − m2

e

)
m2

e

. (A6)

Finally, collecting Eqs. (A3) and (A6) together, we obtain

dm

dt
=

(
3R

2

μat

kBTC

)
2Tp

3TC

2q

sinh (2q)

[
1

2χ̃‖

(
1 − m2

m2
e

)
m

]
.

(A7)

Comparing this to the LLB equation with longitudinal
relaxation only and without anisotropy and external fields,
we can write Eq. (A7) in terms of n:

dn

dt
= γ

λ

me

2Te

3TC

2q

sinh (2q)
Heff = γα‖Heff, (A8)

where Heff = me

2χ̃‖
(1 − n2)n and

α‖ =
[

3R

2γ

μat

kBTC

Tp

Te

]
2Te

3TC

2q

sinh (2q)
. (A9)

Thus the Koopmans’ M3TM equation is equivalent to the LLB
equation with S = 1/2 and where the precessional aspects are
not considered. The link between them is the identification

λ = 3R

2γ

μat

kBTC

Tp

Te

. (A10)

As an example we compare the result of the longitudinal
relaxation in a numerical experiment for both M3TM and LLB
(S = 1/2) equations. The system is put in an initial state with
mz = 1 and we let it relax toward the equilibrium state at final
temperature. The comparison of the results for the temperature
T/TC = 0.8 is presented in Fig. 6.

M3TM
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FIG. 6. (Color online) Longitudinal relaxation calculated with
M3TM and LLB (S = 1/2) models for nickel parameters23 and
T/TC = 0.8.
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41J. Kuneš and V. Kamberský, Phys. Rev. B 65, 212411 (2002).
42Y. Li, K. Baberschke, and M. Farle, J. Appl. Phys. 69, 4992

(1991).
43S. M. Bhagat and P. Lubitz, Phys. Rev. B 10, 179 (1974).
44R. W. Schoenlein, W. Z. Lin, J. G. Fujimoto, and G. L. Eesley, Phys.

Rev. Lett. 58, 1680 (1987).
45P. B. Allen, Phys. Rev. Lett. 59, 1460 (1987).
46X. Wang, S. Nie, J. Li, R. Clinite, J. E. Clarck, and J. Cao, Phys.

Rev. B 81, 220301 (2010).
47U. Bovensiepen, J. Phys. Condens. Matter 19, 083201 (2007).
48G. Dewar, B. Heinrich, and J. F. Cochran, Can. J. Phys. 55, 821

(1977).
49J. Lindner, I. Barsukov, C. Raeder, C. Hassel, O. Posth,

R. Meckenstock, P. Landeros, and D. L. Mills, Phys. Rev. B 80,
224421 (2009).

50B. Heinrich, J. F. Cochran, M. Kowalewski, J. Kirschner,
Z. Celinski, A. S. Arrott, and K. Myrtle, Phys. Rev. B 44, 9348
(1991).

51J. W. Kim, K. D. Lee, J. W. Jeong, and S. C. Shin, Appl. Phys. Lett.
94, 192506 (2009).

52M. Wietstruk, A. Melnikov, C. Stamm, T. Kachel, N. Pontius,
M. Sultan, C. Gahl, M. Welnet, H. A. Dürr, and U. Bovensiepen,
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