
PHYSICAL REVIEW B 84, 144412 (2011)

Fast coherent relaxation in a ferromagnet nanoparticle assembly
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The idea to establish coherent relaxation in an assembly of magnetic moments by placing it inside a passive
resonator is applied to the case of single-domain ferromagnetic nanoparticles. The dynamics of magnetization
inversion of a nanoparticle is governed by the Landau–Lifshitz (spin-lattice) relaxation and radiation damping.
The numeric simulations enable us to account for the interparticle dipole-dipole interactions in a rigorous way.
A new mechanism of fast relaxation in a nanoparticle assembly is suggested and described.
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I. INTRODUCTION

Fast magnetic switching is one of the main goals in
magnetic recording. In a medium consisting of fine grains, like
FePt L10, the problem is to accelerate as much as possible the
switching process for a single particle with uniaxial anisotropy.
Besides simple application of an inverse field (i.e., the one
antiparallel to the actual equilibrium direction of the magnetic
moment), several other strategies were proposed, such as
precessional1–5 or heat-assisted6,7 switching.

In the act of switching, the field pulse imparts to the
magnetic moment a portion of energy sufficient to surmount
the anisotropy barrier. However, as soon as the barrier is
traversed, the same energy should be evacuated. If the
dissipation is too slow and the magnetic moment does not
get rid of the energy excess at the timescale of the field pulse,
the final orientation state of the magnetic moment becomes
uncertain due to a substantial probability of the return to the
initial state. In other words, to ensure fast switching, a minimal
damping time is necessary.

In this paper, we study the situation in which the after-
switching energy dump of the magnetic moment of a single-
domain particle (or the particle assembly) is facilitated by
coupling of the sample to a passive electric circuit. As far
as we know, the problem of such a type was first considered
by Bloembergen and Pound8 with respect to the magnetic
resonance technique, since the latter essentially involves
inductive coupling of the magnetic moment to the pick-up coil.
This type of relaxation was then termed radiation damping.
The latter effect manifests the stronger, the greater the number
of particles in the assembly. The cause is that the feedback field,
induced in the resonator by the joint action of all the members
of the assembly, synchronizes their individual motions and
accelerates the inversion process. Under these conditions,
the energy discharge (radiation) pulse shortens, while its
power enhances proportionally. A similar phenomenon is well
known in optics as superradiation and is well studied. The
universal signature of this effect is that the damping rate
becomes approximately proportional to the number of spins
participating in the collective relaxation.9

Here, we develop the radiation damping (RD) idea for
the case of ferromagnetic particles, noting, however, that
along with apparently similar features, the physics of the
collective relaxation in a spin system (magnetic field, UHF

wave range) differs significantly from its optical analogue
(electric field, optical wave range). The RD problem for
nuclear and electronic spins in paramagnets was investigated
theoretically in detail in a number of recent papers,10–17

and the experimental verifications for nuclear spins on both
solid and liquid samples have been obtained.18–20 In the
present paper, we apply the RD concept to an assembly of
single-domain ferromagnetic particles, thus following the line
set out in paper 21 in which the Landau–Lifshitz equation for
macroscopic magnetization of a sample was used to study the
collective magnetic relaxation in nanomagnets. The specificity
of the problem is twofold. First, the “elementary” magnetic
moments are huge with respect to the atomic scale (104–105

Bohr magnetons), thus yielding a strong effect that would
not be smeared out at ambient temperatures. Second, unlike
paramagnets, here the switching process cannot be split into
a fast transverse and slow longitudinal stages because in a
ferromagnet, the spin-spin and spin-lattice relaxation rates
practically coincide. Formally, this means replacing the Bloch
equation by the Landau–Lifshitz equation. Therefore, the RD
effect in a ferromagnet nanoparticle assembly is a unique
phenomenon. As our analysis shows, it is able to establish
a new mechanism of substantial reduction of the magnetic
switching time.

Consider an assembly of single-domain particles with
uniaxial anisotropy, coupled to each other by the magnetic
dipole-dipole interaction. For simplicity, the assembly is
assumed to be “orientationally textured”; that is, the particles
are embedded in a solid matrix in such a way that all their easy
axes are parallel. The initial state can be prepared by subjecting
the system to a strong (compared with the particle coercive
force) field pulse that aligns all the magnetic moments in the
same direction. After the field is turned off, they rest in the
respective minima of the anisotropy potential (with allowance
for the effect of the dipolar field). Therefore, the system is
magnetized almost to saturation and because the anisotropy
energy is assumed to be much higher than thermal energy, this
magnetic configuration is stable. When the system is subjected
to a stepwise field directed opposite to the initial orientation,
the magnetization begins to relax toward the new equilibrium.
When turning, the magnetic moments change the magnetic
flux through the coil, which is a part of a passive LCR circuit.
The electric current induced in the coil generates a magnetic
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field that acts on all the moving magnetic moments of the
assembly. This feedback effect redistributes the energy and its
losses in the system and thus modifies the magnetic relaxation.

II. HIGH-FREQUENCY MAGNETODYNAMICS OF
SINGLE-DOMAIN PARTICLES IN A RESONATOR.

BASIC SET OF EQUATIONS

We describe the magnetodynamics of the particle assembly
with the aid of the standard Landau–Lifshitz equation, so that
for the kth particle (i.e., for the magnetic moment μ(k)), one
has

dμ(k)

dt
= −|γ |(μ(k) × H(k)) − α|γ |

μ
(μ(k) × (μ(k) × H(k)));

(1)

here, α is the dimensionless relaxation parameter, and γ is the
gyromagnetic ratio for electrons. The field H(k) in Eq. (1) is a
full magnetic field acting on the kth particle. In the considered
case, it comprises:

(1) the external constant field H0 along the Oz axis;
(2) the uniaxial anisotropy field

HA = (HA/μ)(μ · n)n, HA = 2EA/μ, (2)

where n is the unit vector of the easy axis and EA is the particle
anisotropy energy;

(3) the feedback field H = (H,0,0) generated by the current
induced in the coil, whose axis is directed along Ox; and

(4) the dipolar magnetic field H (k)
d caused by the interparti-

cle dipole-dipole pair interactions.
Setting Oz along the common direction of the particle easy

axis, one has n = (0,0,1), so that the effective field takes the
form

H = (H + Hdx,Hdy,H0 + μzHA/μ + Hdz). (3)

The local dipolar magnetic field H (k)
d = −∂Udd/∂μ(k) at

the site of the kth particle is defined from the sum of the
pairwise dipole-dipole energy contributions:

Udd =
N∑

k,m
k>m

[
1

r3
km

(μ(k)μ(m)) − 3

r5
km

(μ(k)rkm)(μ(m)rkm)

]
, (4)

where rkm is the radius vector connecting the kth and mth
particles, and N is the number of particles.

We define the reference frequency of precession in the
external field H0 and those related to the feedback, dipolar,
and anisotropy fields, respectively as:

ω0 = |γ |H0, ωH = |γ |H, ωd = |γ |μ/a3, ωA = |γ |HA.

(5)

Substituting Eqs. (2)–(5) into Eq. (1), one obtains

μ̇(k)
x = −

(
ω0 + ωA

μ(k)
z

μ

)
μ(k)

y − γ
(
μ(k)

y H
(k)
dz − μ(k)

z H
(k)
dy

) + αγ (H + Hdx)
μ(k)2

y + μ(k)2
z

μ
− α

(
ω0 + γHdz + ωA

μ(k)
z

μ

)

× μ(k)
x μ(k)

z

μ
− αγHdy

μ
μxμy,

μ̇(k)
y =

(
ω0 + ωA

μ(k)
z

μ

)
μ(k)

x − γμ(k)
z H − γ

(
μ(k)

z H
(k)
dx − μ(k)

x H
(k)
dz

) − αγ (H + Hdx)
μ(k)

x μ(k)
y

μ
− α

(
ω0 + γHdz + ωA

μ(k)
z

μ

)

× μ(k)
y μ(k)

z

μ
+ αγHdy

μ

(
μ(k)2

x + μ(k)2
z

)
,

μ̇(k)
z = γμ(k)

y H − γ
(
μ(k)

x H
(k)
dy − μ(k)

y H
(k)
dx

) − αγ (H + Hdx)
μ(k)

x μ(k)
z

μ
+ α

(
ω0 + γHdz + ωA

μ(k)
z

μ

)

× μ(k)2
x + μ(k)2

y

μ
− αγHdy

μ
μ(k)

y μ(k)
z . (6)

We remark that in Eqs. (6), two “collective” factors are
present, whose magnitudes are determined by joint contribu-
tions of all the particles of the assembly: the feedback field H ,
which is proportional to the rate of change of the full magnetic
moment of the assembly, and the dipolar field Hd .

Introducing dimensionless time

t̃ = ω0t, (7)

and scaling the reference frequencies of Eq. (5) with the
Larmor value ω0, one gets a set of dimensionless parameters,

pH = ωH

ω0
= H

H0
, pd = ωd

ω0
= μ

a3H0
, pA = ωA

ω0
= HA

H0
,

(8)

where a is the mean interparticle distance. Moreover, because
Eq. (1) conserves the modulus of the magnetic moment, it is
convenient to introduce unit vectors e(k) = μ(k)/μ that denote
the respective directions. As a result, Eqs. (6) transform to

ė(k)
x = −(

1 + pAe(k)
z

)
e(k)
y − pd

(
e(k)
y H̃

(k)
dz − e(k)

z H̃
(k)
dy

)
+α(pH + pdH̃dx)

(
e(k)2
y + e(k)2

z

)
−α

(
1 + pAe(k)

z + pdH̃dz

)
e(k)
x e(k)

z − αpdH̃dye
(k)
x e(k)

y ,

ė(k)
y = (

1 + pAe(k)
z

)
e(k)
x − pH e(k)

z − pd

(
e(k)
z H̃

(k)
dx − e(k)

x H̃
(k)
dz

)
−α(pH + pdH̃dx)e(k)

x e(k)
y − α

(
1 + pdH̃dz + pAe(k)

z

)
× e(k)

y e(k)
z + αpdH̃dy

(
e(k)2
x + e(k)2

z

)
,
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ė(k)
z = pHe(k)

y − pd

(
e(k)
x H̃

(k)
dy − e(k)

y H̃
(k)
dx

) − α(pH + pdH̃dx)

× e(k)
x e(k)

z + α
(
1 + pAe(k)

z + pdH̃dz

)(
e(k)2
x + e(k)2

y

)
−αpdH̃dye

(k)
y e(k)

z . (9)

Here, time derivatives are defined with respect to time t̃ ,
and the dimensionless dipolar field in the k th site is

H (k)
d /H0 = pd H̃

(k)
d ,

(10)

H̃
(k)
d =

N∑
m=1
m�=k

[
3

r̃5
km

r̃km(e(m) r̃km) − 1

r̃3
km

e(m)

]
,

where r̃ lm = r lm/a are dimensionless vectors of the interpar-
ticle distances.

First, we consider Eqs. (9) for a single particle and assume
that the feedback and dipolar fields are negligible (H = Hd =
0). Thence, these equations uncouple and form independent
triads, each subset referring to a separate particle:

ėx = −(ω0 + ωAez)[ey + αexez],

ėy = (ω0 + ωAez)[ex − αeyez], (11)

ėz = α(ω0 + ωAez)
[
1 − e2

z

]
.

Moreover, in each triad, the equation for ez, the projection
of the magnetic moment on the field H0, is closed, thus
yielding a single equation to describe the magnetization
inversion (switching). Although this equation admits a solution
in quadratures, it turns out to be easier to perform its numerical
integration. For that, we take the initial condition in the form
ez(t = 0) = −1 + δ, where δ is a positive parameter necessary
to deviate the magnetic moment from the unstable equilibrium
state e ‖ −H0. The solution obtained shows that the magnetic
moment inversion develops monotonically with reference time
τinv = 1/α(ω0 + ωA), so that for t � τinv the projection ez(t)
turns to unity. Such a regime takes place, however, only for
ω0 > ωA—that is, when the remagnetizing field exceeds the
particle coercive force. In the opposite case, ω0 < ωA, the
magnetic moment does not possess enough energy to surmount
the potential barrier, and, instead of inversion, relaxation would
occur to the same minimum: ez(t � τinv) → −1. We remark
that the considerations given above are valid only for the
athermic case (i.e., zero temperature). At finite temperatures,
the magnetic inversion due to superparamagnetism can occur
even at “subthreshold” fields of the order (ωA − ω0)/γ ∼
kT /μ.

III. FEEDBACK FIELD EQUATION

As mentioned, the Ox axis of the coordinate frame is
directed along the axis of the induction coil of the LCR
circuit. Therefore, the nonstationary electromotive force and,
accordingly, the electric current I in the circuit are due to the
time change of the x-component of the net magnetic moment
of the system. The corresponding Kirchhoff equation is

L
dI

dt
+ RI + 1

C

∫ t

0
I (t ′)dt ′ = −d�

dt
, � = (4π/c)nηAmx,

(12)

where � is the magnetic flux in a coil with n turns and the
cross-section area A; the constant c is the speed of light in
vacuum, η = V/Vc is the coil filling factor, V is the volume
of the sample containing ferromagnetic particles, and Vc is the
inner volume of the coil. The quantity

mx = (μ/V )
∑

l
e(l)
x (13)

is the x component of the sample magnetization.
The induced current generates in the coil the magnetic

(feedback) field

H = (4πn/cl)I. (14)

The self-induction coefficient of a coil of length l in the
simplest approximation is L = 4πn2A/lc2. Differentiating
Eq. (12) with respect to time, using the time scale t̃ and the
variable pH , one arrives at the equation

d2

dt̃2
pH+2

γr

ω0

d

dt̃
pH+

(
ωr

ω0

)2

pH = −4πβ

(
1

N

d2

dt̃2

N∑
l=1

e(l)
x

)
,

(15)

where the coefficients in the left-hand side are expressed
in terms of the LCR circuit parameters as 2γr = R/L =
ωr/Q,ωr = 1/

√
LC, with Q being the quality factor. The

function in parentheses in the right-hand side of Eq. (15) is
the averaged second derivative of the x component of the unit
vector of magnetization, whereas the coefficient

β = ηNμ/(V H0) (16)

alongside it, determines the intensity of inductive coupling
between the particle assembly and the coil. Using estimation
a ≈ (V/N )1/3 and the second of the definitions in Eqs. (8),
parameter β may be presented in the form ηpd .

We note that the feedback field H , induced by the resonator,
is the governing factor of the inversion process. It emerges as
soon as the system of interacting magnetic moments, having
been put in a nonequilibrium state at t = 0, begins to move
toward equilibrium. Because the feedback field unites the
contributions from all particles, one should expect that this
factor would reduce noncoherent contributions to the dynamic
magnetization Nμ〈e〉, thus making the inversion process more
coherent.

IV. MAGNETIZATION INVERSION UNDER FEEDBACK

The set of 3N Eqs. (9) together with Eq. (15) is solved nu-
merically for a sample containing N particles. We performed
simulations for different numbers of spins and have checked
that the results are very similar for N from 18 to 125.

For a given value of initial polarization ez(0), a variety of
initial orientations of individual vectors e(k)

z (0) are possible.
These orientations are obtained with a Monte Carlo–like
technique. A random configuration of vectors {e(k)init

z (0)}
is taken, and the corresponding total polarization einit

z (0) =
N−1 ∑

k e(k)init
z (0) is evaluated. A new direction is chosen

randomly for each spin, and the new total polarization is
calculated. If it is less than the initial value, the array with the
changed magnetic moment direction distribution is chosen as
the second iteration; otherwise, it is rejected. This procedure
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FIG. 1. Magnetization evolution under inverted field in the presence of dipole interactions for the precession damping parameter α = 0.1,
initial polarization ez(0) = −0.95, and pA = 0; (a) pd = 0.07, (b) pd = 0.25.

is repeated until the system achieves polarization ez(0), and
the obtained state is taken for the initial magnetic moment
distribution of the system. The details of this preliminary
procedure are described in 11. The initial conditions for Eq.
(15) are zero: pH (0) = 0, ṗH (0) = 0.

To get a notion of the particular situation in question, it
is instructive to have some numerical estimations. Let the
particles be made of a ferrite with the saturation magnetization
MS = 400 G and have the mean size d � 10 nm. Then, the
particle magnetic moment is μ � 2 × 10−16 emu, which is
about 104 Bohr magnetons. Assuming that the volume content
of the particles in the sample is φ = 10%, for the mean
interparticle distance we obtain a ∼ d/φ1/3 ∼ 2d. For the
magnetizing field of a typical strength H0 � 3300 Oe, the
Larmor frequency is ω0/2π = γH0/2π ≈ 10 GHz, whereas
for the dipolar field parameter, one gets pd = μ/a3H0 ∼
φMS/H0 ∼ 10−2. Setting the filling factor of the coil η = 1,
we see that definitions of pd from Eq. (8) and that of β from
Eq. (16) coincide, so for the problem under study, β � pd . For
the precession damping parameter, we assume a typical value
α ∼ 0.1.

V. RESULTS AND DISCUSSION

The figures below demonstrate the time behavior of
polarization ez(t) = (1/N)

∑
l e

(l)
z (t) and the feedback field H

(in units of H0). All the figures are simulated for the number
of spins N = 100 making a sample with the geometry of an
oblate bar with the dimensions Nx = Ny = 5,Nz = 4.

We first consider the case in which the resonator is absent
(β = 0) and so is the feedback field. Figure 1 shows the regime
of the pure Landau–Lifshitz relaxation in an assembly of
isotropic particles coupled by the magnetic dipolar interaction.
One can see that the interparticle interaction accelerates
relaxation, especially at its initial stage. We note that as the
value of the damping parameter α grows, the relaxation rate
increases.

Typical results, which combine Landau–Lifshitz and ra-
diation damping, are shown in Figs. 2–5. The resonator
eigenfrequency is chosen to be tuned to the Larmor frequency
(i.e., ωr = ω0; ωr = 〈ω(k)

0 〉 in Fig. 5), and the quality factor in
all the calculations is set to Q = 10. As seen, the relaxation
process under these conditions is drastically different from
that in a pure Landau–Lifshitz regime. The most important
distinction is that, in the presence of the feedback (resonator),
the process becomes coherent and, therefore, faster. Indeed,
the magnetization practically accomplishes a complete flip
during just a few precession periods ω−1

0 . The feedback field
worked out by the resonator attains its maximal value when
total magnetization passes through zero. As seen, this field
can reach quite high values (e.g., exceeds the external constant
field H0, as in Fig. 2a). Also noteworthy is that, if radiation
relaxation is considered by itself (no Landau–Lifshitz process),
the relaxation of ez becomes oscillatory with a substantial
amplitude, and the polarization oscillations are multiple.
The Landau–Lifshitz relaxation term in the magnetodynamic
equations weakens these oscillations, whose traces are still
visible, however (Fig. 2), and clearly fade out with the growth
of α.
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FIG. 2. Polarization ez (left scale) and feedback field pH (right scale) versus t̃ for ez(0) = −0.95,pA = 0, Q = 10, ωr = ω0. The dipole
parameter pd = 0.2, and parameter β has the same value; (a) α = 0.1, (b) α = 0.2.

144412-4



FAST COHERENT RELAXATION IN A FERROMAGNET . . . PHYSICAL REVIEW B 84, 144412 (2011)

-0.4

-0.2

0

0.2

0.4

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60
-1.5

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60
-0.3

-0.1

0.1

0.3

-1

-0.5

0

0.5

1

0 10 20 30 40 50 60

(a) (c)

(b) (d)

FIG. 3. Polarization ez (left scale) and feedback field pH (right scale) versus t̃ for ez(0) = −0.95, Q = 10, ωr = ω0. The dipole parameter
pd = 0.07, and parameter β has the same value. (a) pA = 0, α = 0.1; (b) pA = 0.5, α = 0.1; (c) pA = 0.8, α = 0.1; (d) pA = 0.5, α = 0.3.

Figure 3 demonstrates the role of anisotropy and the
Landau–Lifshitz damping parameter; it is seen that an increase
in anisotropy makes the relaxation slower, whereas augmen-
tation of α accelerates it.

As follows from Eqs. (9) and (15), the parameters α and
β contribute to the relaxation mechanisms in a nonlinear
way. To analyze these dependencies, we define the reference
time τ as the interval, at the end of which polarization ez

changes its sign from negative to positive. The results are
shown in Fig. 4. For small values of β and large values of
α, the Landau–Lifshitz relaxation dominates. The increase of
coupling between the magnetic moments and the coil leads
to practically proportional growth of the radiation damping
rate. Because the coupling parameter is directly proportional
to N , the RD rate is proportional to the number of magnetic
moments involved in the coherent relaxation. For large values
of β, the RD mechanism dominates, and the relaxation rate
loses its dependence on α.

For the considered RD modulation of magnetic relaxation
to be observable, it should exceed the ever-present smearing
of the resonance frequency ω0. Two sources are most probable
for this smearing. The first stems from the distribution of the
internal demagnetizing fields caused by some possible non-
sphericity of the particles. The second is due to the contribution
of surface effects to the internal magnetic anisotropy fields.

To estimate the allowable extent of particle nonsphericity,
we assume that, instead of a sphere, the particle shape is an
ellipsoid of revolution with aspect ratio b/a. The magnetostatic
term in the effective anisotropy then takes the form

Kns = 2πM2
s N,

where N is the difference of demagnetizing factors along
the principal axes. When the particle anisometricity is not too

large, the corresponding contribution to the particle internal
field is

Hns = 2Kns/Ms = 4π

5
Msε

2,

with ε being the ellipsoid eccentricity (e.g., see, Ref. 22).
Setting the aspect ratio b/a � 0.9, for Ms = 400 G, we get
ε2 � 0.2 and, hence, Hns � 200 Oe. Comparing the latter to
H0 � 3300 Oe, one finds that the resulting spread of Larmor
frequencies, pns = ω0/ω0 = Hns/H0, amounts to about 6%.
As Figs. 1 and 2 show, the effect of the dipole interactions
becomes important when pd � 0.2 or higher. Comparing pns

and pd , one concludes that for the considered systems, the
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FIG. 4. Time τ versus coupling constant β; the parameters are
ez(0) = −0.95, Q = 10, ωr = ω0, pA = 0; the values of α are
indicated within the figure. The insert shows the same figure for
small values of β.
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FIG. 5. Polarization ez versus time t̃ for different dispersion values of the Zeeman frequency. Values of the parameters are ez(0) = −0.95,
Q = 10,pd = β = 0.07, pA = 0.3, α = 0.1. (a) Zero dispersion; (b) averaging with dispersion  = 10%; (c) averaging with dispersion  =
20%; (d) averaging with dispersion  = 30%.

shape polydispersity of the particles up to 10% does not affect
the results substantially.

The surface-induced spread of magnetocrystalline
anisotropy of individual particles can induce much larger
spread of Larmor frequencies. The results of model treatment
of such a situation are shown in Fig. 5, where the RD effect
is presented for a sample, where Larmor frequencies ω

(k)
0

(k = 1, ... N ) are distributed normally with the dispersions
 = 10, 20, and 30% expressed in units of the mean value of
ω

(k)
0 . Each curve in Fig. 5(b)–5(d) is obtained by averaging over

60 such distributions [with the same set of initial orientations
of individual vectors e(k)

z (0)]. The width of the curves (their
thickness) is obtained assuming the confidence coefficient
0.9 calculated according to Student’s criterion. As seen, the
increase of the dispersion, quite expectedly, entails some
growth of the relaxation time, but the RD effect caused by
a strong interaction of the magnetic particles with the coil
sustains quite well nevertheless.

VI. CONCLUSIONS

A new mechanism of fast magnetic relaxation in a ferro-
magnet nanoparticle system is proposed. Being based on the

theory of superradiation, it establishes that the reference time
of coherent relaxation, under some conditions, is inversely
proportional to the number of magnetic moments. A conceiv-
able way to obtain such an effect is to place an assembly of
magnetic moments in a resonance-tuned coil. The cooperative
feedback magnetic field from the coil acting on the magnetic
moments establishes the regime of coherent relaxation from
the initial disequilibrium state. Such a relaxation process is
very different from that caused by a pure Landau–Lifshitz
relaxation. The most important issue is that the coherent
process is substantially faster, so that the magnetization prac-
tically accomplishes a complete flip during just few Larmor
turns. Another novelty in treating the resonance and relaxation
problems in a ferromagnet nanoparticle assembly is that we
consider the dipole interactions between magnetic moments in
a microscopic way, not by introducing any phenomenological
relaxation time.
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