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J1 − J2 Heisenberg model at and close to its z = 4 quantum critical point
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We study the frustrated J1 − J2 Heisenberg model with ferromagnetic nearest-neighbor coupling J1 < 0 and
antiferromagnetic next-nearest-neighbor coupling J2 > 0 at and close to the z = 4 quantum critical point (QCP)
at J1/J2 = −4. The J1 − J2 model plays an important role for recently synthesized chain cuprates as well as
in supersymmetric Yang-Mills theories. We study the thermodynamic properties using field theory, a modified
spin-wave theory, as well as numerical density-matrix renormalization group calculations. Furthermore, we
compare with results for the classical model obtained by analytical methods and Monte Carlo simulations. As
one of our main results, we present numerical evidence that the susceptibility at the QCP seems to diverge with
temperature T as χ ∼ T −1.2 in the quantum case, in contrast to the classical model where χ ∼ T −4/3.
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I. INTRODUCTION

The frustrated, one-dimensional (1D), s = 1/2 Heisenberg
model

H = J1

∑
j

Sj Sj+1 + J2

∑
j

Sj Sj+2, (1)

with nearest-neighbor coupling J1 and next-nearest-neighbor
coupling J2, is the minimal model to describe magnetism in
a number of cuprate chain compounds. It can be viewed as
a ladder with coupling J2 along the legs and a zigzag rung
coupling J1, as shown in Fig. 1(a). Recently, there has been
renewed interest in this model, with ferromagnetic coupling
J1 < 0 and antiferromagnetic coupling J2 > 0, propelled by
the discovery of multiferroic behavior in edge-sharing spin
chains.1–7 The phase diagram of this model as a function of α̃ =
J1/J2 has been studied using a combination of field theoretical
and numerical methods.8–13 It is shown schematically in
Fig. 1(b). At α̃ = 0, the system consists of two decoupled,
critical antiferromagnetic Heisenberg chains. By bosonization,
it has been found that a small coupling |J1| � 1 leads to
an exponentially small gap, � ∝ exp(−const |α̃|).8,9,11 On the
antiferromagnetic side, α̃ > 0, the gapped phase exists up to
a critical point [QCP2 in Fig. 1(b)] at α̃ ≈ 4.15 (Ref. 14),
where the system enters a critical gapless phase. At the
so-called Majumdar-Ghosh (MG) point,15 α̃ = 2, the ground
state is known exactly and consists of decoupled dimers.
Dimerization is indeed present for the whole gapped phase,
0 < α̃ � 4.15, while short-ranged incommensurate (SRI) spin
correlations have only been found for 0 < α̃ < 2.8,13 On the
ferromagnetic side, α̃ < 0, a phase with incommensurate spin-
spin correlations is followed by a ferromagnetic phase. The
transition occurs at α̃ = −4 [QCP1 in Fig. 1(b)], both in
the quantum as well as in the classical model.16,17 Whereas the
incommensurate (“spiral”) correlations are long ranged in the
classical model, these correlations are predicted to be short
ranged in the quantum model.11 However, the gap is expected
to be exponentially small and no numerical evidence for this

gap has been found yet.9,18,19 At the critical point QCP1,
the ferromagnetic state and states of resonating-valence-bond
(RVB) character are degenerate.20 In fact, all degenerate
ground states at this point can be explicitly constructed.21,22

It turns out that there exists a unique ground state for a
fixed total spin, Stot, and fixed z component of the total spin,
Sz

tot. The ground state with Stot = Sz
tot = 0 is, in particular, a

uniformly distributed RVB state obtained as a superposition
of all possible states where sites are grouped in singlet pairs.

In this paper, we will study the thermodynamic properties
of the J1 − J2 model near the quantum critical point QCP1.
There are two reasons why this model is of current interest: On
the one hand, the recently studied compound Li2ZrCuO4 has
been shown to be well described by the J1 − J2 model, with a
frustration parameter α̃ putting the system into the spiral phase
but rather close to the critical point QCP1.5,18 By chemical
or external pressure, it might be possible to tune this or a
related system across the phase transition. On the other hand,
it has been shown, using the anti-de Sitter/conformal-field-
theory (ADS/CFT) correspondence, that a deep connection
between spin chains and string theory exists.23,24 In N = 4
super Yang-Mills theories, the dilatation operator in two-loop
order can be represented as the S = 1/2 spin chain, given
by Eq. (1), with parameters fixed by the Yang-Mills coupling
constant.25,26 In the relevant parameter regime, both couplings
J1 and J2 are ferromagnetic in this case. Interestingly, however,
the second-order contribution taken separately has J1/J2 =
−4, although with J2 < 0, i.e., there is no frustration. We will
see in Sec. II that for this specific ratio—irrespective of the sign
of J2—certain terms in the effective field theory will cancel
exactly.

Our paper is organized as follows. In Sec. II, we present a
field theoretical description of the model in the ferromagnetic
phase. Based on this field theoretical analysis, we will also dis-
cuss the properties of the critical point QCP1 when approached
from the ferromagnetic side. In Sec. III, we investigate the
thermodynamics of the classical model. We test the analytical
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FIG. 1. (Color online) (a) The J1 − J2 chain viewed as a ladder
with zigzag coupling. (b) Phase diagram of the J1 − J2 chain as a
function of J1/J2 with J2 > 0.

results for the low-temperature properties obtained in Sec. II by
comparing with Monte Carlo (MC) simulations. In Sec. IV A,
analytical results for the quantum model based on a modified
spin-wave theory (MSWT) are obtained. We compare the
MSWT predictions with the field theory and with numerical
data obtained by the density-matrix renormalization group
algorithm applied to transfer matrices (TMRG) in Sec. IV B.
A summary and conclusions are presented in Sec. V.

II. FIELD THEORY AND SCALING ARGUMENTS

We consider the case α̃ < 0. Using spin-coherent states,27

the Hamiltonian (1) can be mapped onto a nonlinear σ model
with Euclidean action,

SE = −is
∑

r

SWZ[n(r)] + SH , (2)

with (we set h̄ = kB = 1)

SH =
∫ β

0
dτ

∑
r

[J1s
2n(r,τ )n(r + a0,τ )

+ J2s
2n(r,τ )n(r + 2a0,τ )]. (3)

Here, n2(r,τ ) = 1 is a unit vector, s is the spin quantum
number, and a0 is the lattice constant. SWZ[n(r)] is a
topological (Berry) term giving a phase which is determined
geometrically by the cap bounded by the trajectory n(r,τ ).
Without the topological term, we have a classical action. By
parametrizing the unit vector in terms of angle variables and
demanding that the action is stationary, we can easily find the
classical ground state. This leads to the well-known result that
the ground state is ferromagnetic for α̃ < −4 and a spiral with
pitch angle φ = arccos(|α̃|/4) for α̃ > −4.

Up to a constant, we can replace n(r,τ )n(r + a0,τ ) →
−[n(r,τ ) − n(r + a0,τ )]2/2 and similarly for the next-
nearest-neighbor term. In the continuum limit, we can then
expand the action in terms of the lattice constant a0, and obtain
in leading orders,

SH = −J2s
2a0

2

∫ β

0
dτ

∫ L

0
dr(4 + α̃)(∂r n)2

+ J2s
2a3

0

24

∫ β

0
dτ

∫ L

0
dr(16 + α̃)(∂2

r n)2, (4)

with L = Na0, where N is the number of lattice sites.

It is instructive to briefly discuss the planar case where n is
restricted to the x-y plane. In this case, we can parametrize the
unit vector by a single angle, n = (cos φ, sin φ,0), leading to

SH = −J2s
2a0

2

∫ β

0
dτ

∫ L

0
dr(4 + α̃)(∂rφ)2

+ J2s
2a3

0

24

∫ β

0
dτ

∫ L

0
dr(16 + α̃)

[
(∂2

r φ)2 + (∂rφ)4
]
.

(5)

For α̃ < −4, we see that the action is minimized by
∂rφ = ∂2

r φ = 0, i.e., the ground state is ferromagnetic. For
α̃ > −4, the system can gain energy by forming a spin
spiral. Right at the transition point, the first line of Eq. (5)
vanishes. The dispersion of the elementary excitations [first
term in the second line of Eq. (5)] therefore becomes quartic
at the critical point QCP1, ωk ∼ k4. The critical theory
therefore has a dynamical critical exponent z = 4, whereas in
the ferromagnetic phase the dispersion is quadratic (z = 2).
The dynamical critical exponent relates the scaling of energy
ω and length L, ω ∼ L−z. For the free energy f = − T

L
ln Z, it

follows that f ∼ −T 3/2 in the ferromagnetic phase and f ∼
−T 5/4 at the critical point. The same scaling relations apply
for the inner energy. For the specific heat, c = −T ∂2f/∂T 2,
it follows c ∼ T 1/2 in the ferromagnetic phase and c ∼ T 1/4

at the critical point. These scaling relations will stay valid
also in the general case described by Eq. (4), and depend only
on the dimension of the dynamical critical exponent.

Next, we consider the magnetic susceptibility in the
ferromagnetic phase. The operator in the second line of Eq. (4)
is then irrelevant and can be ignored. The partition function,
including a magnetic field h, to leading order is then given by

Z =
∫

Dn exp

{
− 1

T

∫ L

0
dr

[
ρs

2
(∂r n)2 − hM0n

z

]}

=
∫

Dn exp

{
−

∫ T L/ρs

0
dr ′

[
(∂r ′ n)2

2
− gnz

]}
, (6)

with the spin stiffness ρs = −s2a0(J1 + 4J2) and M0 = s/a0.
In the second line, we have rescaled r ′ = T r/ρs and introduced
a new parameter, g = hM0ρs/T 2. We are always interested in
T L/ρs � 1, i.e., in systems at temperatures T much larger
than the finite-size gap ∼1/L. If g is the only parameter
of the theory, then we expect a universal scaling for the
magnetization, M = M0�(g), where �(g) ∼ g + O(g2) is a
universal scaling function. For the susceptibility, it follows that
χ ∼ M2

oρs/T 2.
Following Ref. 28, one can even go one step further and

calculate the scaling function �(g) explicitly. To do so, it is
important to realize that Eq. (6) is nothing but the imaginary-
time path integral of a quantum particle moving on a sphere.
The corresponding Hamiltonian is then given by H = L2/2 −
gnz, where L is the angular momentum operator. The scaling
function can now be obtained by calculating the eigenspectrum
of this Hamiltonian, leading to �(g) = 2

3g + O(g3).28 If the
scaling hypothesis is valid, we expect the susceptibility at
low temperatures on the ferromagnetic side of the transition

144403-2



J1 − J2 HEISENBERG MODEL AT AND CLOSE TO . . . PHYSICAL REVIEW B 84, 144403 (2011)

(J1 + 4J2 < 0) to be given by

χ = 2

3

M2
0 ρs

T 2
= −2s4

3

J1 + 4J2

T 2
= −2J1s

4

3T 2

(
1 + 4

α̃

)
. (7)

This relation has been found in Ref. 17 based on an analysis
of numerical data. The low-temperature behavior is therefore
the same as for the nearest-neighbor ferromagnetic Heisenberg
model28 but with a rescaled spin stiffness, ρs . At the critical
point QCP1, we have ρs → 0, signaling the formation of spiral
correlations. In our treatment, we have ignored the Berry phase
term. In analogy to the simple ferromagnetic model, we expect
that this term in the ferromagnetic phase does not play any role
for the low-temperature physics, and thus the low-temperature
thermodynamic properties of the quantum and the classical
J1 − J2 model are the same.

Let us now consider the field theory, given by Eq. (4), at
the critical point, still ignoring the topological term in Eq. (2).
The partition function is then given by

Z =
∫

Dn exp

{
− 1

T

∫ L

0
dr

[
ρ̃s

(
∂2
r n

)2 − hM0n
z
]}

=
∫

Dn exp

{
−

∫ L(T/ρ̃s )1/3

0
dr ′[(∂2

r ′ n
)2 − g̃nz

]}
, (8)

with ρ̃s = |J1|s2a3
0/8 and g̃ = hM0ρ̃

1/3
s /T 4/3. The suscepti-

bility therefore scales as

χ = C
M2

0 ρ̃
1/3
s

T 4/3
= C

s8/3

2

|J1|
T 4/3

, (9)

where C is a constant. We have shown that one can again go one
step further by considering Z as the path integral of a quantum
anharmonic oscillator.29 The eigenvalues of this Hamiltonian
can then be calculated numerically. In full analogy to the
ferromagnetic case discussed before, the proportionality factor
can therefore be determined and is given numerically by
C ≈ 2.14.

The result (9) is expected to be the exact low-temperature
susceptibility for the classical model at α̃ = −4. However,
for the quantum model, the theory is above the upper
critical dimension d + z = 5, with d being the dimension
of the system. Spin-wave interaction terms might therefore
yield ultraviolet (UV) divergencies so that the result for the
susceptibility might not only depend on the parameter g̃ but
also on a UV cutoff.30 In this case, the scaling hypothesis would
be violated and the formula (9) would not be applicable for the
quantum model. Furthermore, the topological term, which we
have neglected throughout, is likely to play an important role
at QCP1. Here the ferromagnetic state is degenerate with RVB
states,20 which do not exist for the classical model. Within the
nonlinear σ model description, one might expect that part of
this difference is encoded in a nontrivial topological term. In
the following, we will first check the analytical predictions for
the classical model before analyzing a possible violation of
Eq. (9) for the quantum model.

III. THE CLASSICAL MODEL

The classical, nearest-neighbor, ferromagnetic Heisenberg
model has been solved by Fisher.31 For the classical model
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FIG. 2. (Color online) Universal data collapse, χ/[s4(−J1 −
4J2)] = 2/(3T 2), at low temperatures for the classical model. The
line denotes the analytical result (7), and the symbols denote the MC
results for α̃ = −5 (circles), −10 (squares), and −20 (diamonds).

(1) with antiferromagnetic J1 and J2, Harada and Mikeska32

have shown that thermodynamic quantities can be expressed in
terms of eigenvalues of transfer matrices, which follow from
integral equations. The scaling χ ∼ T −4/3 at the Lifshitz point,
α̃ = −4, has already been discussed in Ref. 33. Recently, the
thermodynamics for general J1 < 0 and J2 > 0 has also been
studied in more detail.29,34–37

In the classical case, the results derived in the previous
section by field theory methods—both for the ferromagnetic
phase and the critical point—should be valid. Here we concen-
trate on providing numerical evidence that the parameter-free
formulas for the magnetic susceptibility, given by Eqs. (7) and
(9), respectively, are correct. The numerical data are obtained
using Monte Carlo simulations from the ALPS package,38 with
a cluster update and a system size N = 10 000.

For the ferromagnetic phase, Eq. (7) predicts that at
low temperatures, all data for χ/[s4(J1 + 4J2)] should col-
lapse onto a single universal curve. In Fig. 2, Monte
Carlo results for various α̃ are compared with the an-
alytical formula. The data collapse onto the analyti-

0.0001 0.001 0.01 0.1 1
T/|J

1
|

10
-1

10
0

10
1

10
2

10
3

10
4

|J
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FIG. 3. (Color online) Analytical formula (9) for the low-
temperature susceptibility at α̃ = −4 (line) compared to MC data
(circles).

144403-3



J. SIRKER et al. PHYSICAL REVIEW B 84, 144403 (2011)

cal curve is perfect over temperatures of several or-
ders of magnitude. We note that the closer α̃ is to the
critical point QCP1, the lower the temperatures are where
the universal scaling sets in. Similarly, we can also check
the formula for the critical point, α̃ = −4; see Fig. 3. The
numerical data do confirm the analytical result, however, we
note that temperatures T/|J1| � 0.01 are required.

IV. THE QUANTUM MODEL

The quantum s = 1/2, nearest-neighbor (J2 = 0), ferro-
magnetic Heisenberg chain is exactly solvable. Thermody-
namic properties, in particular the susceptibility, have been
calculated using the thermodynamic Bethe ansatz.39,40 The
results have been shown to be in excellent agreement with
those obtained by a modified spin-wave theory (MSWT).40

In the following, we extend the MSWT approach to the
ferromagnetic phase of the J1 − J2 model and to the quantum
critical point. We then test our analytical results by comparing
them with numerical data obtained by the transfer-matrix
renormalization group (TMRG).18,42–45

A. Modified spin-wave theory

To calculate the thermodynamic properties of the spin-s
ferromagnetic Heisenberg chain, Takahashi39,40 introduced a
modified spin-wave theory. The spin operators are represented
by bosonic operators as in regular spin-wave theory. In
addition, the constraint of vanishing magnetization at finite
temperatures posed by the Mermin-Wagner theorem is imple-
mented in a simple way by adding an effective magnetic field,
which acts as a Lagrange multiplier for the magnetization.
MSWT has also been used successfully to describe boundary
contributions in the open ferromagnetic Heisenberg chain,46 as
well as the thermodynamics in the dimerized ferromagnet.47–49

Moreover, it has been shown that the classical ferromagnetic
chain is well described by MSWT.40,46,50 Here we will apply
the same method to the Hamiltonian (1) with general spin s.

We expect that MSWT can be applied for α̃ < −4 where
the ground state is ferromagnetic. We will also use this
approximation for the QCP at α̃ = −4, however, here the
validity of MSWT is questionable because of the degeneracy
of the ferromagnetic ground state with RVB states. A further
discussion will be presented in Sec. IV B, based on a compar-
ison with numerical data, and in the conclusions, Sec. V. In
the MSWT approximation, the Hamiltonian (1) is represented
as (in the following, we set the lattice constant a0 = 1)

H = N (J1 + J2)s2 +
∑

k

ωka
†
kak, (10)

where a
(†)
k is a bosonic annihilation (creation) operator

with [ak,a
†
k′ ] = δk,k′ . The dispersion relation is given by

ωk = 2s{|J1| [1 − cos k] + J2 [cos(2k) − 1]}. The additional
constraint of vanishing magnetization reads s = N−1 ∑

k nk ,
where nk = (exp[ωk/T + v] − 1)−1 is the Bose function
including the effective magnetic field v ≡ h/T .

First, we study the case α̃ < −4. For small temper-
atures only spin-wave excitations with small momenta
contribute and the dispersion can be approximated as
ωk = |J1|s(1 − 4/|α̃|)k2. The constraint can now be solved

explicitly by expanding in the reduced temperature t . This
leads to

√
v =

√
t

2s

[
1 + ζ

(
1
2

)
√

π

√
t

2s
+ ζ 2

(
1
2

)
π

(√
t

2s

)2

+ · · ·
]

,

t ≡ T

|J1|s(1 − 4/|α̃|) . (11)

Here ζ (x) is the Riemann zeta function. We note that the
expression for v is the same as for the simple ferromagnet,40

only the definition of the reduced temperature is modified. The
expansion (11) is valid if

√
t/2s � 1, i.e., the temperature

range where this result is applicable shrinks as we get
closer to the critical point. The free energy in the spin-wave
approximation is given by

f = (J1 + J2)s2 − T

[
vs + 1

N

∑
k

ln(1 + nk)

]
. (12)

At small temperatures, we can expand the second term in v

and obtain

f = (J1 + J2)s2 − T

[
ζ (3/2)

2

√
t

π
− t

4s
+ · · ·

]
. (13)

In agreement with the scaling relations derived in Sec. II, we
find, as leading temperature dependence, f ∼ −T 3/2. From
C = −T ∂2f/∂T 2, the leading temperature dependence of the
specific heat can be obtained.

The susceptibility in MSWT is given by

χ = 1

3T N

∑
k

nk(nk + 1), (14)

leading to the low-temperature expansion

χ = s3

T

[
2

3t
− ζ

(
1
2

)
√

πs2t
+ · · ·

]
. (15)

The leading temperature dependence found in MSWT there-
fore agrees exactly with formula (7) found by general scaling
arguments.

Next, we consider the critical point α̃ = −4. For small mo-
menta, the dispersion now reads ωk = |J1|sk4/4, and thus the
dispersion changes from quadratic to quartic, which will have
consequences for the temperature scaling of thermodynamic
quantities. For the constraint, we find

v =
(

t̃

64s4

)1/3
[

1 +
√

2ζ (1/4)

3s�(3/4)
t̃1/4 + · · ·

]
, (16)

with a new reduced temperature t̃ ≡ 4T/(|J1|s). Using relation
(12), for the free energy we obtain

f = (J1 + J2)s2 − T

[
�(1/4)ζ (5/4)

4π
t̃1/4 − 3

(
t̃

64s

)1/3
]
,

(17)

plus higher-order terms. The scaling of the leading term, f ∼
−T 5/4, is again consistent with the scaling arguments in Sec. II.
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Finally, we can calculate the susceptibility using Eq. (14) and
obtain

χ = 1

T

[(
s7

t̃

)1/3

− 7ζ
(

1
4

)
s4/3

6
√

2�
(

3
4

) (
1

t̃

)1/12

+ S

3
+ · · ·

]
.

(18)

We note that the scaling of the leading term is the same
as in Eq. (9). However, the numerical prefactor is not the
same. For the case s = 1/2, in particular, we find from (18)
that χ = 2−10/3T −4/3 ≈ 0.0992 T −4/3.41 In contrast, Eq. (9)—
which does give the correct low-temperature behavior of the
classical model (see Fig. 3)—yields χ ≈ 0.1685 T −4/3. First
of all, this does suggest that at the QCP, the classical and the
quantum models no longer show the same thermodynamic
properties at low temperatures. However, similarly to the
scaling approach used in Sec. II, one might also question the
foundations of MSWT for the QCP altogether. At the QCP,
the ground state is no longer a simple ferromagnet, suggesting
also that the excitations are no longer described by simple spin
waves. Furthermore, UV divergencies in contributions from
spin-wave interaction terms might be expected because we are
now dealing with a theory above the upper critical dimension.
An independent test of the scaling and the MSWT approach
at the QCP can only be obtained by unbiased numerical
calculations. Such calculations will be presented in the next
section.

B. Numerical results

The quantum critical point QCP1 at α̃ = −4 is character-
ized by a level crossing of a singlet and a fully polarized
state. Right at the critical point, the singlet-triplet gap �st

is therefore expected to vanish. This is confirmed by the
Lanczos calculations for finite-size chains, shown in Fig. 4.
We find, in particular, that the singlet-triplet gap vanishes
as �st ∼ N−5.

The thermodynamics of the J1 − J2 model has been studied
previously by a Green’s function method17 and by TMRG.18

In the second approach, the one-dimensional quantum model
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FIG. 4. (Color online) Numerical data (squares) for the singlet-
triplet gap �st for chains of even lengths N = 12,14, . . . ,36. The
solid line is a fit �st = a0 + a1(N−5)a2 , with a0 = −4.8 × 10−7, a1 =
594.1, and a2 = 0.9994.
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FIG. 5. (Color online) Susceptibility for α̃ = −20. The symbols
denote the TMRG data, the solid line denotes a solution of (14) where
the Lagrange parameter v is determined by solving the nonlinear
equations numerically, and the dashed line denotes the leading low-
temperature asymptotics (15) extracted analytically. The inset shows
the low-temperature region on a logarithmic scale.

is mapped onto a two-dimensional classical model with the
help of a Trotter-Suzuki decomposition. It is then possible to
express the partition function in terms of a transfer matrix for
the classical model with the free energy depending only on the
largest eigenvalue of this transfer matrix. The transfer matrix
is extended in imaginary-time direction—corresponding to a
successive lowering of the temperature—with the help of a
density-matrix renormalization group algorithm. For details
concerning the algorithm, the reader is referred to Refs. 42–
45,51,52.

Here we want to use the TMRG algorithm to test how far the
analytical predictions from the previous section hold for the
s = 1/2 case. In Fig. 5, numerical data for the susceptibility
are compared to MSWT for α̃ = −20. If we numerically solve
the nonlinear equation for the Lagrange parameter v, then the
MSWT prediction is in excellent agreement with the numerical
data up to temperatures of the order of t/s ∼ 1. The formula
(14) makes use of a representation of the susceptibility in
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FIG. 6. (Color online) The free energy for α̃ = −20, −10, −5
(from bottom to top). The symbols denote the TMRG data and the
solid lines denote the MSWT result (12) using a fully self-consistent
solution for the Lagrange parameter v.
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FIG. 7. (Color online) Free energy for the critical point α̃ = −4.
The symbols denote the TMRG data and the dashed line denotes the
leading terms in the low-temperature asymptotics (17) obtained by
MSWT. The solid line represents the fully self-consistent solution of
Eq. (12).

terms of the spin-spin correlation function 〈Si Sj 〉, which also
includes terms quartic in the bosonic operators. In this case,
the constraint fortunately makes it possible to obtain a final
expression, which is still only bilinear in the bosonic operators.
The result presented in Fig. 5 therefore goes beyond linear
spin-wave theory. The formula for the free energy, given by
Eq. (12), is, however, a linear spin-wave expression. Here it
is not possible to include the quartic terms without further
approximations because the constraint alone is not sufficient
to obtain a final expression which is only bilinear in the bosonic
operators. The MSWT results for the free energy are therefore
only valid at very low temperatures, as can be seen by the
comparison with numerical data, as shown in Fig. 6. A similar
comparison for the critical point is shown in Fig. 7. There
is good quantitative agreement at temperatures t̃/s � 1, i.e.,
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FIG. 8. (Color online) Susceptibility for the critical point α̃ =
−4. (a) and (b): The symbols denote the TMRG data, the solid
line denotes a solution of (14) where the Lagrange parameter v

is determined self-consistently, and the dashed line denotes the
low-temperature asymptotics (18). (b) The low-temperature region
on a logarithmic scale. (c) Comparison between numerical data for
the quantum model (small circles) and the classical model (squares).

TABLE I. Parameters obtained by fitting χ (T ) in Fig. 8 to χ (T ) =
AT −γ in the interval T/|J1| ∈ [0.003,Tmax].

Tmax A γ

0.05 0.245 1.195
0.025 0.259 1.185
0.01 0.247 1.193
0.0075 0.244 1.195
0.005 0.240 1.198
0.004 0.237 1.201

T/|J1| � 0.0625, between the numerics and the fully self-
consistent solution of the MSWT equations.

For the susceptibility, the situation is expected to be more
complex. The scaling hypothesis used to derive Eq. (9) is
questionable because at the critical point we are above the
upper critical dimension. Indeed, we have already seen that
the predictions from MSWT deviate from formula (9), which
we have confirmed to be the correct result for the classical
model. This is contrary to the ferromagnetic regime where the
MSWT results coincide at low temperatures with the solution
of the classical model. A comparison with numerical data,
shown in Fig. 8, indicates, nevertheless, an apparently good
quantitative agreement with MSWT up to temperatures T ∼
|J1|. A closer inspection of the low-temperature asymptotics
[see inset, Fig. 8(b)], however, shows that MSWT is not fully
consistent with the numerics. Furthermore, Fig. 8(c) shows
that the classical and quantum models no longer share the
same low-temperature properties. If we fit the numerically
obtained χ (T ) for the quantum model to a simple power law
and vary the fit region, we obtain the values summarized in
Table I. This seems to indicate that the exponent might actually
be smaller than 4/3 and therefore different from the exponent
in the classical model. However, using the TMRG algorithm,
we are not able to reach temperatures for the quantum model
which are as low as those obtainable for the classical model
using MC simulations. We therefore cannot completely rule
out that the temperatures are just not low enough to observe
the T −4/3 power law predicted by MSWT.

V. CONCLUSIONS

In summary, we have studied the frustrated J1 − J2

Heisenberg chain at and close to its z = 4 critical point
at α̃ = J1/J2 = −4. By developing a field theory, we have
discussed how the system is driven from a ferromagnetic state
to a state with incommensurate (spiral) spin-spin correlations.
Based on this analysis, the classical model and the quantum
model are expected to show the same low-energy properties in
the ferromagnetic phase.

From scaling arguments, we obtained, in particular, that
the susceptibility diverges as χ ∼ (J1 + 4J2)/T 2 in the ferro-
magnetic phase with a known proportionality constant. We
could reproduce this result using an alternative analytical
approach based on a modified spin-wave theory. Furthermore,
we have verified the analytical prediction using Monte Carlo
simulations for the classical model and the transfer-matrix
renormalization group for the quantum model and have found
excellent agreement.
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Right at the critical point, J1/J2 = −4, a simple dimen-
sional analysis allowed us to predict the scaling of the free
energy and specific heat with temperature. In particular, we
found that the free energy scales as f ∼ T 5/4. Our modified
spin-wave theory calculations have confirmed this scaling and
the obtained parameter-free results have been shown to be in
good agreement with numerical data for the quantum model at
low temperatures. Scaling arguments can also be used to obtain
a parameter-free formula for the low-temperature behavior of
the susceptibility, which—according to this formula—diverges
as χ ∼ T −4/3. From the field theory analysis, even the
prefactor can be obtained and we have shown, using Monte
Carlo simulations, that this formula is indeed correct for the
classical model.

The most interesting problem is the temperature depen-
dence of the susceptibility at the critical point J1/J2 = −4 for
the quantum model. The modified spin-wave approach also
yields a T −4/3 divergence, however, the prefactor is different
from the one obtained from field theory. The numerical data,
furthermore, seem to indicate that even the exponent might
deviate from 4/3. From fits of our numerical data at the lowest
accessible temperatures, we have obtained χ ∼ T −1.2.

There are a number of possible reasons for this deviation:
The simplest explanation is that we do not have numerical
data for low-enough temperatures to observe the true scaling
behavior. However, there are good reasons to believe that the
observed deviation has physical reasons. An inspection of the
quartic term describing the interaction of spin waves within
spin-wave theory shows that this term is ultraviolet divergent.

Such divergences are expected because d + z = 5 is larger
than the upper critical dimension. In such a case, the ultraviolet
properties of the theory can affect the critical behavior.

Another problem is the treatment of the Berry phase term,
which we have ignored in our field theory analysis. On the basis
of a bosonization approach,9,11 where the system is considered
starting from the decoupling point α̃ = 0, the spiral phase of
the quantum model has been found to be gapped. Since we
do not expect an additional phase transition, a gap should
exist all the way to α̃ → −4. In the field theory approach,
this gap in the quantum model must be related to the Berry
phase term. This term might therefore also be important
for the physical properties right at the transition point. This
expectation seems to be consistent both with the known
degeneracy of the ferromagnetic and resonating-valence-bond
states at this point and our numerical results, which show
that the low-temperature properties of the classical and the
quantum model are different.

The results attained here might be relevant and should be
compared to future experiments on edge-sharing cuprate chain
compounds.
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