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Modulation and correlation lengths in systems with competing interactions
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We examine, principally via large n methods (n refers to the number of components of the classical field or the
spin), correlation functions in systems that harbor competing long- and short-ranged interactions. We report, in
detail, on various characteristics of the multiple correlation and modulation lengths that these systems generally
exhibit. We compute the ground state stripe width of an Ising ferromagnet that is frustrated by long-range
interactions. We investigate related systems with vectorial order parameters. The bulk of our results concerns
the evolution of modulation lengths in such systems with temperature. We find that crossover temperatures
T ∗ mark the onset of modulations. For asymptotically weak frustration, the crossover temperature T ∗ tends
towards the critical temperature of the unfrustrated ferromagnetic system (in which the frustrating long-range
interaction is absent). We illustrate that apart from certain special crossover points, the total number of correlation
and modulation lengths remains conserved as temperature is varied. We illustrate that the correlation functions
associated with the exact dipolar interactions differ substantially from those in which a simple scalar product
form between the dipoles is assumed.
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I. INTRODUCTION

Short range interactions have been at the focus of much
study for many decades. Perhaps the best known examples
are the Ising ferromagnet and the anti-ferromagnet.1 Long
range interactions are equally abundant.2 Systems in which
both long and short range interactions co-exist comprise very
interesting systems. Such competing forces can lead to a wealth
of interesting patterns: stripes, bubbles, etc.3–7 Realizations are
found in numerous fields—quantum Hall systems,8 adatoms
on metallic surfaces, amphiphilic systems,9 interacting elastic
defects (dislocations and disclinations) in solids,10 interactions
amongst vortices in fluid mechanics11 and superconductors,12

crumpled membrane systems,13 wave-particle interactions,14

interactions amongst holes in cuprate superconductors,15–19

arsenide superconductors,20 manganates and nickelates,21,22

some theories of structural glasses,23–26 colloidal systems,27,28

and many many more. Much of the work to date is focused on
the character of the transitions in these systems and the subtle
thermodynamics that is often observed (e.g., the equivalence
between different ensembles in many such systems is no
longer as obvious, nor always correct, as it is in the canonical
short-range case29). Other very interesting aspects of different
systems have been addressed in Ref. 30.

Here, we investigate the general temperature dependence
of the structural features that appear in such systems
when competing interactions of short and long range are
present.

The principal physics addressed in this work is that of rich
nonuniform patterns and their evolution with temperature.
We will examine these rather general classical systems by,
predominantly, invoking large-n methods. Here, n is the
number of components of the classical fields or spins that
we consider. When competing interactions are present on
different scales (including, notably, long-range interactions),
modulation (or domain) lengths are seen to generally charac-
terize oscillatory correlations. That is, for asymptotically large
separation xl along Cartesian direction el between two sites,

the full correlation function typically behaves as,

G(xl) ≈
∑

i

fi(xl) cos

(
2πxl

L
(i)
D

)
e−xl/ξi ,

where for the i-th term, fi is an algebraic prefactor, L
(i)
D is

the modulation length and ξi is the corresponding correlation
length. The case of a uniform (non-oscillating) correlation
function corresponds to the limit LD = ∞ while that of Neel
order corresponds to a value of LD = 2 (when the lattice
constant is set to unity). In the standard case, only the largest
correlation length, ξ0 = maxi{ξi}, is kept. In this work, we
will discuss the general situation in which multiple correlation
and modulation lengths may be present. In an ordered phase,
ξ0 → ∞ and fi → constant as |xl| → ∞. We find that these
modulation lengths often adhere to various scaling laws,
sharp crossovers, and divergences at various temperatures
(with no associated thermodynamic transition). We also
find that in such systems, correlation lengths generically
evolve into modulation lengths (and vice versa) at various
temperatures. The behavior of correlation and modulation
lengths as a function of temperature will afford us with
certain selection rules on the possible underlying microscopic
interactions. In their simplest incarnation, our central results
are as follows. (i) In canonical systems harboring competing
short (finite) and long-range interactions modulated patterns
appear. Depending on the type of the long-range interaction,
the modulation length either increases or decreases from
its ground-state value as the temperature is raised. We will
relate this change, in lattice systems, to derivatives of the
Fourier transforms of the interactions that are present. (ii)
There exist special crossover temperatures at which new
correlation/modulation lengths come up or some cease to exist.
The total number of characteristic length scales (correlation +
modulation) remains conserved as temperature is varied,
except at the crossover points. (iii) The presence of the angular
dependent dipolar interaction term that frustrates an otherwise
unfrustrated ferromagnet vis a vis a simple scalar product
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FIG. 1. Reproduced with permission from Science, Ref. 13.
Reversible “strip-out” instability in magnetic and organic thin
films. Period (LD) reduction under the constraint of fixed overall
composition and fixed number of domains leads to elongation of
bubbles. Left panel (a): in magnetic garnet films, this is achieved
by raising the temperature [labeled in (b) in degrees Celsius] along
the symmetry axis, H = 0 (period in bottom panel ∼10 μm) (see
Fig. 5). Right panel (b): in Langmuir films composed of phospholipid
dimyristolphosphatidic acid (DMPA) and cholesterol (98 : 2 molar
ratio, pH 11), this is achieved by lowering the temperature at constant
average molecular density (period in bottom panel ∼20 μm).

between the dipoles adds new (dominant) length scales. The
angular dependence significantly changes the system.

We will further investigate the ground-state modulation
lengths in general frustrated Ising systems and also point to
discontinuous jumps in the modulation lengths that may appear
in the large n rendition of some systems.

Armed with these general results, we may discern the
viable microscopic interactions (exact or effective), which
underlie temperature dependent patterns that are triggered by
competing interactions. Our analysis suggests the effective
microscopic interactions that may drive nonuniform patterns
such as those underlying lattice analogs of the systems of
Fig. 1.

The treatment that we present in this work applies to lattice
systems and does not account for the curvature of bubbles
and other continuum objects. These may be augmented by
inspecting energy functionals (and their associated free-energy
extrema) of various continuum field morphologies under the
addition of detailed domain wall tension forms, e.g., explicit
line integrals along the perimeter where surface tension exists,
and the imposition of additional constraints via Lagrange
multipliers, as in, e.g., Ref. 31. We leave their analysis for

future work. One of the central results of our work is the
derivation of conditions relating to the increase/decrease of
modulation lengths in lattice systems with changes in temper-
ature. These conditions relate the change in the modulation
length at low temperatures to the derivatives of the Fourier
transforms of the interactions present.

In Sec. II, we outline the general systems that we study. In
particular, we introduce the frustrated ferromagnet. In Sec. III,
we derive the scaling form for the Ising ground states for
general frustrating long-range interactions. Henceforth, we
provide explicit expressions for the crossover temperatures
and the correlations lengths in the large n limit.

In Sec. IV, we introduce the two-spin correlation function
for a general system in this limit.

Based on the correlation function, we then present some
general results for systems with competing nearest-neighbor
ferromagnetic interaction and an arbitrary long-range in-
teraction in Sec. V. We start by deriving the equilibrium
stripe width for a two-dimensional Ising system with nearest-
neighbor ferromagnetic interactions and competing long-range
interactions. We derive an expression for the change in
modulation length with temperature for low temperatures for
large-n systems. We illustrate how the crossover temperature
T ∗ arises in the large-n limit and show some general properties
of the system associated with it.

We present some example systems in Sec. VI. We nu-
merically calculate the correlation function for the screened
Coulomb frustrated ferromagnet and the dipolar frustrated
ferromagnet. We then study the screened Coulomb frustrated
ferromagnet in more details. Next, we show some results for
systems with higher-dimensional spins. We study a system
with the dipole-dipole interaction for three-dimensional spins,
without ignoring the angular-dependent term and show that this
term changes the ground-state length scales of the system con-
siderably. We also present a system with the Dzyaloshinsky-
Moriya interaction in addition to the ferromagnetic term and
a general frustrating long-range term. We give our concluding
remarks in Sec. VII.

II. THE SYSTEMS OF STUDY

Consider a translationally invariant system whose Hamil-
tonian is given by

H = 1

2

∑
�x �=�y

V (|�x − �y|)S(�x)S(�y). (1)

The quantities {S(�x)} portray classical scalar spins or fields.
The sites �x and �y lie on a hypercubic lattice with N sites having
unit lattice constant. In what follows, v(k) and s(�k) will denote
the Fourier transforms of V (|�x − �y|) and S(�x). Thus we have

H = 1

2N

∑
�k

v(k)|s(�k)|2. (2)

For analytic interactions, v(k) is a function of k2 (to avoid
branch cuts).

The two-point correlator function for the system in Eq. (1)
is

G(�x) = 〈S(0)S(�x)〉. (3)
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Thus, in the Fourier space, we have

G(�k) = 1

N
〈|s(�k)|2〉. (4)

Throughout most of this work we will focus on systems with
competing interactions having Hamiltonians of the following
form:

H = −J
∑
〈�x,�y〉

S(�x)S(�y) + Q
∑
�x �=�y

VL(|�x − �y|)S(�x)S(�y), (5)

where the first term represents nearest-neighbor ferromagnetic
interaction for positive J and the second term represents
some long-range interaction that opposes the ferromagnetic
interaction for positive Q. We will study properties of
general systems of the form of Eq. (5). In order to flesh
out the physical meaning of our results and illustrate their
implications and meaning, we will further provide explicit
expressions and numerical results for two particular examples.
The Hamiltonian (5) represents a system that we christen to
be the screened Coulomb frustrated ferromagnet when

VL(r) = e−λr

4πr
in three dimensions, and

VL(r) = K0(λr) in two dimensions, (6)

where λ−1 represents the screening length and K0 is a modified
Bessel function,

K0(x) =
∫ ∞

0
dt

cos xt√
1 + t2

. (7)

Throughout our work, we will discuss both the screened and
unscreened renditions of the Coulomb frustrated ferromagnet.
Equation (5) corresponds to a dipolar frustrated ferromagnet
when

VL(r) = 1

r3

= 1

(r2 + δ2)3/2
in the limit δ → 0, (8)

on the lattices that we will consider. Later, we also consider
general direction dependent dipolar interactions for three-
dimensional spins; we will replace the scalar product form
of the dipolar interactions in Eqs. (5) and (8) by the precise
dipolar interactions between magnetic moments.

On a hypercubic lattice, the nearest-neighbor interactions
in real space of Eq. (5) have the lattice Laplacian

�(�k) = 2
d∑

l=1

(1 − cos kl), (9)

as their Fourier transform. In the continuum (small k) limit,
�(�k) = k2. The real lattice Laplacian

〈�x|�|�y〉 =
{

2d, for �x = �y,

−1, for |�x − �y| = 1. (10)

Notice that 〈�x|�R|�y〉 = 0 for |�x − �y| > R, where R is the
spatial range over which the interaction kernel is nonvanishing.
The following corresponds to interactions of range two lattice

constants,

〈�x|�2|�y〉 = 2d(2d + 2) for �x = �y,

= −4d for |�x − �y| = 1,

= 2, for (�x − �y) = (±ê� ± ê�′ ), where � �= �′,
= 1, for a ±2ê� separation. (11)

Correspondingly, in the continuum, the lattice Laplacian
and its powers attain simple forms and capture tendencies
in numerous systems. Surface tension in many systems is
captured by a g(∇φ)2 term where φ is a constant in a uniform
domain. Upon Fourier transforming, such squared gradient
terms lead to a k2 dependence. The effects of curvature, which
are notable in many mixtures and membrane systems, can
often be emulated by terms involving (∇2h) with h being
a variable parameterizing the profile; at times, the interplay
of such curvature terms with others leads, in the aftermath,
to a simple short-range k4 term in the interaction kernel [the
continuum version of the squared lattice Laplacian of Eq. (11)].
An excellent review of these issues is addressed in Ref. 13.

III. GROUND-STATE STRIPE WIDTH FOR ISING
SYSTEMS: LATTICE VERSUS CONTINUUM

THEORY SCALING

Next, we briefly discuss the ground-state stripe width
for systems where the long-range interaction VL(|�x − �y|) in
Eq. (5) has vL(k) = 1/kp as its Fourier transform. Below, we
discuss the Ising ground states. We will later on consider the
spherical model that will enable us to compute the correlation
functions at arbitrary temperatures. The upshot of the up and
coming discussion is that in the long-wavelength limit, the
lattice and continuum results differ from one another due to
the presence of the long-range interaction and the ensuing
nontrivial dependence of the modulation lengths on the lattice
spacing.

We consider a system with Ising spins in d dimension and
assume that the system forms a “striped” pattern (periodic
pattern along one of the dimensions, stripes in two dimensions,
parallel slices in three dimensions, and so on) of spin-up and
spin-down states of period l [the modulation length of the
system at zero temperature, LD(T = 0)]. We assume the “first”
direction (i.e., that along ê1) to be the direction along which
we have the periodic pattern. We have |s(�k)| �= 0 only if k2 =
k3 = · · · = kd = 0 and

|s(�k)|2 =
{ 4

sin2(k/2) , when k1 is an odd multiple of 2π
l

,
0, when k1 is an even multiple of 2π

l
.

(12)

For asymptotically small Q in Eq. (5), the ground state of the
system will have small wave vectors �k. For small k’s, we have

|s(�k)|2 ∼ 16

k2
, when k1 is an odd multiple of

2π

l
. (13)

We next compute the energy as a function of l and then
minimize it with respect to l to get the equilibrium stripe
width. For a general lattice constant a, we find that

l =
[

(2π )p+2a3−dJ

4Q(p + 2 − d)
(
1 − 1

2p+2

)
ζ (p + 2)

] 1
p+3−d

, (14)
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where ζ (t) is the Riemann zeta function,

ζ (t) =
∞∑

n=1

1

nt
. (15)

Our lattice result of Eq. (14) may be contrasted with the
continuum modulation period

l = 2π

(
2J

pQ

) 1
p+2

(16)

obtained by finding the minimizing wave vector q for the
kernel (J/k2 + Q/kp) [the Fourier transform of Eq. (5)
and computing (2π/q)]. In the continuum, where no lattice
length scale is present, Eq. (16) constitutes (up to an overall
multiplicative numerical prefactor) the sole quantity that has
the correct dimensions of length that can be built out of J and
Q. The power-law scaling of l on Q in the asymptotic small Q

(or, equivalently, small k) limit is radically different between
the cases of the lattice [Eq. (14)] and the continuum [Eq. (16)].
For the particular case, the two-dimensional (d = 2) Coulomb
frustrated (p = 2) ferromagnet, Eq. (14) states that

l = 4 3
√

3Ja/Q. (17)

This result is in accord with the analysis of Refs. 32 and 33. For
long-range dipolar interactions (p = 3) in d = 2 dimensions,
we find that

l = δ

√
3J

Q
. (18)

IV. CORRELATION FUNCTIONS IN THE LARGE-n LIMIT:
GENERAL CONSIDERATIONS

The results reported henceforth were computed within the
spherical or large-n limit.34 It was found by Stanley, long
ago,35 that the large-n limit of the n component normalized
spin systems [so-called O(n) spins] is identical to the spherical
model first introduced by Berlin and Kac.34

The designation of “O(n) spins” simply denotes real fields
(spins) of unit length that have some arbitrary number (n)
of components. For n = 1, the system is an Ising model: a
single-component real field having unit norm allows for only
two scalars at any given site �x: S(�x) = ±1. The n = 2 system
corresponds to a two-component spin system in which the
spins are free to rotate in a two-dimensional place: S2

1 (�x) +
S2

2 (�x) = 2 (an XY spin system). The case of n = 3 corresponds
to a system of three-component Heisenberg-type spins, and so
on. In general,

1

n

n∑
a=1

Sa(�x)Sa(�x) = 1. (19)

We now introduce the spherical model in its generality. The
spins in Eq. (1) satisfy a single global (“spherical”) constraint,∑

�x
〈S2(�x)〉 = N, (20)

enforced by a Lagrange multiplier μ. This leads to the
functional H ′ = H + μN , which renders the model quadratic
[as both Eqs. (1) and (20) are quadratic] and thus exactly

solvable, see, e.g., Ref. 16. The continuum analogs of Eqs. (1)
and (20) read

H = 1

2

∫
ddxddyV (|�x − �y|)S(�x)S(�y),∫
ddx〈S2(�x)〉 = const. (21)

The quadratic theory may be solved exactly. From the
equipartition theorem, for T � Tc, the Fourier space correlator

G(k) = kBT

v(k) + μ
. (22)

The real-space two-point correlator is given by

G(�x) ≡ 〈S(0)S(�x)〉 = kBT

∫
BZ

ddk

(2π )d
ei�k·�x

v(k) + μ
, (23)

with d the spatial dimension and BZ denoting the integration
over the first Brillouin zone. For a hypercubic lattice in d

dimensions with a lattice constant that is set to one, −π <

ki � π for i = 1,2, . . . ,d. Henceforth, to avoid cumbersome
notation, we will generally drop the designation of BZ;
this is to be understood on all momentum space integrals
pertaining to the lattice systems that we examine. To complete
the characterization of the correlation functions at different
temperatures, we note that the Lagrange multiplier μ(T ) is
given by the implicit equation 1 = G(�x = 0). Thus,

1 = kBT

∫
ddk

(2π )d
1

v(k) + μ
. (24)

This implies that the temperature T is a monotonic increasing
function of μ. For a hypercubic lattice system, performing
the momentum integration on a hypercube of side 2π in the
reciprocal lattice, in the high-temperature limit,

μ = kBT . (25)

In continuum renditions of the large-n system, Eq. (24) also
implies that in the high-temperature limit,

μ

kBT
= πd/2
d

(2π )d�
(

d
2 + 1

) (26)

⇒ T ∝ μ, (27)

where 
 is the upper limit of the k integration, representing
the ultraviolet cutoff. Furthermore, as the integration range
in Eq. (24) is finite, we can prove that μ(T ) is an analytic
function of T (see Appendix D). This supports the assumption
that G−1(T ,k) is analytic in T and k at all points except k = 0
where v(k) is usually singular.

We investigate the general character of the correlation
functions given by Eq. (23) for rotationally invariant systems.
If the minimum (minima) of v(k) occur(s) at momenta q far
from the Brillouin zone boundaries of the cubic lattice then we
may set the range of integration in Eq. (23) to be unrestricted.
The correlation function is then dominated by the location of
the poles (and/or branch cuts) of 1/[v(k) + μ]. Thus we look
for solutions to the following equation:

v(k) + μ = 0. (28)
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At the critical ordering temperature of the large n system,
T = Tc, μ takes the value

μmin = − min
k∈BZ

[v(k)]. (29)

As the temperature is increased beyond Tc, the system becomes
disordered. As we report in this work, in many systems, the
modulation length LD diverges at a temperature T = T ∗ > Tc.

The characteristic length scales of the system are governed
by the poles of [v(k) + μ]−1.

J�(�k) + QvL(k) + μ = 0, (30)

which in the continuum limit takes the form

Jk2 + QvL(k) + μ = 0. (31)

Employing the above considerations, we will derive, in the
next section, some general results for systems of the form (5).

Our work will focus on classical systems. The extension
to the quantum arena16 is straightforward. In, e.g., large-n
bosonic renditions of our system, replicating the usual large-n
analysis to O(1/n), we find16,25,36 that the pair correlator

G(�k) =
√

μ1

v(�k) + μ

[
nB

(√
μ1(v(�k) + μ)

kBT

)
+ 1

2

]
, (32)

with μ1 being a constant having dimensions of energy and the
bosonic distribution function

nB(x) = 1

ex − 1
. (33)

The correlator of Eq. (32) is of a similar nature as that of
the classical correlator of Eq. (22) with branch cuts generally
appearing in the quantum case. Our analysis below relies on the
evolution of the poles of v(k) + μ as a function of temperature
in classical systems.

In the quantum arena, we first choose the proper contour
in the complex k space (going around the branch cuts). Then,
we argue that the only points that contribute to the integral are
the points where the integrand is singular. This corresponds
to v(k) + μ = 0. Thus, the integral remains unchanged if we
expand the integrand to lowest order in v(k) + μ. Doing this,
we get, to leading order,

GB(k) = kBT

v(k) + μ
, (34)

which is same as the classical expression of Eq. (22). The
characteristic length scales of the system are therefore still
determined by the zeros of v(k) + μ in the complex k plane in
the exact same way.

For interactions that are not isotropic, for both classical and
quantum cases, we need to consider the full six-dimensional
space of the complex components of �k along each of the three
coordinate axes.

V. LARGE-n RESULTS

In this section, we present some general results for systems
of the form (5) in their large-n limit. First, we find the
dependence of the modulation length on temperature near Tc.
Next, we will illustrate an analogy between the behavior of
the correlation length near the critical temperature Tc and that

of the modulation length near T ∗. We will then discuss some
aspects of the crossover points. We end this section with some
results in the high-temperature limit.

A. The low-temperature limit: a criterion for determining an
increase or decrease of the modulation length at low

temperatures

In this section, we derive universal conditions for increasing
or decreasing modulation lengths in general systems with
pairwise interactions. Equations (45) and (47) show general
conditions for the change in modulation length, LD , with
temperature for a general system of the form (5). The value k0

of k that satisfies Eq. (29),

v(k0) = min
k∈BZ

v(�k) (35)

determines the modulation length at T = Tc.

v(k0) + μmin = 0, (36)

v′(k0) = 0. (37)

As the temperature is raised, the new pole near k0 will have an
imaginary part corresponding to the finite correlation length.
The real part will also change in general and this would induce
a change in the modulation length. Let μ(T ) = μmin + δμ with
δμ > 0. Then we have

k = k0 + δk, δk =
∞∑

j=1

δkj , (38)

where δkj ∝ δμxj , xj+1 > xj . Our goal is to find the leading
order real contribution to δk that would give us the change in
modulation length with increasing μ and hence with increasing
temperature.

∞∑
j=2

v(j )(k0)
δkj

j !
+ δμ = 0. (39)

Suppose v(n)(k0) = 0 for 2 < n < p and v(p)(k0) �= 0.
[Clearly, in most cases, the third derivative is not zero and
p = 3.] We have

v(2)(k0)

2!

(
δk2

1 + 2δk1δk2 + . . .
)

+
{

v(p)(k0)

p!

(
δk

p

1 + pδk
p−1
1 δk2 + . . .

) + v(p+1)(k0)

(p + 1)!

× [
δk

p+1
1 + (p + 1)δkp

1 δk2 + . . .
] + . . .

}
+ δμ = 0. (40)

To leading order,

v(2)(k0)

2!
δk2

1 + δμ = 0, δk2
1 = − 2δμ

v(2)(k0)
. (41)

From this, we see that δk1 is imaginary. This constitutes
another verification of the well-established result about the
universality of the divergence of the correlation length, ξ at
Tc with the mean-field-type critical exponent ν = 1/2 in the
large-n limit:

ξ ∝ (T − Tc)−ν, ν = 1
2 . (42)
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The next, higher order, relations are obtained using the method
of dominant balance.

v(2)(k0)(δk1)(δk2) + v(p)(k0)

p!
(δk1)p = 0,

δk2 = (−1)
p+1

2 v(p)(k0)(δμ)
p−1

2

2p!
[

v(2)(k0)
2!

] p+1
2

. (43)

Therefore, δk2 is real if p is odd and imaginary if p is even. If,

LD(T ) = LD(Tc) + δLD, (44)

then for p = 2n + 1,

δLD = 2π

k2
0

(−1)nv(2n+1)(k0)δμn

2(2n + 1)!
[

v(2)(k0)
2!

]n+1 . (45)

Thus to get the leading order real contribution to δk for even
p > 2, we have to go to higher order:

2

[
v(2)(k0)

2!

]
δk1δk3 + v(p+1)(k0)

(p + 1)!
δk

p+1
1 = 0,

δk3 = (−1)1+p/2v(p+1)(k0)(δμ)p/2

2(p + 1)!
[

v(2)(k0)
2!

]p/2+1 . (46)

For p = 2n,

δLD = 2π

k2
0

(−1)nv(2n+1)(k0)(δμ)n

2(2n + 1)!
[

v(2)(k0)
2!

]n+1 . (47)

If, for p = 2n, v(2n+1)(k0) = 0, then we will need to continue
this process until we get a real contribution to δk. In
Appendix B, we provide explicit forms for δLD for different
values of p.

In the most common case, where v(3)(k0) �= 0, we have

δLD = −2π

k2
0

v(3)(k0)

3[v(2)(k0)]2
δμ. (48)

Also, applying this to a nearest-neighbor system in the
continuum frustrated by a general long-range interaction given
by vL(k) in Fourier space, we get

δLD = −2π

k2
0

Qv
(3)
L (k0)

3
[
v

(2)
L (k0)

]2 δμ. (49)

This shows that it is the long-range term that determines the
sign of the change in modulation length with temperature
as the system is heated from T = TC . The results derived
above allow us to relate an increase/decrease in the modulation
length at low temperatures to the sign of the first nonvanishing
odd derivative (of an order larger than two) of the Fourier
transform of the interactions that are present. It is important to
emphasize that our results apply to any interaction. These may
include screened or unscreened Coulomb and other long-range
interactions but may also include interactions that are strictly
of finite range, e.g., next-nearest-neighbor interactions on the
lattice for which we have vL = −t�2 [with a constant t > 0,
see Eq. (11)].

The results from this section about modulation lengths just
above TC can give us similar behavior of the correlation lengths
at temperatures slightly below T ∗.

B. A correspondence between the temperature T ∗ at which the
modulation length diverges and the critical temperature Tc

The critical temperature Tc corresponds to the maximum
value of μ for which Eq. (28) still attains a real solution. Thus,

v(k0) + μmin = 0,
(50)

v′(k0) = 0, v′′(k0) > 0.

For systems in which the modulation length diverges at T ∗,
T ∗ corresponds to the minimum value of μ for which Eq. (28)
has a purely imaginary solution. Thus, if v(iκ) = v̂(κ),

v̂(κ0) + μ∗ = 0, v̂′(κ0) = 0,
(51)

v̂′′(κ0) < 0 ⇒ v′′(iκ0) > 0.

Thus we expect similar qualitative results for the correlation
lengths at temperatures slightly above Tc as for modulation
lengths slightly below T ∗ and vice versa. [The relations for
the derivatives of v̂(κ0) in Eq. (51) are guaranteed to hold only
if T ∗ > Tc.]

C. Crossover temperatures: emergent modulations

For systems with competing multiple range interactions,
there may exist special temperatures at which the poles
of the correlation function change character, thus changing
modulation lengths to correlation lengths and vice-versa. In
particular, for most systems we have a crossover temperature
T ∗ above which the system does not have any modulation.
Apart from this kind of phenomenon, there might also be
finite discontinuous jumps in the modulation length. This is
illustrated with an example in Sec. V D.

We start by defining the crossover temperature T ∗ for
a ferromagnetic system frustrated by a general long-range
interaction. Let k = iκ with a real κ(κ ∈ R) above T ∗ and κ =
κ0 at T ∗. Let v(k) = f (z), z = k2. Above T ∗, μ = μmin + �μ

(�μ > 0). Using Eq. (29),

μ = −f (−κ2) = − min
k∈R

v(k) + �μ

(52)
= max

k∈R
[−v(k)] + �μ.

T ∗ corresponds to the minimum value of �μ for which we
have at least one such solution (see Fig. 2).

Thus,

μ∗ = min
κ ∈ R,

−v(iκ) � μmin,

[−v(iκ)],

(53)
= − max

κ ∈ R,

−v(iκ) � μmin.

[v(iκ)],

Sometimes, the crossover point is slightly more difficult
to visualize (see Fig. 3). In this case, the minimum upper
branch of −f (z) for z < 0 [equivalently the upper branches
of −v(iκ)] gives us the value of μ∗. The branch chosen has
to continue to μ = +∞ so that at least one term without
modulation is always available as we increase the temperature,
as required by the definition of T ∗. The other branch provides
such solutions only up to a certain temperature. Also, the part
of it that is below μmin is irrelevant.
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FIG. 2. −f (z) = −v(k) = μ plotted against z = k2 for purely
real and purely imaginary k’s (T → 0 and T → ∞, respectively). The
negative-z regime corresponds to temperatures (Lagrange multiplier,
μ’s) for which purely imaginary solutions exist. The maximum of
the curve in the positive-z regime corresponds to the modulations
at T = Tc [μ = μmin], which is the maximum temperature at which
pure modulations exist.

If f (z) is an odd function of z (e.g., the Coulomb frustrated
ferromagnet), μ∗ = −μmin and the correlation length at T ∗ is
the same as the modulation length at Tc. Also, for the system
in Eq. (5), if limκ→0 vL(iκ) = +∞, we have, μ∗ = μmin, and
T ∗ = Tc.
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FIG. 3. Top panel, solid line, −v(k) plotted against k. Dashed
line, −v(iκ) plotted against κ . Bottom panel, −f (z) plotted against
z.

1. T ∗ = Tc if all the competing interactions are of finite range
and crossover exists

For systems where all the competing interactions are of
finite range, T ∗ = Tc. We prove this as follows. Since finite-
range interactions contribute to v(k) as powers of �(�k) → k2,
for a system with only finite-range interactions, f (z) is analytic
for all z. For a minimum of −f (z) to exist in the z < 0 regime
which is higher than the maximum in the z > 0 regime, we
need f (z) to be discontinuous at some point. Putting all of
the pieces together, we find that there are no possibilities: (i)
no crossover, i.e., T ∗ = ∞ or (ii) κ0 = 0 and μ∗ = μmin with
T ∗ = Tc.

2. T ∗ → Tc as the strength of the long-range interaction is
turned off

The results from this section and the next hold for a general
system, not just the frustrated ferromagnet. The crossover
temperature T ∗ tends to Tc for Q = 0 as Q → 0. For a
general system, let G(T ,k) denote the Fourier space correlation
function at temperature T . By definition, at T = Tc the
correlation length is infinite. Thus Tc is the solution to

G−1(T ,k) = 0, (54)

such that k ∈ BZ (or for continuum renditions, k ∈ R).
T ∗ is the temperature at which the modulation length

diverges for the frustrated ferromagnet, or becomes the same
as the modulation length of the unfrustrated system at Tc for a
general system. Thus T ∗ is the solution to

G−1(T ,q + iκ) = 0, (55)

with κ ∈ R [In the case of the frustrated ferromagnet (e.g.,
J > 0 in Eq. (5)), q = 0. In the case of the frustrated
antiferromagnet (J < 0 in Eq. (5)), q = π ]. At Tc, for Q = 0,
we have

G−1(Tc,q) = 0. (56)
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7

z

−
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z)

FIG. 4. (Color online) Illustration of the limit T ∗ → Tc as Q →
0 with vL(k) = 1/k3. The plot shows −f (z) = −v(k) vs z = k2,
for v(k) = Jk2 + Q/k3 with J = 1 and Q = {1—blue, 0.1—green,
0.01—yellow, 0.001—red}. “*” represents the value of μ∗ and dot
represents μmin.
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This however also satisfies Eq. (55), with κ = 0. Therefore

lim
Q→0

T ∗ = Tc. (57)

We demonstrate this in the large-n limit (see Fig. 4). For
Q = 0, we have μmin = 0 and k0 = 0. Let vL(k) diverge as
k−2p near k = 0. For small Q, from Eq. (29), we have

k0 =
(

pQ

J

) 1
2p+2

,

μmin = −p + 1

p
p

p+1

J
p

p+1 Q
1

p+1 . (58)

If p is odd,

μ∗ = −μmin, κ0 = k0. (59)

As Q → 0, κ0 = k0 = 0, and μ∗ = μmin = 0, that is,

lim
Q→0

T ∗ = Tc(Q = 0). (60)

3. Proof of the conservation of the total number of characteristic
length scales

In this section, we consider the general situation in which
the Fourier transform of the interaction kernel, v(k), is a
rational function of z = �(k), [z → k2 in the continuum limit].
That is, we consider situations for which

v(k) = f (z) = P (z)

Q(z)
, (61)

with P and Q polynomials (of degrees M1 and M2, respec-
tively). We will now demonstrate that the combined sum of the
number of correlation and the number of modulation lengths
remains unchanged as the temperature is varied.

Before providing the proof of our assertion, we first reiterate
that the form of Eq. (61) is rather general. For a system
with finite-range interactions (V |�x − �y| > R) = 0 with finite
R] that is even under parity [V (�x − �y) = V (�y − �x)], the
Fourier transform of V (�x − �y) can be written as a finite-order
polynomial in (1 − cos kl) with the spatial direction index
1 � l � d, where d is the dimensionality. In the small |�k|
(continuum limit), (1 − cos kl) → k2

l /2. The particular case
of a system with only finite-range interactions that exist up
to a specified range R on the lattice (the range being equal
to a graph distance measuring the number of lattice steps
beyond which the interactions vanish) of the form of Eq. (61)
corresponds to v(k) = P (z) with the order of the polynomial
M1 being equal to the interaction range, R = M1. Our result
below includes such systems as well as general systems with
long-range interactions. For long-range interactions such as,
e.g., the screened Coulomb frustrated ferromagnet, f (z) =
1/(z + λ2). The considerations given below apply to the
correlations along any of the spatial directions l (and as a
particular case, radially symmetric interactions for which the
correlations along all directions attain the same form).

Returning to the form of Eq. (61), the Fourier space
correlator of Eq. (22) is given by

G(�k) = kBT
Q(z)

F (z)
, F (z) = P (z) + μQ(z). (62)

On Fourier transforming Eq. (62) to real space to obtain the
correlation and modulation lengths, we see that the zeros of
F (z) determine these lengths. Expressed in terms of its zeros,
F can be written as

F (z) = A

M∏
j=1

(z − zj ), (63)

where M = max[M1,M2]. From Eq. (62), we see that F is
a polynomial in z with real coefficients. As F ∗(z) = F (z∗),
it follows that all roots of F are either (a) real or (b) come
in complex conjugate pairs (zj = z∗

i �= zi). We now focus
on the two cases separately. (a) Real roots: If a particular
root zj = a2, a ∈ R then on Fourier transforming Eq. (62)
by the use of the residue theorem, we obtain a term with
a modulation length, LD = 2π/a. Conversely, if zj = −a2,
we get a term with a correlation length, ξ = 1/a. (b) Next,
we turn to the case of complex conjugate pairs of roots.
If the pair of roots zj ,z

∗
j is not real, that is, zj = |zj |eiθ ,

then on Fourier transforming, we obtain a term containing
both a correlation length ξ = (

√|zj || sin θ
2 |)−1 and modulation

length LD = 2π (
√|zj || cos θ

2 |)−1. Putting all of the pieces
together see that as (a) each real root of F (z) contributes
to either a correlation length or a modulation length and (b)
complex conjugate pairs of nonreal roots contribute to one
correlation length and one modulation length, the total number
of correlation and modulation lengths remains unchanged as
the temperature (μ) is varied. The total number of correlation
+ modulation lengths is given by the number of roots of F (z)
(that is, M). Thus, the system generally displays a net of M

correlation and modulation lengths. This concludes our proof.
At very special temperatures, the Lagrange multiplier μ(T )
may be such that several poles degenerate into one—thus
lowering the number of correlation/modulation lengths at those
special temperatures. Also, in case M = M2, the total number
of roots drops from M2 to M1 at μ = 0. What underlies
multiple length scales is the existence of terms of different
ranges (different powers of z in the illustration above), not
frustration.

The same result can be proven using the transfer matrix
method for a one-dimensional system with Ising spins. This
is outlined in Appendix A. A trivial extension enables similar
results for other discrete spin systems (e.g., Potts spins).

D. First-order transitions in the modulation length

In this section, we show that there might be systems
in which the modulation length makes finite discontinuous
jumps. In these situations, the modulation length does not
diverge at a temperature T ∗ (or set of such temperatures). The
ground-state modulation lengths (the reciprocals of Fourier
modes {�qi} minimizing the interaction kernel) need not
be continuous as a function of the parameters that define
the interactions. As we will simply illustrate below, in a
manner that is mathematically similar to that appearing in
the Ginzburg-Landau constructs, a “first-order transition” in
the value of the ground-state modulation lengths can arise.
Such a possibility is quite obvious and need not be expanded
upon in depth. As an illustrative example, let us consider an
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FIG. 5. (Color online) The correlator G(x,y) for a two-dimensional screened Coulomb ferromagnet of size 100 by 100. J = 1, Q =
0.0004, and screening length = 100

√
2. (a): μ = μmin = −0.0874, (b): μ = μmin + 0.001, (c): μ = μmin + 0.003, (d): G(x,y) for y = 0 for

(a)(blue)(LD = 20), (b) (green)(LD = 24), and (c)(red)(LD = 26).

interaction kernel of range three

v(k) = a(� + ε) + 1
2b(� + ε)2 + 1

3c(� + ε)3, (64)

with 0 < ε � 1 and c > 0. If the parameters are such that a >

0 and b < 0, then v(k) displays three minima, i.e., � + ε = 0
and � + ε = ±m2

+, where m2
+ = 1

2c
(−b + √

b2 − 4ac). The
locus of points in the ab plane where the three minima are equal
to one another is defined by v(k) = 0. This leads to the relation
m2

+ = −4a/b. Putting all of the pieces together, we see that
b = −4

√
ca/3 constitutes a line of “first-order transitions.” On

traversing this line of “first-order transitions,” the minimizing
� + ε (and thus the minimizing wave numbers) changes
discontinuously by �m = (−4a/b)1/2 = (3a/c)1/4.

VI. EXAMPLE SYSTEMS

In this section, we will investigate in detail several frustrated
systems. We will start our analysis by examining the screened
Coulomb frustrated ferromagnet. A screened Coulomb inter-
action of screening length λ−1 has the continuum Fourier
transformed interaction kernel v(k) = (k2 + λ2)−1. The lowest
order nonvanishing derivative of vL(k) of order higher than
two is that of p = 3. Invoking Eq. (45), we find a modulation
length that increases with increasing temperature as T → T +

c

(see also Appendix B, Eq. (B1) in particular).
The dipolar interaction can be thought of as the δ → 0 limit

of the interaction,

Vd = 1

[(�x − �y)2 + δ2]3/2
. (65)

This form has a simple Fourier transform. In two spatial
dimensions,

vd (k) = 2πδ−1e−kδ. (66)

In three dimensions,

vd (k) = 4πK0(kδ), (67)

K0 being a modified Bessel function [see Eq. (7)].
In this case, we similarly find that the first nonvanishing

derivative of vL is order of order p = 3 in the notation of
Eq. (45). This, as well as the detailed form of Eq. (B1) suggest
an increasing modulation length with increasing temperature
as T → T +

c .

A. Numerical evaluation of the correlation function

In Figs. 5 and 6, we display a numerical evaluation of the
correlation function for the Coulomb frustrated ferromagnet
and the dipolar frustrated ferromagnet [see Eqs. (5), (6), and
(8)] on a two-dimensional lattice of size 100 × 100.

B. Coexisting short-range and screened Coulomb interactions

In this section, we study the screened Coulomb frustrated
ferromagnet in more details. In the continuum limit, the Fourier
transform of the interaction kernel of Eq. (5) with VL(x) given
by Eq. (6) is

v(k) = Jk2 + Q

k2 + λ2
. (68)
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FIG. 6. (Color online) The correlator G(x,y) for a two-dimensional dipolar ferromagnet of size 100 by 100. J = 1 and Q = 0.15. (a): μ =
μmin = −1.1459, (b): μ = μmin + 4 × 10−5, (c): μ = μmin + 1 × 10−3, (d): G(x,y) for y = 0 for (a) (blue)(LD = 14), (b) (green)(LD = 15),
and (c) (red)(LD = 16).

In Appendix C, we provide explicit expressions for the
dependence of μ on the temperature T . This dependence
delineates the different temperature regimes. For T > T ∗,
wherein the temperature T ∗ is set by

μ(T ∗) = Jλ2 + 2
√

JQ, (69)

from Eq. (22), the pair correlator in d = 3 dimensions is given
by

G(�x) = kBT

4πJ |�x|
1

β2 − α2

×[e−α|�x|(λ2 − α2) − e−β|�x|(λ2 − β2)]. (70)

Here,

α2,β2 = λ2 + μ/J ∓
√

(λ2 − μ/J )2 − 4Q/J

2
. (71)

By contrast, for temperatures T < T ∗, we obtain an analytic
continuation of Eq. (70) to complex α and β,

G(�x) = kBT

8α1α2πJ |�x|e
−α1|�x|[

(
λ2 − α2

1 + α2
2

)
sin α2|�x|

+ 2α1α2 cos α2|�x|], (72)

In Eq. (72), α = α1 + iα2 = β∗. In a similar fashion, in d = 2
spatial dimensions, for T > T ∗,

G(�x) = kBT

2π

1

β2 − α2
[(λ2 − α2)K0(α|�x|)

+ (β2 − λ2)K0(β|�x|)]. (73)

As in the three-dimensional case, the high-temperature cor-
relator of Eq. (73) may be analytically continued to lower
temperatures, T < T ∗, for which α and β become complex.

1. High-temperature limit

In the high-temperature limit, in two spatial dimensions,
from Eq. (73), we have

G(�x) = kBT

2πJ
K0

(√
kBT 
2

4πJ
|�x|

)
− 8π

kBT 
4
K0(λ|�x|).

(74)

In three spatial dimensions, from Eq. (70), we have

G(�x) = kBT

4πJ |�x|e
−

√
kB T 
3

6π2J
|�x| − 9π3Q

kBT 
6|�x|e
−λ|�x|. (75)

In the unscreened case (λ = 0 in Eqs. (6) and (68)), in two
spatial dimensions,

G(�x) = kBT

2πJ
K0

(√
kBT 
2

4πJ
|�x|

)

− 8π

kBT 
4
K0

(√
4πQ

kBT 
2
|�x|

)
. (76)

Similarly, in the unscreened case in three spatial dimensions,

G(�x) =
[ kBT

4πJ |�x|e
−

√
kB T 
3

6π2J
|�x| − 9π3Q

kBT 
6|�x|e
−

√
6π2Q

kB T 
3 |�x|]
. (77)
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FIG. 7. Location of the poles with increasing temperature (left to right) in the complex k plane for the Coulomb-frustrated ferromagnet. For
temperatures below Tc, all the poles are real. Above Tc, the poles split in opposite directions of the real axis to give rise to two new complex
poles. For Tc < T < T ∗, we have complex poles. At T ∗, pairs of such poles meet on the imaginary axis. Above T ∗, the poles split along the
imaginary axis. Thus above T ∗, the poles are purely imaginary.

We note that the correlation lengths associated with the second
terms in Eqs. (74) and (75) tend, in the high temperature
limit T → ∞, to the screening length λ−1. Similarly, when
screening is absent, the correlation lengths in Eqs. (76) and (77)
diverge in the high temperature limit37 while the corresponding
prefactors tend to zero in this limit.

We note that two correlation lengths are manifest for all
(μ − Jλ2)2 > 4JQ. This includes all unfrustrated screened
attractive Coulomb ferromagnets [those with Q < 0)]. The
evolution of the correlation functions may be traced by
examining the dynamics of the poles in the complex k plane as
a function of temperature. At high temperatures, correlations
are borne by poles that lie on the imaginary k axis.

2. Thermal evolution of modulation length at low temperatures

At T = T ∗, the poles merge in pairs at k =
±i

√
λ2 + √

Q/J . At lower temperatures, T < T ∗, the poles
move off the imaginary axis (leading in turn to oscillations
in the correlation functions). The norm of the poles, |α| =
[Q/J + λ2μ(T )/J ]1/4 tends to a constant in the limit of
vanishing screening (λ−1 = 0) wherein the after merging at
T = T ∗, the poles slide along a circle [see Fig. 7]. In the low-
temperature limit of the unscreened Coulomb ferromagnet,
the poles hit the real axis at finite k, reflecting oscillatory
modulations in the ground state. In the presence of screening,
the pole trajectories are slightly skewed [see Fig. 8] yet for
Q/J > λ4, α tends to the ground-state modulation wave
number

√√
Q/J − λ2. If the screening is sufficiently large,

i.e., if the screening length is shorter than the natural period
favored by a balance between the unscreened Coulomb interac-
tion and the nearest-neighbor attraction [λ > (Q/J )1/4], then
the correlation functions never exhibit oscillations. In such
instances, the poles continuously stay on the imaginary axis
and, at low temperatures, one pair of poles veers toward k = 0
reflecting the uniform ground state of the heavily screened
system.

To summarize, at high temperatures the pair correlator G(x)
is a sum of two decaying exponentials (one of which has
a correlation length which diverges in the high-temperature
limit). For T < T ∗ in underscreened systems, one of the cor-
relation lengths turns into a modulation length characterizing
low-temperature oscillations. At the crossover temperature
T ∗, the modulation length is infinite. As the temperature is
progressively lowered, the modulation length decreases in
size until it reaches its ground-state value. The temperature
T ∗(Q/J,λ) is a “disorder line”38 like temperature [see Fig 9].
An analytical thermodynamic crossover does occur at T = T ∗.
A large n, calculation illustrates that the internal energy per
particle

U

N
= 1

2
(kBT − μ). (78)

To detect a crossover in U and that in other thermodynamic
functions, the forms of μ both above and below T ∗ may be
derived from the spherical model normalization condition to
find that the real-valued functional form of μ(T ) changes [see
Appendix C].

FIG. 8. Trajectory of the poles in the complex k plane for Tc < T < T ∗ for the screened Coulomb ferromagnet. The screening length, λ−1

decreases from left to right. In the first figure, λ = 0 and λ > (Q/J )1/4 in the last figure.
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FIG. 9. (Color online) Temperature at which the modulation
length diverges for a 100 × 100 Coulomb frustrated ferromagnet
plotted vs the relative strength of the Coulomb interaction with respect
to the ferromagnetic interaction. [Blue: λ = λ0 = 1/(100

√
2), Red:

λ = 0.999λ0, Black: λ = 1.001λ0]

The system starts to exhibit order at the critical temperature
T = Tc given by

1

kBTc

=
∫

ddk

(2π )d
1

v(�k) − v(�q)
. (79)

For Q/J > λ4, the modulus of the minimizing (ground-state)
wave number (|�q|) is given by

q = 2π

L
g

D

=
√√

Q/J − λ2, (80)

with L
g

D the ground-state modulation length. Associated
with this wave number is the kernel v(�q) = 2

√
JQ − Jλ2

to be inserted in Eq. (79) for an evaluation of the critical
temperature Tc. Similarly, the ground-state wave number �q =
0 whenever Q/J < λ4. If Q/J > λ4, modulations transpire
at sufficiently low temperatures T < T ∗. In such a case,
the critical temperature at which the chemical potential of
Eq. (23), μ(Tc) = Jλ2 − 2

√
JQ, is lower than the crossover

temperature T ∗ [given by Eq. (69)] at which modulations
first start to appear. The screened Coulomb ferromagnet has
Tc(Q/J = λ4) > 0 in d > 4 dimensions and in any dimension
Tc(Q/J > λ4) = 0. For small finite n, a first-order Brazovskii
transition may replace the continuous transition occurring at
Tc within the large-n limit.39 Depending on parameter values,
such an equilibrium transition may or may not transpire before
a possible glass transition may occur.24

3. Domain length scaling in the Coulomb frustrated ferromagnet

The characteristic length scales are governed by the position
of the poles of [v(k) + μ]−1 (see Fig. 7 for an illustration
of the pole locations at low temperatures). For the frustrated
Coulomb ferromagnet of Eq. (68) in the absence of screening
(λ−1 = 0),

v(k) + μ = J

k2

(
k4 + μ

J
k2 + Q

J

)
. (81)

Equation (81) enables us to determine, in our large-n analysis,
the crossover temperature T ∗ at which μ∗ = μ(T ∗) = 2

√
JQ.

At T = T ∗, the poles lie on the imaginary axis in k plane. As
the temperature is lowered below T ∗, the two poles bifurcate.
This bifurcation gives rise to finite-size spatial modulations.
At temperatures T < T ∗, the four poles slide along a circle of
fixed radius of size (Q/J )1/4 (see Fig. 7). At zero temperature,
these four poles merge in pairs to form two poles that lie on the
real axis. The inverse modulation length is set by the absolute
values of the real parts of the poles. We will set μ ≡ (2

√
JQ −

δμ). In the following, we will obtain the dependence of the
real part of the poles on δμ. The poles of 1/(v(k) + μ) are
determined by

k2
pole = − μ

2J
± i

√
Q

J
− μ2

4J 2
=

√
Q

J
e±2iθ . (82)

At μ = μ∗, the angle θ = π/2. This point corresponds to the
transition between (i) the high-temperature region (T > T ∗)
wherein the system does not exhibit any modulations and (ii)
the low-temperature region (T < T ∗) [see Fig. 7]. Equation
(82) implies that cos 2θ = (1 − δμ

μ∗ ) or

kpole,real = δμ1/2

2J 1/2
. (83)

Thus we get a crossover exponent of 1/2.

C. Full direction- and location-dependent dipole-dipole
interactions

In this section and the next, we consider systems where
the spins are three dimensional and the interactions have the
appropriate directional dependence. In this section, we will
consider the effect of including the full dipolar interactions vis
a vis the more commonly used scalar product form between
two dipoles that is pertinent to two-dimensional realizations.
The dipolar interaction is given by

Hdip =
∑
�x �=�y

[ �S(�x) · �S(�y)

r3
− 3[�S(�x) · �r][�S(�y) · �r]

r5

]
. (84)

The two-point correlator for a ferromagnetic system frustrated
by this interaction is given, in the large-n approximation, by

G(�x) = kBT

∫
ddk

(2π )d
ei�k·�x

[
2

J�(�k) + Qvd (k) + μ

+ 1

J�(�k) − 2Qvd (k) + μ

]
, (85)

where vd (k) is given by Eqs. (66) and (67). For temperatures
T � Tc,

μmin = − min
k∈R

[J�(�k) + Qvd (k),

× J�(�k) − 2Qvd (k)]. (86)

The Fourier-transformed dipolar interaction kernel is positive
definite, vd (k) > 0. An unscreened dipolar interaction leads to
a vd (k) that diverges (tends to negative infinity) at its minimum
at k = 0. In the presence of both upper and lower distance
cutoffs (see, e.g., Eq. (8) for a lower cutoff) on the dipolar
interaction, the minimum of vd (k) attains a finite value and the
system has a finite critical temperature.

Examining Eq. (85), we see that the introduction of the
angular dependence in the dipolar interaction changes the
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results that would be obtained if the angular dependence
were not included in a dramatic way. (i) New correlation and
modulation lengths arise from the second term in Eq. (85).
(ii) At low temperatures, the second term in Eq. (85) becomes
dominant as its poles have a smaller real part (and thus a larger
correlation length) relative to the first term in Eq. (85) that
appears for an isotropic dipole-dipole interaction.

D. Dzyaloshinsky-Moriya interactions

As another example of a system with interactions having
nontrivial directional dependence, we consider a system
of three-component spins with the Dzyaloshinsky-Moriya

interaction40 present along with the ferromagnetic interaction
and a long-range interaction,

H = −J
∑
〈�x,�y〉

�S(�x) · �S(�y) +
∑
〈�x,�y〉

�D · [�S(�x) × �S(�y)]

+Q
∑
�x �=�y

VL(|�x − �y|)�S(�x) · �S(�y). (87)

We diagonalize this interaction kernel to obtain a Hamiltonian
of the form,

H =
∑
�x,�y

∑
a

Ŝ∗
a (�x)Va(�x,�y)Ŝa(�y). (88)

The Ŝa’s are linear combinations of the components of �S. In a
large-n approximation, the two-point correlator is given by

G(�x) = kBT

∫
ddk

(2π )d
ei�k·�x

[
1

J�(�k) + QvL(k) + μ
+ 2[J�(�k) + QvL(k) + μ]

[J�(�k) + QvL(k) + μ]2 + (
D2

1 + D2
2 + D2

3

)
[�(�k)]2

]
. (89)

The presence of the Dzyaloshinsky-Moriya interaction does
not alter the original poles and hence does not change the
original length scales of the system. However, additional length
scales arise due to the second term in Eq. (89).

A system of prominence where Dzyaloshinsky-Moriya
interactions are important is MnSi.41 The spiral order in this
system is naturally susceptible to glasslike dynamics.25,41

VII. CONCLUSIONS

We studied the evolution of the ground-state modulation
lengths in frustrated Ising systems as the interaction parameters
are varied. We investigated, in large-n theories, the evolution
of modulation and correlation lengths as a function of temper-
ature in different classes of systems. We proved that, in large-n
theories, the combined sum of the number of correlation
and the number of modulation lengths is conserved as the
temperature is varied. We have also showed that there exists a
diverging modulation length at high temperatures for systems
with long-range interactions. We studied three-dimensional
dipolar systems. We found that the full dipolar interactions
with angular dependence included change the ground state of
the system and also add new length scales.
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APPENDIX A: TRANSFER MATRIX IN THE
ONE-DIMENSIONAL SYSTEM WITH ISING SPINS

Thus far, we focused primarily on high-dimensional con-
tinuous (large-n) spin systems. For completeness, we review

and illustrate how some similar conclusions can be drawn for
one-dimensional Ising systems with finite-ranged interactions
and briefly discuss trivial generalizations. In particular, we
show how the sum of the number of modulation and number
of correlation lengths does not change as the temperature is
varied. In Sec. V C 3, we illustrated how this arises for general
large-n systems.

For interactions of range R in a one-dimensional Ising spin
chain, the transfer matrix T is of dimension M = O(2R). The
correlation function for large system size, takes the form

G(x) =
2R−1∑
k=1

Ak

(
λk

λ0

)x

, (A1)

where λis are the eigenvalues of the transfer matrix. Since
the characteristic equation has real non-negative coefficients,
from Perron-Frobenius theorem, λ0 is real, positive, and is
nondegenerate. The secular equation, det(T − λI ) = 0, is a
polynomial in λ with real coefficients. Thus two possibilities
need to be examined: real roots and complex conjugate pairs
of roots. Real eigenvalues λp give terms with correlation
length

ξ = ln

(
λ0

|λp|
)

. (A2)

Complex conjugate eigenvalues, λq and λ∗
q , correspond to the

same correlation length and modulation length given by

ξ = ln

(
λ0

|λq |
)

, (A3)

LD = 2π

tan−1
[ Im(λq )

Re(λq )

] . (A4)

Thus the total number of correlation and modulation
lengths is the order of the polynomial in λ in the secular
equation, or simply the dimension of the transfer matrix –
O(2R). Similar to our conclusions for the high-dimensional
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continuous spin systems, this number does not vary with
temperature. For q state Potts type spins, replicating the above
arguments mutatis mutandis, we find that the total number
of correlation and modulation lengths is O(qR). Similarly,
for such a system placed on a d-dimensional slab of finite
extent in, at least, (d − 1) directions along which it has a
length of orderO(l) > R, there will beO(qld−1

) transfer-matrix
eigenvalues and thus an identical number for the sum of the
number of modulation lengths with the number of correlation
lengths.

The eigenvalues change from being complex below certain
crossover temperatures to being purely real above. These
temperatures form the “disorder line.”

APPENDIX B: DETAILED EXPRESSIONS FOR δL D FOR
DIFFERENT ORDERS P(� 3) AT WHICH THE

INTERACTION KERNEL HAS ITS FIRST NONVANISHING
DERIVATIVE

If the lowest order (larger than p = 2) nonvanishing
derivative of v(k) at the minimizing wave number k0 [see
Eq. (35)] is of order p = 3 (the most common case) then,
in the large-n limit, the change in the modulation length at
temperatures T > Tc [μ(T ) = μmin + δμ] about its value at
T = Tc of Eq. (45) is given by

δLD = −2π

k2
0

v(3)(k0)δμ

3[v(2)(k0)]2
. (B1)

We employ Eq. (B1) in our analysis in Sec. VI. If the lowest
order derivatives are of order p = 4 or 5, then

δLD = 2π

k2
0

v(5)(k0)(δμ)2

30[v(2)(k0)]3
. (B2)

Similarly, for p = 6 or 7,

δLD = −2π

k2
0

v(7)(k0)(δμ)3

630[v(2)(k0)]4
, (B3)

and so on.

APPENDIX C: μ(T ) FOR THE SCREENED COULOMB
FERROMAGNET

We now briefly provide an explicit expression for the
relation between the large-n Lagrange multiplier μ and the
temperature T for the screened Coulomb ferromagnet. In
three dimensions, with 
 as an ultraviolet cutoff, at high
temperatures [T > T ∗], we get to the following implicit
equation for μ(T ) in the case of the screened Coulomb

ferromagnet of Eq. (68),

1

T
= 


2π2
+

√
2

4π2w

×
[

λ2μ − μ2 + μw − 2Q√
λ2 + μ + w

tan−1

(



√
2√

λ2 + μ + w

)

− λ2μ − μ2 + μw + 2Q√
λ2 + μ − w

tan−1

(



√
2√

λ2 + μ − w

) ]
.

(C1)

In Eq. (C1), we employed the shorthand w ≡√
(μ − λ2)2 − 4Q. The parameter w vanishes at the crossover

temperature T ∗ at which a divergent modulation length
makes an appearance, w(T = T ∗) = 0. At low temperatures,
T < T ∗, w becomes imaginary and an analytical crossover
occurs to another real functional form.

APPENDIX D: PROOF THAT μ(T ) IS AN ANALYTIC
FUNCTION OF T

In this appendix, we illustrate that in the large-n limit,
the thermodynamic functions are analytic for all temperatures
T > Tc, including the discussed crossover temperature T =
T ∗ (hence justifying the use of the term “cross-over”) of, e.g.,
the Coulomb frustrated ferromagnet of Eqs. (1) and (68).

From Eq. (24), using

μ > μmin = − min v(k), (D1)

it is clear that μ(T ) is a continuous function of T . Differenti-
ating,

dμ

d(kBT )
=

[
(kBT )2

∫
ddk

(v(k) + μ)2

]−1

, (D2)

and
d2μ

d(kBT )2
= − 2

kBT

dμ

d(kBT )

+ 2(kBT )2

[
dμ

d(kBT )

]3 ∫
ddk

[v(k) + μ]3
, (D3)

with the integrations performed over the first Brillouin zone on
the lattice (or up to some ultraviolet cutoff 
 in the continuum).
The first two derivatives are thus always finite so long as the
integration range is finite. All higher order derivatives are sum
of terms that are products of lower order derivatives, (kBT )a

and
∫

ddk
[v(k)+μ]b , where a and b are integers, with b > 0. Thus,

for finite integration range, μ(T ) is an analytic function of
T . In the large-n limit, the internal energy per site U/N =
[kBT − μ(T )]/2. Our result concerning the analyticity of μ(T )
implies that the internal energy is analytic and thus all of its
derivatives and all other thermodynamic potentials.
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