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Lifetime of gap discrete breathers in diatomic crystals at thermal equilibrium

Liya Z. Khadeeva and Sergey V. Dmitriev
Institute for Metals Superplasticity Problems, Russian Academy of Sciences, Khalturin Street 39, Ufa 450001, Russia

(Received 28 March 2011; revised manuscript received 17 August 2011; published 17 October 2011)

Crystals having a gap in a phonon spectrum can support so-called gap discrete breathers (DBs), i.e., nonlinear
localized vibrational modes existing in perfect crystals and having frequencies within the gap. In our recent work,
for a two-dimensional crystal with stoichiometry A3B, we have demonstrated that if the atomic weight of the
components is related as MA � MB , then there is a wide gap in the phonon spectrum and the gap DBs can be
easily excited. The situation is opposite if the above condition is not satisfied. In the present work the gap DBs
are studied at thermal equilibrium, whereas in the previous study the temperature was zero. We demonstrate that
in the crystal supporting DBs, in contrast to the opposite case, the lifetime of high-energy light atoms grows with
temperature. The possible role of gap DBs in the thermally activated formation of vacancy and interstitial atom
pairs (Frenkel pairs) was studied. We have measured the time needed for the appearance of a Frenkel pair as a
function of temperature for the crystals supporting and not supporting DBs. A minor difference in waiting time of
Frenkel pair nucleation was found in these two cases. We argue that, for the model and its parameters considered
in the present work, the main mechanism of thermally activated Frenkel pair formation is the cooperative motion
of atoms rather than the excitation of DBs.
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I. INTRODUCTION

Discrete breathers (DBs) are spatially localized vibrational
modes of high amplitude ubiquitous in discrete nonlinear
systems.1–4 DBs have been studied in connection to various
fields of science, including condensed-matter physics,5–12

nonlinear optics,13 chains of superconducting Josephson
junctions,14 DNA models,15 Bose-Einstein condensates,16

materials science,2,17 carbon nanotubes,18,19 graphene,20 etc.
Theoretical work by Sievers and Takeno21 initiated the

studies focused on rigorous proof that DBs are the exact
solutions to various nonlinear discrete equations. Those
studies, summarized in recent reviews (see, e.g., Ref. 1), led to
a fundamental understanding of basic properties of DBs and
conditions of their existence in nonlinear lattices.

Nowadays, the trend is toward the study of DBs in
realistic systems. One of the main issues is experimental
observation of DBs. This has been done for many discrete
nonlinear systems,1–4 including observation of gap DBs in
thermodynamic equilibrium in a NaI crystal.5,6 Properties of
DBs in thermal equilibrium have been also studied numerically
in two-dimensional monoatomic systems with hard and soft
anharmonicities, taking into account only nearest-neighbor
interactions.22,23 The authors of these works have analyzed the
power spectrum of crystals at thermal equilibrium and demon-
strated that the lifetime of DBs increases with temperature
growth.

Physical processes where DBs can play an essential role are
under active discussion. Manley has described the mechanisms
by which DBs can modify properties of materials.2 Bishop
et al. have studied the relaxor behavior of ferroelectric
perovskite oxides, taking into account their inherent anhar-
monicity and the possibility to support DBs.8 Molecular
dynamics simulations by Savin and Kivshar have demonstrated
that graphene nanoribbons can support vibrational localized
states in the form of surface solitons and breathers.9 The void
ordering, observed in a number of metals and alloys under
neutron and heavy-ion irradiations, was shown to be possible

through the excitation of DBs.17 DBs can assist structural
transformations in stretched carbon nanotubes18 and cause
anomalies in charge diffusion.24

In the latest numerical studies, realistic interatomic po-
tentials are used instead of considering the simplest types
of anharmonicities and nearest-neighbor interactions. Di-
atomic crystals with realistic long-range interactions typically
demonstrate a soft type of anharmonicity,7,10–12,25–28 when
the frequency of the DB decreases with the increase in its
amplitude. In such crystals DBs can exist only in the presence
of a forbidden band in the phonon spectrum, and they are
called gap DBs.29–33 Recently, a DB with frequency above the
phonon band has been found numerically in graphene.20

In this paper we continue our studies of gap DBs in a
two-dimensional crystal of A3B composition with long-range
Morse interactions.10,25,26 For various temperatures, with the
use of molecular dynamics, we measure the lifetime of
high-energy atoms. Two atomic weight ratios, MB/MA, are
considered. In one case the crystal supports gap DBs, and
in the other case there are no DBs in the crystal due to the
absence of the gap in the phonon spectrum. We also analyze
the mechanisms of thermally activated formation of vacancy
and interstitial atom pairs (Frenkel pairs) to understand the
possible role of gap DBs in this process.

The paper is organized as follows. In Sec. II we briefly
describe the simulation details. Sec. III A contains the descrip-
tion of how the atomic weight ratio affects the phonon density
of states of the diatomic crystal and the existence of gap DBs.
Section III B discusses the power spectra and the statistics of
high-energy heavy and light atoms in the crystal at thermal
equilibrium. In the Appendix, the mechanisms of Frenkel pair
formation and the possible role of DBs in this process are
investigated. Section IV concludes the paper.

II. SIMULATION DETAILS

We consider a two-dimensional crystal having A3B stoi-
chiometry, which is based on a hexagonal lattice and represents
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the (111) plane of a three-dimensional crystal with L12

superstructure based on the face-centered-cubic lattice. A
two-component crystal was chosen because it allows the
possibility to change the width of the phonon gap simply by
changing atomic weights of the components. Parameters of
the Morse interatomic potentials used in our simulations can
be found in the literature.10,25,34 For the cutoff radius of the
potential of 16 Å, the equilibrium lattice parameter was found
to be a = 2.60 Å. For the atomic weight of atoms of type
A we used MA = 9.75 × 10−26 kg and for the atomic weight
of atoms of type B we took two values corresponding to the
atomic weight ratios MB/MA = 0.46 and MB/MA = 0.10.
Thus, atoms A (B) are the heavy (light) atoms.

The computational cell used in our simulations included
32 × 32 primitive cells, and it was subjected to periodic bound-
ary conditions. According to the considered stoichiometry,
each primitive cell includes three atoms of type A and one atom
of type B. Equations of motion for the atoms were integrated
numerically using the sixth-order Störmer method with a time
step of 0.1 fs.

In setting the initial conditions, we aimed to obtain a
crystal at thermal equilibrium. For the computational cell
with N degrees of freedom we summed all N linear phonon
modes, choosing their amplitudes to share the total energy
of the crystal equally between all the modes. This method
of setting initial conditions does not take into account the
interaction between phonon modes induced by the nonlinearity
of the considered system. That is why this procedure was
followed by thermalization during 100 ps. After that the
analysis of thermal fluctuations in the crystal was carried
out within 200 ps. Thermal expansion of the crystal was
taken into account and all simulations were conducted at zero
pressure.

In what follows, the temperature of the crystal is char-
acterized by spatially (over ensemble) and temporally (over
0.18 ps ≈ 3�, where � is the DB’s period) averaged kinetic
energy per atom, K . The temperature in a d-dimensional
crystal (in our case d = 2) is related to K as

T = 2

d

K

kB

, (1)

where kB = 8.617 × 10−5 eV K−1 is the Boltzmann constant.
Properties of gap DBs in thermal equilibrium

were studied for the set of energies K =
{0.025, 0.05, 0.075, 0.1, 0.125} eV. Corresponding
temperatures are T = {290, 580, 870, 1160, 1450} K. Higher
energies were not considered because the waiting time of
Frenkel pair formation becomes comparable to the duration
of the numerical run (200 ps), but here we were interested
in the statistics of high-energy atoms in a perfect crystal.
Smaller energies were not considered because in this case it is
problematic to reach thermal equilibrium within a reasonable
simulation time.

The formation of Frenkel pairs (vacancy and interstitial
atom pairs) was investigated for higher energies, 0.145 �
K � 0.167 eV (temperatures 1683 � T � 1938 K), after
instantaneous heating from K = 0.13 eV by rescaling the
velocities of all atoms. After such heating, a certain time
is needed for the system to reach thermal equilibrium. That

is why we did not take energies higher than K = 0.167 eV;
otherwise, the Frenkel pairs appear in the system very quickly,
before the thermal equilibrium is reached. For the highest
temperature used in our study, i.e., for K = 0.167 eV, the
averaged waiting time of Frenkel pair formation was a few
hundreds of DB periods and this was assumed to be sufficient
for the system to reach thermal equilibrium. We assume that
a Frenkel pair is formed if a pair of neighboring atoms move
apart by more than 4.2 Å, which should be compared to the
lattice parameter, a = 2.6 Å.

Phonon densities of states (DOS) were calculated at 0 K
as described in our recent work.10 Power spectra at finite
temperatures were calculated from the Fourier transform of the
autocorrelation function of atomic displacements, as described
in detail in Ref. 23.

III. NUMERICAL RESULTS

A. Phonon spectra and DBs at zero temperature

According to our earlier studies,10,25 for the atomic weight
ratio MB/MA = 0.10, the considered crystal supports DBs
and one example of DB at 0 K is given in Fig. 1. In Fig. 1(a),
the stroboscopic picture presents the dynamics of atoms in
the vicinity of a DB. Open (solid) circles correspond to
heavy (light) atoms. Displacements of the atoms from lattice
positions are multiplied by a factor of 4.

Phonon DOS calculated at 0 K are presented in Fig. 2(a)
for MB/MA = 0.10 and in Fig. 3(a) for MB/MA = 0.46. In
the former case the forbidden band in the phonon spectrum
is 8.3 < ω < 17.0 THz, while for MB/MA = 0.46 there is no
gap in the phonon spectrum and, consequently, the gap DBs
do not exist.

The DB’s frequency as a function of its amplitude, A, is
shown in Fig. 1(b). The horizontal line indicates the upper edge
of the phonon gap [cf. Fig. 2(a)]. It can be seen that the DB’s
frequency lies in the forbidden band of the phonon spectrum,
closer to its upper edge, and it decreases with the increase in the

FIG. 1. (a) Stroboscopic picture of atomic displacements in
the vicinity of gap DB in the crystal with atomic weight ratio
MB/MA = 0.10. Open (solid) circles correspond to heavy (light)
atoms. Displacements of atoms are multiplied by a factor of 4.
(b) DB frequency as the function of its amplitude for MB/MA = 0.10
at zero temperature. The horizontal line indicates the upper edge of
the phonon gap [cf. Fig. 2(a)].

144304-2



LIFETIME OF GAP DISCRETE BREATHERS IN . . . PHYSICAL REVIEW B 84, 144304 (2011)

FIG. 2. (a) Phonon DOS calculated at 0 K. Power spectra for (b)
heavy and (c) light atoms for different levels of kinetic energy, K .
Results for the atomic weight ratio MB/MA = 0.10.

DB’s amplitude, varying in the range 13.7 < ωDB < 16.8 THz.
Thus, the DB’s period is about � = 0.06 ps. In our study
devoted to DB it is natural to measure time in DB periods, �.

B. Discrete breathers at thermal equilibrium

For a crystal at a given energy (temperature), we calculate
power spectra and present the results in Figs. 2(b) and 2(c) for
the atomic weight ratio MB/MA = 0.10, and in Figs. 3(b) and
3(c) for MB/MA = 0.46. In Figs. 2(b) and 3(b), the power
spectra are shown for heavy atoms, and in Figs. 2(c) and
3(c), they are shown for light atoms. Naturally, the light
atoms vibrate at higher frequencies than the heavy ones.
Power spectra at the lowest studied energy, K = 0.025 eV,
are very close to the DOS calculated at 0 K and presented
in Figs. 2(a) and 3(a). With increase in temperature, the
most prominent change of the power spectra takes place for
the high-frequency modes exhibited by the light atoms in
Fig. 2(c), where considerable shift to the lower-frequency
range can be easily seen. This shift can be explained by
the excitation of DBs, nonlinear vibrational modes with the
amplitude-dependent frequency [see Fig. 1(b)]. At higher
temperatures DBs with higher amplitudes and hence with

FIG. 3. Same as in Fig. 2, but for the atomic weight ratio
MB/MA = 0.46.

lower frequencies are excited. In Fig. 3(c) the redshift of the
high-frequency vibrations at higher temperatures is practically
absent because gap DBs cannot exist in this case.

We then analyze kinetic energies of heavy and light atoms,
KA,n and KB,n, averaged over 0.18 ps ≈ 3�. Atoms with
KA,n,KB,n > eK are considered high-energy atoms, where
K is the average over time and ensemble kinetic energy per
atom and e ≈ 2.72 is the base of the natural logarithm.

We are interested in the lifetime of high-energy atoms and
their energies averaged over the lifetime, and we calculate
these quantities separately for heavy and light atoms. An
example of the time evolution of the relative kinetic energy of
a particular light atom, KB,n/K , is presented in Fig. 4, where
time is measured in the units of the DB’s oscillation period, �.
The horizontal dashed line indicates the level of kinetic energy
equal to KB,n/K = e. In the present case MB/MA = 0.10 and
K = 0.1 eV. Referring to Fig. 4, we denote the lifetime of the
high-energy state of the atom as t∗/� and the relative kinetic
energy of this light atom averaged over time t∗/� as K∗

B,n/K .
In this example the lifetime of the atom in a high-energy
state is t∗/� ≈ 70 and the average over the lifetime energy
is K∗

B,n/K ≈ 5.1. Analogously we analyze high-energy heavy
atoms.
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FIG. 4. Relative kinetic energy of particular light atom, KB,n/K ,
as a function of dimensionless time, t/�, where � = 0.06 ps is the
DB’s period. The kinetic energy of the light atom, KB,n, was averaged
over time 0.18 ps ≈ 3�. The horizontal dashed line indicates the level
of kinetic energy equal to eK , where e ≈ 2.7 is the base of the natural
logarithm. The lifetime of the high-energy state of the atom is t∗/�,
and its kinetic energy averaged over the lifetime is K∗

B,n/K . Here the
lifetime of the high-energy state is t∗/� ≈ 70 and its averaged energy
is K∗

B,n/K ≈ 5.1. Results are for MB/MA = 0.10 and K = 0.1 eV.

Concentrations of heavy and light high-energy atoms were
defined as

C∗
A = nA

NANobs
, C∗

B = nB

NBNobs
, (2)

where nA (nB) is the number of appearances of high-energy
heavy (light) atoms in the computational cell during a
numerical run of 200 ps, NA = 32 × 32 × 3 = 3072 (NB =
32 × 32 × 1 = 1024) is the number of heavy (light) atoms,

and Nobs = 1111 is the number of observations of the system
during the numerical run.

In Fig. 5 we present numerical results for high-energy states
of light and heavy atoms at thermal equilibrium for the atomic
weight ratio MB/MA = 0.10. Figures 5(a)–5(e) correspond
to the energies K = {0.025, 0.05, 0.075, 0.1, 0.125} eV,
respectively. In Figs. 5(a)–5(e), for all high-energy heavy
atoms observed during the numerical run, we show how the
relative energy of the atoms in a high-energy state, K∗

A/K , is
related to the lifetime of this state, t∗/�. In Figs. 5(a′)–5(e′),
the same is given for light atoms. In Figs. 5(a′′)–5(e′′), we
present the concentrations of high-energy heavy atoms, C∗

A

(thick line), and of high-energy light atoms, C∗
B (thin line), as

the functions of their lifetime, t∗/�. Note that the ordinate is
given in logarithmic scale.

In Fig. 6, we give the same as in Fig. 5 but for the atomic
weight ratio MB/MA = 0.46. A remarkable difference in the
results presented in Figs. 5 and 6 is that in the latter case
they do not depend on temperature, whereas in the former
one the results for the light high-energy atoms are temperature
dependent, though for the heavy atoms the result is practically
unchanged.

The qualitative difference in the results presented for the
crystals with the atomic weight ratios MB/MA = 0.10 and
MB/MA = 0.46 can only be explained through excitation of
gap DBs at thermal equilibrium in the former case and their
absence in the latter case. The following facts are in favor of
this conclusion:

(1) Calculation of the power spectrum at thermal equilib-
rium has demonstrated that the main oscillation frequency of
light atoms in the crystal with MB/MA = 0.10 at elevated
temperatures lies in the gap of the phonon DOS, close to its
upper edge [see Figs. 2(a) and 2(c)]. This is the feature of a

FIG. 5. (Color online) Characteristics of high-energy atoms in the crystal with atomic weight ratio MB/MA = 0.10. Rows correspond to
five energies, K = {0.025,0.05,0.075,0.1,0.125} eV. (a)–(e) Relative energy of heavy atoms in high-energy state, K∗

A,n/K , as a function of
lifetime of this state, t∗/�; (a′)–(e′) same as in (a)–(e), but for light atoms; (a′′)–(e′′) concentrations of high-energy heavy atoms, C∗

A (thick
line), and high-energy light atoms, C∗

B (thin line), as functions of their lifetime, t∗/�. The ordinate is given in logarithmic scale.
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FIG. 6. (Color online) Same as in Fig. 5 but for the atomic weight ratio MB/MA = 0.46.

gap DB, whose frequency lies in the phonon gap and decreases
with the increase in its amplitude [see Fig. 1(b)].

(2) The lifetime of high-energy light atoms increases with
the increase in averaged energy, K , in the crystal with
MB/MA = 0.10, as one can see from Figs. 5(a′′)–5(e′′). This
is in agreement with the fact that the contribution of DBs to the
vibrational spectrum of the crystal increases with temperature,
as DBs are essentially nonlinear vibrational modes.

(3) The increase in the lifetime of high-energy atoms with
energy is observed in the crystal with MB/MA = 0.10 only
for light but not for heavy atoms; cf. Figs. 5(a)–5(e) and 5(a′)–
5(e′). This is consistent with the fact that only light atoms have
large vibrational amplitudes in DBs, which is clearly seen from
Fig. 1(a).

We thus conclude that the high-energy light atoms with
large lifetime in the crystal with MB/MA = 0.10 can be
identified as gap DBs.

From Figs. 5(a′′)–5(e′′) and 6(a′′)–6(e′′) one can see
that in the semilogarithmic coordinates the concentration of
high-energy atoms, C∗, at given energy, K , is a linear function
of their dimensionless lifetime, t∗/�. Then the following
fitting dependence can be offered:

C∗
S = D exp

[
−αS(K)

t∗

�

]
, S = {A,B}, (3)

with a parameter D > 0 and energy-dependent coefficient α.
In Fig. 7 we present the dependence of coefficient α on

energy K in the double logarithmic scale for MB/MA = 0.46
[Fig. 7(a)] and MB/MA = 0.10 [Fig. 7(b)]. Open (solid) circles
present the results for heavy (light) components of the crystal.
These results were obtained by least-squares fit of the curves
in Figs. 5(a′′)–5(e′′) and 6(a′′)–6(e′′). Parameter α depends on
temperature K only for the light atoms in the crystal with
MB/MA = 0.10. The slope of the solid line in Fig. 7(b) is
equal to −1/2 and it well approximates the numerical results
for this case.

We conclude that, in the crystal with MB/MA = 0.46, not
supporting gap DBs, the coefficient α in Eq. (3) does not
depend on K for both heavy and light atoms:

αA(K) = const, αB(K) = const. (4)

FIG. 7. Coefficient α of Eq. (3) as the function of energy, K , in the
double logarithmic scale for (a) MB/MA = 0.46 and (b) MB/MA =
0.10. Open (solid) circles show the results for heavy (light) atoms.
Slope of the solid line in (b) is equal to −1/2 and it well approximates
the numerical results for the light atoms.
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On the other hand, in the crystal with MB/MA = 0.1, support-
ing gap DBs,

αA(K) = const, αB(K) ∼ K
−1/2

. (5)

Equation (3), taken together with the second expression
in Eq. (5), means that, in the crystal supporting DBs, the
concentration of light high-energy atoms with a certain lifetime
increases with energy (temperature).

IV. CONCLUSIONS

Molecular dynamics study of a two-dimensional diatomic
crystal having stoichiometry A3B was carried out at thermal
equilibrium for two values of the atomic weight ratios,
MB/MA = 0.10 and MB/MA = 0.46. In our previous study10

it was demonstrated that at zero temperature the crystal with
MB/MA = 0.10 supports gap DBs, in contrast to the crystal
with MB/MA = 0.46. Two major issues were addressed in the
present study: (i) the lifetime and energy of the high-energy
atoms in the two crystals at different energies (temperatures)
and (ii) the possible role of gap DBs in thermally activated
formation of Frenkel pairs, i.e., vacancy and interstitial atom
pairs (see Appendix).

The results can be summarized as follows.
(1) In the crystal not supporting DBs (atomic weight ratio

MB/MA = 0.46), the concentrations of high-energy heavy
atoms, C∗

A, and light atoms, C∗
B , do not depend on temperature.

For the case of MB/MA = 0.10, when the crystal supports
gap DBs, the situation for heavy atoms is the same, but the
concentration of the high-energy light atoms, C∗

B , increases
with temperature as described by Eqs. (3) and (5). The
increase of concentration of the high-energy light atoms with
temperature is attributed to excitation of DBs, essentially
nonlinear localized vibrational modes. In our simulations,
DBs with a lifetime of the order of 100�, where � is the
DB’s oscillation period, were observed at temperatures when
Frenkel pairs start to form in the computational cell within
the numerical run of 200 ps. In the crystal not supporting
DBs, as well as in the sublattice of heavy atoms in the
crystal supporting DBs, the lifetime of high-energy atoms is
one order of magnitude smaller and it does not depend on
temperature.

(2) The waiting time for point defect nucleation decreases
exponentially with increase in temperature in both crystals,
supporting and not supporting gap DBs. No contribution of
gap DBs to the formation of Frenkel pairs was found; i.e.,
the waiting time for defect nucleation, within the simulation
accuracy, was the same in the crystals with MB/MA = 0.10
and MB/MA = 0.46. Our results are in favor of cooperative
motion of atoms as the major mechanism of thermally activated
Frenkel pair formation.

In a forthcoming publication we address the issue of the
temperature effect on structural instability of an elastically
strained crystal supporting DBs.35 We believe that DBs can
trigger structural instabilities in strained crystals.
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APPENDIX: THERMALLY ACTIVATED FORMATION
OF FRENKEL PAIRS

In Sec. III B the existence (absence) of DBs in thermal
equilibrium was confirmed for a crystal with MB/MA = 0.10
(MB/MA = 0.46). In the crystal supporting DBs, the lifetime
of light atoms in a high-energy state increases with energy K .
It is interesting to check if DBs can influence the frequency of
Frenkel pair formation.

In this simulation we take an ideal crystal thermalized at
K = 0.13 eV and then instantly increase temperature up to
a value from the range 0.145 � K � 0.167 eV by rescaling
velocities of all atoms.

In Fig. 8 we show the relation between the dimensionless
waiting time of Frenkel pair formation, tw/�, where � is the
period of the DB, and energy K . The ordinate is presented in
logarithmic scale. Results for the crystal with MB/MA = 0.10
are shown by open squares, and results for the crystal with
MB/MA = 0.46 by solid diamonds. Each point is a result of
averaging over 10 numerical runs. The results of least-squares
fit of the numerical data are shown by solid (dashed) lines for
the crystals with large (small) atomic weight ratio.

It is well seen from Fig. 8 that the difference in the slopes of
fitting lines lies within the accuracy of the calculations. Thus,
we conclude that in both cases the waiting time of Frenkel pair
formation, tw, decreases exponentially with increase in energy
and that the existence of DBs in the system does not affect the
waiting time of Frenkel pair formation.

Visual analysis of the atomic displacements at the mo-
ment of Frenkel pair formation has revealed that the major
role in this process is played by the collective modes of
atomic displacements.36 The cooperation of the atomic motion

FIG. 8. Waiting time of Frenkel pair nucleation vs energy. Open
squares correspond to the crystal with MB/MA = 0.10 and solid
diamonds to the crystal with MB/MA = 0.46. Each point is a result
of averaging over 10 numerical runs. Fitting lines are shown by solid
(dashed) lines for crystals with large (small) atomic weight ratios.
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FIG. 9. Cooperative factor, η, as a function of energy, K . The
results of the crystal with MB/MA = 0.10 are shown by open
squares, and solid diamonds correspond to the crystal with MB/MA =
0.46. The horizontal dashed line shows the level of η = 0.356,
corresponding to random atomic displacements.

can be quantified by the following cooperative factor of
atomic displacements,36

η = 1

N

N∑
i=1

√( ∑ni

j=1 �xj

)2 + (∑ni

j=1 �yj

)2

∑ni

j=1

√
�x2

j + �y2
j

, (A1)

where N is the number of atoms in the computational cell,
ni is the number of atoms in a microscopic atomic cluster
around the ith atom (in our simulations, the cluster included
the ith atom itself and its six nearest neighbors, i.e., we had
ni = 7), and �xj , �yj are components of displacement of the
j th atom from its equilibrium position. One can see that η = 1
if all atoms have the same displacement vector. If �xj and
�yj are random numbers homogeneously distributed in the
range [−1,1], then, for a two-dimensional (2D) crystal and for
ni = 7, the cooperative factor is η = 0.356.

In Fig. 9 we give the cooperative factor, η, as a function
of energy, K . The results for the crystal with MB/MA = 0.10
are shown by open squares, and solid diamonds correspond
to the crystal with MB/MA = 0.46. The horizontal dashed
line shows the level of η = 0.356, corresponding to random
atomic displacements. As one can see, in both crystals, values
of η lie substantially above the dashed line, indicating the
cooperative character of atomic displacements. Remarkably,
the cooperative factor η does not depend on temperature and
it is not affected by the presence of DBs in the crystal with
MB/MA = 0.10. We note that the value η = 0.76 reported
by the authors of Ref. 36 for 2D crystals of pure copper,
aluminum, and nickel is in excellent agreement with the
result presented in Fig. 9. Thus, parameter η appears to be
a conserved quantity that, for a given lattice, depends neither
on temperature nor on the crystal composition. We conclude
that cooperative motion of atoms in thermal equilibrium is
more important for thermally activated formation of Frenkel
pairs than the presence or absence of DBs.
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