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Critical behavior of the random-field Ising magnet with long-range correlated disorder
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We study the correlated-disorder-driven zero-temperature equilibrium phase transition of the random-field Ising
magnet (RFIM) using exact numerical ground-state calculations for cubic lattices. We consider correlations of the
quenched disorder decaying proportionally to ra , where r is the distance between two lattice sites and a < 0. To
obtain exact ground states, we use a well-established mapping to the graph-theoretical maximum-flow problem,
which allows us to study large system sizes of more than 2 × 106 spins. We use finite-size-scaling analyses
for values a = {−1, − 2, − 3, − 7} to calculate the critical point and the critical exponents characterizing the
behavior of the specific heat, magnetization, susceptibility, and the correlation length close to the critical point.
We find basically the same critical behavior as for the RFIM with δ-correlated disorder, except for the finite-size
exponent of the susceptibility and for the case a � −2, where the results are also compatible with a phase
transition at infinitesimal disorder strength. We numerically confirm earlier predictions.
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I. INTRODUCTION

The random-field Ising magnet (RFIM) is a prototypical
model for magnetic systems with quenched disorder. For d = 3
and higher dimensions,1 it is known in equilibrium to undergo
a second-order phase transition2–13 at a critical temperature Tc

or disorder strength hc [Tc(h) ⇔ hc(T )]: For low temperatures
and weak disorder the ferromagnetic interactions dominate
and the system is long-range ordered. For high temperature or
strong disorder, the RFIM exhibits no long-range order and
behaves like a paramagnet in a field.

The quenched disorder used in earlier studies of the
RFIM was mostly uncorrelated (δ correlated).2–12 This is
quite common in the literature when disordered systems like
percolation, random ferromagnets, spin glasses, or polymers
in random media are studied. Nevertheless, real systems are
always emerging from physical processes; hence correlations
are present, which could play an important role in the behavior
of the RFIM. Here, we consider a tunable, scale-free (power-
law), i.e., long-range, correlation to the random field to explore
its influence on the critical behavior. Please note that for an
exponentially decreasing correlation strength with a typical
length scale �, via renormalizing the system beyond �, the
behavior of the uncorrelated system should be recovered. The
O(n) random-field model with long-range correlated disorder
was studied recently14 via functional renormalization group
methods around d = 4 and for values n > 3, i.e., without
including the Ising case n = 1. Furthermore, Nattermann15

considered an Ising model with long-range-correlated disorder
by means of an Imry-Ma argument and its effects on the lower
critical dimension; for details, see the end of this section.

For other types of random system, there exist already some
studies for the case of long-range-correlated disorder, e.g.,
for percolation,16 the diluted Ising ferromagnet,17 random
walks,18 or elastic systems.19

Now, we state our model in detail. The RFIM consists of
Ising N = L3 spins Si = ±1 located on the sites of a cubic
lattice with periodic boundary conditions in all directions.
The spins couple to each other and to local net fields. Its
Hamiltonian reads

H = −J
∑
〈i,j〉

SiSj −
∑

i

(hηi + H )Si. (1)

It has two contributions. The first covers the spin-spin interac-
tion, where J is the ferromagnetic coupling constant between
two adjacent spins and 〈i,j 〉 denotes pairs of next-neighbour
spins. The second part of the Hamiltonian describes the
coupling to local and global fields hηi and H , respectively.
The factor h is the disorder strength used to trigger the
phase transition. In d > dl = 2 the system is ferromagnetically
ordered for small temperatures T and below the critical
disorder strength h < hc(T ), while in all other cases it is a
paramagnet in a field. The global field is included only for
technical reasons to calculate the susceptibility in the limit
H → 0. The quenched local fields ηi are Gaussian distributed
with zero mean and unit standard deviation. The important
property of these fields is their spatial long-range correlation.
It decays as a power law

C(�r) ≡
〈

1

N

∑
�x

η(�x)η(�x + �r)

〉
∼ |�r|a (2)

with a tunable, well-defined decay exponent a. The symbol
〈· · ·〉 denotes the average over the quenched disorder. �x is the
position of a lattice site i.

We will study the equilibrium behavior (using exact
ground-state calculations) in particular for the values a =
{−1.0,−2.0,−2.5,−3.0,−7.0}. First of all, it is interesting
to know whether this type of disorder is relevant with
respect to the ordered case. It was shown by Nattermann15

explicitly for the RFIM, but also for systems with “random-
temperature disorder” like the diluted ferromagnet,20 that
for a d-dimensional system the behavior of uncorrelated
quenched disorder is recovered if |a| > d, i.e., when the
disorder correlation vanishes faster than the system grows. The
usual Harris criterion applies.20 It states21 that the disorder is
relevant if dν − 2 < 0, ν being the critical exponent of the
ordered system. For the d = 3 ferromagnet ν = 0.6294(5)
(see Ref. 22); hence the disorder is relevant, as is known
from the uncorrelated disorder. Furthermore, the study of
Natterman predicts, using an extended Imry-Ma argument,
that extremely long-range correlations of the disorder with
0 < |a| � 2 lead to a domain state which destroys long-range
ferromagnetic order, i.e., hc = 0. Finally, for 2 < |a| < 3
domain wall roughening occurs, which means that the critical
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FIG. 1. (Color online) Slices of the same correlated disorder of
a 973 lattice for different correlation exponents. The random fields
are heat coded. Bright means high positive field and dark means high
negative field.

behavior of the RFIM might be altered with respect to the
uncorrelated case.

The results we present in this work are to a large extent
compatible with these predictions: Our results show that the
most exponents are compatible within error bars with the
values of the standard RFIM for all values of the correlation
exponent a. Nevertheless, the combination γ /ν shows a clear
signature of nonuniversality for a � −3. This is similar to the
diluted Ising model, where the long-range-correlated dilution
clearly changes some but not all critical exponents17 with
respect to the uncorrelated case.23

The paper is organized as follows: In Sec. II we sketch
the method of calculation of Gaussian-distributed correlated
random numbers. After that a brief description of the numerical
ground-state approach is given. The measured quantities and
the methods used to analyze the data are displayed in Sec. III.
Our numerical results are presented in Sec. IV. Based on the
results we discuss the extremes of correlated disorder. The last
section contains the discussion and conclusions.

II. NUMERICAL METHODS

In this section, we first explain how we generated the
samples of correlated disorder. Second, we briefly outline the

FIG. 2. (Color online) Mean of the two-point correlations for 20
arbitrary samples of long-range-correlated random fields for L =
49,a = −1 (black line) and error (gray background). The dashed
(magenta) line is a fit according to Eq. (3) with a = 1.003(2). The
inset shows the same data as a log-log plot.

FIG. 3. (Color online) Schematic diagram of the phase space of
the RFIM. The path f (h,T ) (red line) shows an arbitrary path crossing
the phase boundary. The small arrows denote the renormalization
group flow.

numerical approach used to calculate the exact ground states
of these samples.

To obtain a realization of correlated random fields, we
basically apply the ideas of Refs. 20, 16, and 17. The recipe
is to search for a convolution kernel �(�r) which convolves
independent and identically distributed (iid) random numbers
u(�r), such that η(�r) = �(�r) ∗ u(�r) = ∑

�x �(�x)u(�r − �x) show
a desired two-point correlation with periodic boundary condi-
tions for u(·). Power-law correlations are created, using

C(�r) = (1 + |�r|2)a/2, a < 0. (3)

The long-range behavior is the same as that of a pure power
law without a singularity at the origin. This avoids a zero-mode
divergence.24,25

In Fourier space the correlation function is equivalent to the
spectral density. The transformationF is given through η̃(�k) ≡∑

�x ei�k·�xη(�x). Application of the definition of C(�r) from Eq. (2)
results in

〈η̃(�k)η̃∗(�k)〉 =
〈∑

�r
ei�k·(�x+�r)η(�x + �r)

∑
�x

e−i�k·�xη(�x)

〉

= N C̃(�k). (4)

TABLE I. Number of disorder realizations per system size and
correlation exponent in thousands (103) and the external field H1,
used to calculate the susceptibility.

L a = −1 a = −2 a = −2.5 a = −3 a = −7 H1

7 33 33 674 33 33 0.0075
11 33 33 440 33 33 0.0050
15 13 32 420 61 182 0.0030
21 29 235 14 155 0.0025
25 90 32 235 150 0.0015
35 44 10 420 45 14 0.0015
49 32 26 231 16 16 0.0010
69 16 24 104 9 15 0.0005
97 20 8 265 4.5 9.5 0.0004
117 3 1 48 1.2 1.8 0.0002
141 1 0.2 1.3 0.2 0.3 0.0001
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FIG. 4. (Color online) The Binder cumulant for a = −3 and
different system sizes.

A convolution in real space becomes a multiplication in Fourier
space:

η̃(�k) = �̃(�k)ũ(�k). (5)

Now insert Eq. (5) into Eq. (4) to determine the convolution
kernel:

N C̃(�k) = 〈�̃(�k)ũ(�k)�̃∗(�k)ũ∗(�k)〉 = |�̃(�k)|2〈|ũ(�k)|2〉. (6)

We choose the real-space random numbers u(�x) as being iid
according to a Gaussian with zero mean and variance 1,

〈u(�x)〉 = 0, (7)

〈u(�x)u(�y)〉 = δ�x,�y, (8)

such that the variance 〈|ũ(�k)|2〉 = N . This results in C̃(�k) =
|�̃(�k)|2, so we can calculate the correlated random numbers in
the Fourier space from

η̃(�k) =
√
C̃(�k)ũ(�k). (9)

The back-transformed correlated random numbers η(�r) are
real numbers. Since u(�r) ∈ R it follows that ũ(−�k) = ũ∗(�k).
From Eq. (4) we infer C̃(�k) = C̃(|�k|) ∈ R+. So the back
transformation η(�r) = F−1[η̃(�k)](�r) ∈ R.

For maximum flexibility, to test different types of correla-
tion function, we have implemented the Fourier transformation
numerically, using the “Fastest Fourier Transform in the West”
(FFTW) library, version 3.2.2.26 An example of a realization
of the correlated disorder is shown in Fig. 1 for different values
of a.

We tested our procedure by generating 20 realizations
for a = −1 of the correlated disorder, calculating the two-
point correlation Eq. (2) directly, and fitting Eq. (3) with
variable exponent a. The correlation, shown in Fig. 2, and
the resulting value a = 1.003(2) show that, except for very
small correlations at large distances, the procedure works very
well.

Next, we mention briefly how the exact ground states are
calculated. The phase space of the uncorrelated RFIM consists
of a ferromagnetic and a paramagnetic phase (see Fig. 3).
The transition from one phase to the other can be triggered

FIG. 5. (Color online) Specific-heat-like quantity for differ-
ent correlation exponents a = −7 to −1 and system sizes L =
7, 11, 15, 21, 25, 35, 49, 69, 97, 117, and 141. For all values of a

the curves appear in monotonic ordering, meaning the curve of L = 7
is on the very right and L = 141 is on the very left, as labeled on the
upper left subplot. The lines are guides to the eyes only.

by varying the disorder strength h or the temperature T .
Change of both along a path f (h,T ) in the phase space leads
to a critical point Pc = (hc,Tc)f (h,T ). From renormalization
group calculations, the RFIM is known27 to exhibit the same
critical behavior at any Pc, except for the temperature-driven
phase transition point of the standard nonrandom Ising model.
This allows us to focus on T = 0 = const and vary just h,
to study the critical behavior along the full transition line.
We do not know a priori whether the phase diagram for the
correlated-disorder case has the same property; nevertheless,
it makes sense to concentrate, at least for our study presented
here, also on T = 0. From the computational point of view
this is very favorable, since it is possible to calculate exact
ground states at T = 0 in a very efficient way for system
sizes as large as N = 1413 spins. Within this approach,28,29

each realization of the correlated net fields ({ηi},H ) has to
be mapped to a graph with N + 2 nodes and 2N + 1 edges

TABLE II. Fit parameters of Eq. (21) for the peak position of the
specific-heat-like quantity. The upper part contains the parameters for
finite hc. For the lower part hc = 0 was fixed.

a = −7 a = −3 a = −2.5 a = −2 a = −1

hc 1.962(4) 0.992(8) 0.73(1) 0.537(8) 0.183(9)
f 3.2(1) 6.0(3) 6.0(3) 7.5(2) 9.8(3)
1/ν 0.79(2) 0.84(2) 0.76(2) 0.81(2) 0.84(2)

Assuming no critical point ⇔ hc = 0

f0 2.62(5) 2.61(8) 3.0(2) 3.1(1) 5.5(3)
1/ν0 0.055(5) 0.187(8) 0.27(2) 0.32(1) 0.58(1)
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FIG. 6. (Color online) Peak positions of the specific-heat-like
quantity as functions of the system sizes for a = −7 to −1. The solid
lines are fits assuming a finite critical value according to Eq. (21); the
broken ones are fits with hc = 0.

with suitable edge capacities. On this graph a sophisticated
maximum-flow–minimum-cut algorithm can be applied.30,31

The resulting minimum cut directly corresponds to the ground
state (GS) spin configuration {Si} of that specific realization
of the net disorder. We used the efficient maximum-flow
subroutines implemented in the LEDA library.32

III. QUANTITIES OF INTEREST

From a GS spin configuration, some quantities of interest
can be obtained directly, such as the magnetization per spin

M = 1

N

N∑
i

Si (10)

FIG. 7. (Color online) Peak heights of the specific heat as
functions of the system size for a = −7 to −1. The lines are fits
assuming a power-law decay for large system sizes.

TABLE III. Fit parameters of Eq. (23) for the height of the maxima
of the specific heat as shown in Fig. 7.

a = −7 a = −3 a = −2.5 a = −2 a = −1

k 2.3(2) 1.6(1) 1.46(2) 1.9(1) 1.3(2)
α/ν −0.04(2) −0.11(2) −0.140(7) −0.26(1) −0.31(4)

and the bond energy per spin

EJ = − J

N

∑
〈i,j〉

SiSj . (11)

Note that the thermal expectation value 〈EJ 〉 is the derivative
of the free energy per spin with respect to the coupling
constant J .

Using these individual values, we calculate averaged quan-
tities like the average magnetization m = 〈M〉. This disorder
average 〈· · ·〉 is performed always for a fixed value of h. We
also consider the Binder cumulant33

g(h,L) = 1

2

(
3 − 〈M4〉

〈M2〉2
h

)
. (12)

A specific-heat-like quantity C(h) can be calculated as the
numerical derivative of EJ with respect to h. The expectation
value 〈C(h)〉 is a twofold derivative of the free energy and
should be comparable to the real specific heat in its critical
behavior. An exact analytic relation of the specific heat and
C(h) is not possible for T = 0. Nevertheless, the reason to
use C(h) here is that, when measuring the critical behavior,
one has to vary some parameter so as to cross the critical line,
which is the case here when J or h is varied. Note that one
could also study the twofold derivative with respect to h (the
first derivative of the free energy is the expectation value of
the field energy); one would always recover the same critical
behavior (see Ref. 6 for details). And indeed, for uncorrelated

FIG. 8. (Color online) Fluctuation of the bond energy for a =
−2.5 and different system sizes. Lines are guides to the eyes only.
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FIG. 9. (Color online) Peak positions of the fluctuation of the
bond energy as functions of the system size for a = −7 to −1. The
lines are fits according to Eq. (21).

disorder, at T = 0 the same behavior of C(h) was found as
for the real specific heat in Monte Carlo simulations. Hence,
from here on we will refer to C(h) sometimes as the specific
heat,

C(h) = 〈∂EJ (h)〉
∂h

. (13)

Furthermore, we study the fluctuations of the bond energy,

F (h) = N
(〈
E2

J

〉 − 〈EJ 〉2
)
. (14)

Note that this quantity is not directly related to the specific heat,
since the average 〈· · ·〉 over the disorder is a linear operation
for all physical quantities. In any case, it resembles the
temperature-ensemble fluctuations that occur in the calculation
of the specific heat in Monte Carlo simulations.

FIG. 10. (Color online) Peak heights of the fluctuation of the bond
energy as function of the system size for a = −7 to −1. The lines are
fits according to Eq. (20) in the range of L = [15,141] for a = −7.0
and a = −1.0.

TABLE IV. Fit parameters of Eq. (21) for the peak position of the
fluctuation of the bond energy. The upper part contains the parameters
for finite hc. For the lower part hc = 0 was fixed.

a = −7 a = −3 a = −2.5 a = −2 a = −1

hc 1.98(2) 1.02(2) 0.78(1) 0.58(2) 0.25(7)
f 8(3) 13(2) 10.9(9) 16(3) 28(20)
1/νf 1.1(1) 1.08(6) 0.96(3) 1.04(6) 1.1(2)

Assuming no critical point ⇔ hc = 0

f0 2.9(1) 2.9(3) 3.1(3) 4.4(5) 8(1)
1/νf0 0.08(1) 0.21(3) 0.27(2) 0.41(3) 0.61(3)

We also calculate the zero-temperature susceptibility

χ (h) = ∂m(h,H )

∂H

∣∣∣∣
H=0

(15)

as the linear response of the magnetization to small ho-
mogeneous magnetic fields H . Therefore, we apply small
homogeneous fields at equidistant values H1,2H1,3H1 and fit
parabolas as functions of H to the magnetizations m(h,H =
0), m(h,H1), m(h,2H1), and m(h,3H1). For a fixed value of
the disorder strength h the linear coefficient corresponds to the
susceptibility χ (h).

We will see that the results are compatible with second-
order phase transitions, such that the measured quantities show
power-law behavior close to the phase transition point. To
determine or test the critical exponents, we use the standard
scaling forms, i.e.,

g(h,L) = g̃[(h − hc)L1/ν], (16)

m(h,L) = L−β/νm̃[(h − hc)L1/ν], (17)

χ (h,L) = Lγ/νχ̃ [(h − hc)L1/ν], (18)

C(h,L) = Lα/νC̃[(h − hc)L1/ν], (19)

and apply a finite-size-scaling analysis. For the Binder
cumulant and the magnetization we use a nice tool which
performs data collapses automatically.34 It is based on a
simplex algorithm and is written in PYTHON.

We assume the same kind of scaling for the fluctuations of
the bond energy:

2F (h,L) = Lκ/ν F̃ [(h − hc)L1/ν]. (20)

The specific heat and the susceptibility show a maximum
close to the critical point at some argument f of the universal
functions χ̃(·) and C̃(·). Note that the peak positions for
specific heat and susceptibility of the same system size L

usually differ. Thus, the value of f (and even the sign) may
also differ. From Eqs. (18) and (19) it follows that the finite-size

TABLE V. Fit parameters of Eq. (20) for the heights of the maxima
of the fluctuation of the bond energy as shown in Fig. 10.

a = −7 a = −3 a = −2.5 a = −2 a = −1

f1 0.8(1) 0.87(5) 0.89(4) 1.06(7) 0.77(8)
κ 1.18(4) 1.16(2) 1.10(1) 1.04(2) 1.10(3)
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FIG. 11. (Color online) Susceptibility for a = −2.5 and different
system sizes. Lines are guides to the eyes only.

dependence of the positions of the maxima, respectively,
scale as

h∗(L) = hc + f L−1/ν . (21)

When fitting our data, we have also tested for simple power-law
corrections to scaling by considering the modified equation

h∗(L) = hc + f L−1/ν(1 + gL−ω) , (22)

where ω is the correction exponent. Also, it follows from
Eqs. (18) and (19) that, right at h∗(L), the heights of the
maxima should scale as Lγ/ν and Lα/ν , respectively. In the
case of α = 0 other forms like a logarithmic divergence or a
convergence to a constant (“cusp”) have been reported in the

FIG. 12. (Color online) Peak positions of the susceptibility as
functions of the system size for a = −7 to −1. The solid lines are
fits assuming a finite critical value according to Eq. (21); the broken
ones are fits imply hc = 0.

FIG. 13. (Color online) Ratio Rχ(L) for a = −7, − 3 − 1. The
data points for a = −2 lie between those for a = −7 and a = −3
and are not included for better visibility.

literature for other systems.6,35 Below we present the results we
obtained for the positions and the heights of the peaks and test
their scaling behavior according to these scaling assumptions.

As mentioned above, these quantities are average values.
They are strongly dependent on the set of disorder realizations
taken into account. Hence, we perform an average usually over
many thousands of realizations. We estimate the variability of
these average values from 200 bootstrap samples36,37 and quote
it as statistical error.

IV. RESULTS

We performed exact ground-state calculations for three-
dimensional RFIMs for correlation exponents a = {−1.0,

−2.0,−2.5−3.0,−7.0}. We considered system sizes ranging
from L = 7 to L = 141. The number of disorder realizations
per system size and per value of the correlation exponent can
be found in Table I. The actual number of calculated ground
states is four times larger, since four different external fields
are needed to obtain a susceptibility. The values of H1 are
stated in the rightmost column of Table I.

Since the Binder cumulant exhibits no clear crossing (see
Fig. 4), one might suspect that no phase transition is present.
This is not the case as we will see in the following. To determine
the phase transition points, we start by considering the average
specific heat. In Fig. 5 the results can be seen for a = −7 to −1.
As for the uncorrelated RFIM, peaks can be observed clearly,
which give evidence for the existence of a phase transition
for the correlated case also. We estimate the peaks by fitting
parabolas over different intervals close to the maximum (for
every bootstrap sample). The positions of the peaks in Fig. 5

TABLE VI. Fit parameters of Eq. (21) for the peak position of
the susceptibility. The upper part contains the parameters for finite
hc. For the lower part hc = 0 was fixed.

a = −7 a = −3 a = −2.5 a = −2 a = −1

hc 1.97(1) 0.98(4) 0.75(2) 0.56(4) 0.20(5)
f 4.8(5) 7(1) 7.6(6) 9(1) 11(2)
1/ν 0.83(5) 0.84(8) 0.80(4) 0.85(7) 0.88(8)

Assuming no critical point ⇔ hc = 0

f0 3.06(8) 3.4(3) 3.3(3) 4.5(4) 7.7(7)
1/ν0 0.088(7) 0.24(2) 0.28(2) 0.41(3) 0.66(3)
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FIG. 14. (Color online) Peak heights of the susceptibility as
functions of the system size for a = −3 to −1.

move from right to left for increasing system sizes. To obtain
the infinite-size limiting value hc and an estimate for the critical
exponent ν of the correlation length, we fit the positions of
the peaks to Eq. (21), resulting in fit values as shown in the
upper part of Table II. Note that when determining the error
bars from model fitting, we usually have not only taken the
statistical error obtained from the fit routine (of the GNUPLOT

program) but always also varied the range of sizes, to get an
impression of possible systematic errors.

In Fig. 5 for the case a = −1, the peaks move very close
to h = 0 and the result from the fit for hc is also close
to zero. Therefore, another sensible ansatz is to set hc = 0.
Fit parameters for this ansatz are also shown in Table II in
the lower part. Both models are plotted in Fig. 6 as solid
and broken lines, respectively. All data sets exhibit some
curvature, indicating that hc > 0. Nevertheless, for a � −2,
the data points within error bars are also compatible with a pure
power law. In particular, if one includes corrections to scaling
according to Eq. (22) using hc ≡ 0, fits with a very high quality
for a � −2 were obtained. On the other hand, for a < −2 a fit
with hc > 0 is always better: the leading exponent (−1/ν) gets
close to zero (i.e., the leading term becomes “automatically”
almost constant), or even positive (i.e., ν < 0), which shows
that the fit is unsuitable. For a < −2 the assumption hc > 0 is
confirmed, and the results are compatible with the analytical
predictions of Nattermann mentioned above.15

To determine the critical exponent α according to Eq. (19),
we analyzed the peak heights of the specific heat as shown
in Fig. 7. They increase up to L ≈ 50 for all correlation
exponents a and decrease for larger L. Thus, no clear

TABLE VII. Fit parameters for the peak heights of the suscepti-
bility when fitted according to b0L

γ/ν .

a = −7 a = −3 a = −2.5 a = −2 a = −1

b0 0.064(3) 0.049(2) 0.048(2) 0.049(2) 0.041(3)
γ /ν 1.56(1) 1.45(1) 1.41(1) 1.34(2) 1.20(2)

FIG. 15. (Color online) Data collapse of the susceptibility for
a = −2.5.

scaling is visible. This could be due to very strong finite-size
corrections. Therefore, under the assumption that the specific
heat decreases in a power-law fashion, we fitted the data points
for very large system sizes to a power law of the form

C(h,L) = kLα/ν . (23)

The achieved exponents are small and negative. They can be
found in Table III. On the other hand, it is possible that the
specific heat levels off for even larger system sizes, which
would give the leading behavior α = 0. In Sec. V, we will
discuss these two options in connection with the Rushbrooke
inequality38 and see that α = 0 appears to be more likely for
a < −2, while the data do not allow a definite decision in the
strong-correlation case a � −2.

Next, we display the fluctuation of the bond energy. An
exemplary plot for a = −2.5 is shown in Fig. 8. For all values
of the correlation exponent a, we observe such peaks at some
value of the disorder strength h. We carried out the usual
analysis: We fitted parabolas to the peaks and determined the
scaling behavior from the position as a function of the system
size (see Fig. 9) and the peak height (Fig. 10). For a = −1.0
the peaks are very shallow for small system sizes, so we have
excluded them from the analysis of the peak position. The
resulting fit parameters are shown in Table IV for the positions
and in Table V for the height.

We now turn to the susceptibility. The phase transition is
signaled by a divergence of the susceptibility. An increasing
peak can be seen for a = −2.5 in Fig. 11 as an example. The
peaks are estimated in the same way as for the specific heat.
The resulting maxima are tuples (h∗(L),χmax(L)) of position
and height.

For the peak position of the susceptibility we assumed the
same model as we did for the specific heat. The models and data
points can be found in Fig. 12. In particular, for a = −1, the
error bars are quite large, despite the large number of samples,
which for the largest system sizes is considerably higher than
for the cases a < −1. To understand this behavior, we studied
the degree of non-self-averaging39 and calculated

Rχ(L) = var[χ (L)]/〈χ (L)〉2. (24)
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We found Rχ to stay approximately constant for increasing
L, as shown in Fig. 13 for susceptibility measured at the
peak positions. We found the same behavior qualitatively for
different fixed values of h, which shows that the correlated
RFIM is non-self-averaging for a large range of the disorder
parameter, like many other systems exhibiting quenched
disorder. In particular, the results in Fig. 13 show that the
degree of non-self-averaging is strongest for a = −1, which
explains the large error bars. To achieve much smaller error
bars for the susceptibility, a much larger number of samples
would be necessary, which is beyond the capacity of our
numerical resources.

For the finite-size scaling of the peak positions, we tested
Eq. (21) using the saturating ansatz (hc included in the fit) as
well as a pure power-law decay (via hc ≡ 0). The fit parameters
for both models can be found in Table VI. Again the saturating
model brings up, within the present accuracy, the same infinite-
size critical point hc as we found before. And again, for values
a � −2, hc = 0 is also compatible with the numerical results.

In contrast to the specific heat, the peak heights of
the susceptibility show a clear power-law behavior for all
studied correlation exponents (see Fig. 14). Thus, in the
thermodynamic limit the susceptibility diverges. Compared
to the peak positions displayed in Fig. 12, the fluctuations for
the peak height here are much smaller; thus a clear power-law
behavior is visible. The critical exponents γ /ν, as obtained
from a power-law fit, are displayed in Table VII. The values
decrease with increasing a. The fit parameters obtained can be
used to collapse the susceptibility according to Eq. (17) with
satisfactory agreement. As an example, we show the collapsed
susceptibility for a = −2.5 in Fig. 15.

For a finite-size analysis of the Binder cumulant and of
the magnetization, we performed data collapses according to
Eqs. (16) and (17). Example data collapses for the magneti-
zation and as inset for the Binder cumulant for a = −3 are
shown in Fig. 16. The quality of the collapses is very good.
They lead to sets of critical values and exponents as shown
in Table VIII. Furthermore, for a = −2 and −1, we have also
performed data collapses for the magnetization when fixing
hc ≡ 0. For a = −1 such a data collapse is possible, leading

FIG. 16. (Color online) Data collapse of the magnetization and
of the Binder cumulant (inset) for a = −3.

TABLE VIII. Critical value hc and correlation length exponent ν

derived from the finite-size-scaling analysis of the Binder cumulant
and the magnetization.These values are obtained via data collapses.
The three smallest system sizes, i.e., L = 7,11,15, are left out of the
data collapses for a = −2.5.

a = −7 a = −3 a = −2.5 a = −2 a = −1

hc 1.94(1) 0.95(2) 0.731(2) 0.47(4) 0.12(3)
1/ν 0.78(2) 0.77(4) 0.74(3) 0.75(3) 0.78(4)
β/ν 0.005(5) 0.03(2) 0.01(1) 0.01(1) 0.01(8)

to β/ν = 0.08(4). However, for a = −2, the quality of the
collapse with hc ≡ 0 is very bad, even for the Binder cumulant
(neither shown here), which seems to indicate that hc = 0 is
less likely compared to hc > 0.

V. CONCLUSIONS AND DISCUSSION

We have presented the results of exact ground-state calcu-
lations, i.e., calculations in thermal equilibrium, for the RFIM
with power-law-correlated disorder for different correlation
exponents. To calculate the ground states numerically, we
have applied a mapping to the maximum-flow problem. Using
efficient polynomial-time-running maximum-flow–minimum-
cut algorithms, we were able to study large systems sizes up
to N = 1413.

We studied different quantities like the magnetization,
Binder cumulant, susceptibility, a specific-heat-like quantity,
and energy fluctuations, and applied finite-size-scaling tech-
niques to obtain the critical exponents. The combined results
for the critical exponents are shown in Table IX. As discussed
in the previous section, for large values of the correlation
exponent α, in particular α � −2, the large-scale behavior of
the specific heat is not clear. It might decrease as a power law,
leading to α < 0, or it might level off to a constant. We tested
the two possibilities for the values of α by considering the
Rushbrooke inequality α + 2β + γ � 2, which holds usually
as the equality.40 When α = 0 is chosen, the Rushbrooke
equation is satisfied in all cases within error bars. For the values
of α quoted in Table III, obtained via fitting the data for just
the few largest system sizes, the Rushbrooke sum (assuming
hc > 0) is considerably smaller than 2 for a = −2, − 1.
Hence, the value α = 0 appears to be more likely. Furthermore,
it is not clear to us whether the specific-heat-like quantity C(h),
which reproduces the scaling behavior of the real specific heat

TABLE IX. Final results for the value of hc, the critical exponents
α, β, γ , and ν, and the Rushbrooke (RS) sum α + 2β + γ . The first
row (a = −∞) shows the result for the uncorrelated case taken from
Refs. 6 and 7. The row −1∗ is for the assumption hc(a = −1) = 0.

a hc α β γ ν RS sum

−∞ 2.27(1) ∼0 0.016(7) 2.1(1) 1.37(9) 2.1(2)
−7.0 1.96(2) 0 0.01(1) 2.0(3) 1.26(8) 2.0(3)
−3.0 0.97(2) 0 0.04(6) 1.8(4) 1.2(2) 1.8(5)
−2.5 0.74(2) 0 0.01(1) 1.91(8) 1.3(5) 1.93(9)
−2.0 0.52(5) 0 0.01(3) 1.7(3) 1.2(2) 1.7(4)
−1.0 0.17(5) 0 0.05(10) 1.5(3) 1.2(2) 1.5(5)
−1∗ 0 0 0.1(1) 1.9(1) 1.61(9) 2.0(2)
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well for the uncorrelated case, is still useful, in particular in
the case of strong correlations. The peculiar behavior for large
systems might be due to this.

In all cases, the values quoted in Table IX are compatible
within error bars with the results for the uncorrelated case, in
particular due to the relatively large error bar for the critical
exponent γ . Nevertheless, the data for the peak heights of the
susceptibility (Fig. 14 ) show a trend toward a smaller slope
when a increases from −7 to −1: The results for γ /ν, which
exhibit a small error bar (see Table VII) are clearly different
within error bars; in particular, the values for a � −3 are
different from the value of γ /ν for a = −7, which within error
bars is equal to the value for the uncorrelated case. In this case,
to still satisfy the Rushbrooke inequality, the true value for ν,
in particular for values a = −2 and −1, should be larger, at
or somewhat above the upper bounds, given the standard error
bars. Hence, it is quite likely that the correlation of the disorder
creates nonuniversality for the RFIM, as in the case of the
diluted ferromagnet.17 This is compatible with Nattermann’s
calculation,15 in which the behavior might change for a � −d.

In that work, Nattermann also predicted that the long-range
order is destroyed for a � −2. Our results for a = −1 clearly
allow this; see last row of Table IX. For a = −2, from the
calculation of the critical value hc via the scaling of the peaks
of the specific heat, from the fluctuations of bond energy, and
from the susceptibility, this is possible as well. Nevertheless,

the data collapse for the magnetization and Binder cumulant
is very bad in the case a = −2 when hc ≡ 0 is assumed. Also,
the result of ν ≈ 2.6 (see, e.g., the last row in Table VI) is quite
large under the assumption of hc ≡ 0, which in turn leads to a
quite large value of γ = 3.3, which results in the Rushbrooke
sum being much larger than 2, even if we assume β ≈ 0
and α ≈ −0.26 × 2.6 − 0.68 < 0. Hence, from our results
hc(a = −2) > 0 appears more likely to us. This could be due
to the fact that a = −2 is exactly the borderline case, such
that much higher system sizes might be necessary to see the
limiting behavior. This is out of reach with current technology,
since we already study tens of thousands of samples with
exact algorithms for systems exhibiting up to almost 3 × 106

spins. Nevertheless, it could also be that the Imry-Ma-type
argument of Nattermann has to be refined to make it more
exact.
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