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We consider the Chalker-Coddington network model for the integer quantum Hall effect, and examine the
possibility of solving it exactly. In the supersymmetric path integral framework, we introduce a truncation
procedure, leading to a series of well-defined two-dimensional loop models with two loop flavors. In the
phase diagram of the first-order truncated model, we identify four integrable branches related to the dilute
Birman-Wenzl-Murakami braid-monoid algebra and parameterized by the loop fugacity n. In the continuum limit,
two of these branches (1,2) are described by a pair of decoupled copies of a Coulomb-gas theory, whereas the other
two branches (3,4) couple the two loop flavors, and relate to an SU(2)r × SU(2)r/SU(2)2r Wess-Zumino-Witten
(WZW) coset model for the particular values n = −2 cos[π/(r + 2)], where r is a positive integer. The truncated
Chalker-Coddington model is the n = 0 point of branch 4. By numerical diagonalization, we find that its
universality class is neither an analytic continuation of the WZW coset nor the universality class of the original
Chalker-Coddington model. It constitutes rather an integrable, critical approximation to the latter.
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I. INTRODUCTION

The transition between plateaux in the integer quantum
Hall effect (IQHE) is a quantum critical phenomenon that
was predicted theoretically1,2 and observed experimentally3

a few decades ago. Although experimentally there is no
a priori reason to neglect electron-electron interactions, it
is usually modelled theoretically by noninteracting particles
in two dimensions (2D), in a perpendicular magnetic field
and a random potential. Despite the apparent simplicity of
this conceptual setup, it turns out to be very difficult to
derive analytically the critical exponents of this transition.
Important progress was achieved by the introduction of a
simple network model that retains the salient features of
guiding center motion and quantum tunneling in the presence
of disorder: the Chalker-Coddington (CC) model.4 Extensive
numerical studies based on the CC model or other approaches
have led to good estimates for the critical exponents, notably
the correlation-length exponent ν = 2.37 ± 0.026 (a larger
value ν = 2.593 ± 0.006 has also been reported7). Also, a
semiclassical argument8 yields the prediction ν = 7/3.

The CC model is also the starting point for several analytical
approaches, like the description by a σ model,9 or a mapping to
a one-dimensional (1D) quantum many-body system,10,11 and
also an algebraic Bethe ansatz construction.12 However, from
the point of view of critical lattice models, no exact solution
of the CC model has been found so far.

The situation is very different for the spin quantum Hall
effect (SQHE); the generalization of the CC model to SQHE13

[which we shall call Sp(2)-CC] maps exactly to classical bond
percolation, where a large class of exponents is known.14

This mapping of Sp(2)-CC to classical percolation was first

observed by Gruzberg et al.,15 who used a supersymmetric
(SUSY) spin-chain formulation. Later on, it was realized16,17

that the SUSY lattice path integral maps Sp(2)-CC to a
statistical model of lattice paths, which are exactly the hulls
of bond-percolation clusters. Moreover, a number of SQHE
physical observables are expressed in terms of percolation
correlation functions, and this mapping is valid even at the
level of lattice models.

In this paper, we propose a treatment of the original
CC model based on the lattice path integral. Since the
corresponding statistical model involves paths, which may
pass through a given edge infinitely many times, the number
of configurations per unit surface is infinite, and the model
is not directly tractable by exact-solution methods such as
Yang-Baxter integrability and conformal field theory (CFT).
We therefore introduce a truncation procedure, leading to a
series of finite statistical models, and focus on the first order
of truncation. The arising model is a two-colour loop model
including vacancies and with loop fugacity n = 0.

Integrable multicolor loop models have been known for a
long time.18 They were originally defined through multidimen-
sional height models, but they may as well describe coupled
copies of classical magnetism models, such as the Potts or
O(n) models, and also the ground state of quantum loop
models. More specifically, in a two-color, completely packed
(i.e., without vacancies) loop model,19,20 new integrable points
were identified through a mapping to a braid-monoid algebra:
the Birman-Wenzl-Murakami (BWM) algebra21 (see also22 for
integrable two-color loop models related to two coupled Potts
models). In the present paper, we use a similar approach on
the loop model arising from our truncation procedure, which
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is a two-color loop model including vacancies. Generalizing
to arbitrary loop fugacity n, we obtain four critical branches
in the phase diagram of this loop model. We then study the
critical properties of these branches.

We find that two of these regimes (denoted 1 and 2)
correspond to a pair of decoupled Coulomb-gas (CG) theories,
whereas the other two (3 and 4) relate to the SU(2)r ×
SU(2)r/SU(2)2r Wess-Zumino-Witten coset model, for values
n = ±2 cos π

r+2 with r ∈ {1,2,3, . . . }. We obtain analytically
two critical exponents: one of them, Xint, corresponds to an
elliptic deformation of the integrable weights, and the other
one, X(1,1;adj), is associated with a perturbation of the weight
per monomer. The truncated, modified CC model is realized
by the n = 0 point of regime 4, but this point is outside
the validity range for the analytic continuation of the WZW
exponents. Our numerical study gives the estimate ν � 1.1 for
the correlation-length exponent, and df � 1.71 for the fractal
dimension of paths. This is clearly incompatible with the
IQHE universality class, and hence our integrable two-color
loop model is only a crude approximation to IQHE. However,
the truncation procedure may be carried out to higher orders,
possibly yielding more accurate, solvable approximations.

The plan of the paper is as follows. In Sec. II, we recall the
definition of the CC model and its lattice SUSY path-integral
formulation, and explain our truncation procedure,resulting
in a two-color loop model. This truncation is compared in
detail with the one used in Refs. 10 and 11. In Sec. III, we
use a mapping to a dilute braid-monoid algebra to derive the
integrable Boltzmann weights of the two-color loop model as
well as the corresponding 1D Hamiltonian. In Sec. IV, we
identify the four critical regimes of the integrable model and
the corresponding CFTs. Numerical and analytical support for
the identification of these CFTs is given. In Sec. V, we examine
in more detail regime 4, which contains the truncated, modified
CC model at n = 0. We discuss the analytic continuation of
CFT results and estimate numerically some critical exponents,
including the correlation-length exponent ν.

The paper has three appendices. Appendix A contains
the details of the mapping to the dilute BWM (dBWM)
algebra used in Sec. III. In Appendix B, we exhibit a lattice
holomorphic parafermion ψs(z) in the integrable model. In
Appendix C, we expose the exact solution of a particular point
in regime 4, which is mapped to free fermions. This mapping
provides a valuable check on our results, and also gives a proof
that the O(n = 1) loop model has central charge c = 1/2.

II. TRUNCATION OF THE CHALKER-CODDINGTON
MODEL

A. The Chalker-Coddington model

The Chalker-Coddington model4 is a simple lattice model
for the IQHE. The latter consists of a two-dimensional gas of
noninteracting electrons in a disordered medium, subject to a
strong transverse magnetic field. In the presence of the random
potential, the Landau levels are broadened, and eigenenergies
are of the form E = (k + 1

2 )h̄ωc + V0, where k is an integer,
ωc is the cyclotron energy of the electron in the magnetic
field, and V0 is a random part. Let us recall briefly the main
ingredients of the CC model.

2 4

3 1

)b()a(

FIG. 1. (a) Oriented square lattice L for the Chalker-Coddington
model. (b) Labelling of the edges adjacent to a vertex of L.

We consider an electron in the eigenstate of energy E. The
spatial trajectories of the electron over finite time steps �t are
modelled by paths on the directed square lattice L (see Fig. 1),
and the time-evolution operator over �t is denoted U . The
operator U reads

U =
⊗

edge e

Ue

⊗
vertex v

Uv , (1)

with two types of factors: (i) on each directed edge e, the
operator Ue takes the particle along e and multiplies the wave
function by a random Aharonov-Bohm phase exp(iφe), where
the φe are independent and uniformly distributed on the interval
[0,2π ], and (ii) at each vertex v, the operator Uv scatters the
particle to one of the outgoing edges. In the bases (1,2) and
(3,4) of Fig. 1, Uv is represented by the unitary matrix:

S =
(

tanh β 1/cosh β

1/cosh β − tanh β

)
. (2)

The parameter β measures the distance to the plateau transition
at E = Ec = (k + 1

2 )h̄ωc. The critical value is βc = log(1 +√
2), and the corresponding energy perturbation is assumed to

behave as4

(E − Ec) ∝ (β − βc) . (3)

No exact solution of the CC model is known, in the
sense that the critical exponents have not been determined
analytically. However, very good numerical estimates exist
for some of these exponents.5–7 In particular, the correlation-
length exponent νCC, defined by the scaling of the correlation
length

ξ ∝ |E − Ec|−νCC , (4)

has been estimated as6

νCC � 2.37 ± 0.02 . (5)

B. Path-integral representation

The problem of solving the CC model amounts to the
diagonalization of a random time-evolution operator. We want
to perform the average over disorder, in order to turn this into a
translationally invariant 2D classical model. For this purpose,
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we use the supersymmetric path integral representation.23 The
following derivation is very analogous to what was done by
one of us for the SQHE,17 and we use the notations of Ref. 17
throughout this section.

The Green’s function between two edges e1 and e2 is

G(e2,e1,z) := 〈e2|(1 − zU)−1|e1〉 . (6)

Here, z is a parameter which plays the role of the energy in the
usual Green’s function (E − H)−1: roughly speaking z ∼ eiE ,
where E is measured from the filled Landau level. We label
eL and eR the ends of any edge e, with the convention that it is
directed in the sense eR → eL, and we introduce the complex
variables bL(e) and bR(e). The Gaussian measure is defined as∫

[db] (. . . ) := 1

π

∫
d(Re b) d(Im b) exp(−b∗b)(. . . ) ,

(7)
[Db] :=

∏
e

[dbL(e)][dbR(e)] .

The Green’s function can then be written as a Gaussian integral
on the bL(e) and bR(e):

G(e2,e1,z) =
∫

[Db] bL(e2)b∗
L(e1) exp Ab∫

[Db] exp Ab

, (8)

where the action reads

Ab = A
(edge)
b + A

(vertex)
b , (9)

A
(edge)
b = z

∑
edge e

b∗
L(e) exp(iφe)bR(e) , (10)

A
(vertex)
b =

∑
vertex v

∑
i→j

v

b∗
R(ei)Sij bL(ej ) , (11)

and the notation i→j
v

means that i (respectively, j ) is an

incoming (respectively, outgoing) edge adjacent to v. The
next step is to express the denominator in Eq. (8) as the
inverse of a Gaussian integral over Grassmann variables
fL,R(e) and f̄L,R(e):

G(e2,e1,z) =
∫

[Db][Df ] bL(e2)b∗
L(e1) exp(Ab + Af ) ,

(12)

with the measure∫
[df ] (. . . ) :=

∫
df̄ df exp(−f̄ f )(. . . ) ,

(13)
[Df ] :=

∏
e

[dfL(e)][dfR(e)] ,

and Af is the analog of Ab, with b and b∗ replaced by f and f̄ .
We denote by an overbar the quenched average over the

variables φe. A useful formula for this computation is

1

2π

∫ 2π

0
dφ exp(ueiφ + v∗e−iφ) =

∞∑
m=0

(uv∗)m

(m!)2
. (14)

It is easy to see, for instance, that G(e2,e1,z) = δ(e1,e2). When
studying transport properties, the main quantity of interest is
|G|2. We write

|G(e2,e1,z)|2 =
∫

[Db][Df ] bL(e2)b∗
L(e1) eAb+Af

×
∫

[Db][Df ] b∗
L(e2)bL(e1) eA∗

b+A∗
f

=
∫

[Db1,2][Df1,2] bL1(e2)b∗
L1(e1)b∗

L2(e2)

× bL2(e1) eAb1+Af 1+A∗
b2+A∗

f 2 . (15)

Using Eq. (14), we get:

|G(e2,e1,z)|2

=
∫

[Db1,2][Df1,2] bL1(e2)b∗
L1(e1)b∗

L2(e2)bL2(e1)

× exp
[
A

(vertex)
b1 + A

(vertex)∗
b2 + A

(vertex)
f 1 + A

(vertex)∗
f 2

]
×

∏
e

∞∑
me=0

(z∗z)me

(me!)2
{[b∗

L1(e)bR1(e) + f̄L1(e)fR1(e)]

× [b∗
R2(e)bL2(e) + f̄R2(e)fL2(e)]}me . (16)

The expression (16) for |G|2 can be interpreted graphically
as follows. Each term in the expansion of the product
corresponds to a pair of paths (γ1,γ2), where γ1 respects
the orientation of the lattice L (forward path) and γ2 follows
the reverse orientation (backward path). The two paths must
use each edge e the same number of times me. Paths
configurations are weighted by the elements of the vertex S

matrix, and an additional factor (z∗z)me . Note that closed loops
have a vanishing weight, because the bosonic and fermionic
contributions cancel each other.

C. Truncation procedure

In the form (16), |G|2 can be viewed as a two-point
correlation function in a classical, two-dimensional statistical
model for two-color path configurations. No approximation
has been introduced so far, and thus Eq. (16) is identical to the
value of |G|2 in the original CC model. The main difficulty in
evaluating Eq. (16) is that the paths γ1 and γ2 may go through
a given edge an arbitrary number of times me, and thus the
statistical model has an infinite number of degrees of freedom
per edge. This type of problem is not usually tractable by
exact solution methods, so we need to truncate the statistical
model to a finite loop model in order to use these methods.
This is very analogous to what Nienhuis did for the O(n) spin
model24 on the hexagonal lattice: in that context, the spin
model with variables (Sj ∈ Rn,S2

j = 1) was formally mapped
to a polygon model where edges could be used an arbitrary
number of times, but the substitution eJSi ·Sj → 1 + JSi · Sj in
the edge interaction led to a finite loop model, while preserving
the O(n) symmetry of the original spin model.

The truncation we propose consists in keeping only the
terms of Eq. (16) with me ∈ {0,1}, i.e., the configurations
where each of the paths γ1 and γ2 visits an edge at most once.
This preserves the boson/fermion supersymmetry, ensuring
that closed loops still have a vanishing weight in the truncated
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u1

t

x

w1 w2

u2

FIG. 2. Vertices of the loop model arising from the truncation of
the CC model.

model. This can be seen as follows. In the original expression
(10) for the action on the edges, we can imagine choosing a
different fugacity ze for each edge (so that it now appears inside
the summation over e.) This does not affect the supersymmetry
of the action. On expanding in powers of all the ze, the bosonic
contribution to a given edge now enters with a factor (z∗

eze )me .
Thus our truncation to me ∈ {0,1} amounts to keeping only
the terms up to first order in the expansion of the partition
function in powers of z∗

eze , and then setting all the ze = z

again. Note that to this order we have either nothing, or a
pair of bosons of different flavors (1 and 2), or a pair of
fermions of different flavors, propagating along each edge.
The supersymmetry ensures that each closed loop is counted
with weight 0. At this stage it is simpler to switch to a replica
formulation rather than using supersymmetry explicitly: we
have a model with two flavors of boson, such that each edge
is either unoccupied or occupied by each flavor exactly once.
Each closed loop is counted with a fugacity n, taking then
n = 0. The vertices are shown in Fig. 2.

We briefly comment on how higher order truncations would
look in this expansion. For example, at O[(z∗

eze )2] we would
have either two pairs of bosons of each flavor, or one pair of
bosons and one pair of fermions. (We can never have more
than one pair of fermions because the Grassmann variables
square to zero.) Note that in such a truncation we could
give such a configuration a weight different from (z∗

eze )2 and
still preserve the supersymmetry. This points to the existence
of an infinite-dimensional space of possible supersymmetric
truncations. However, in this paper, we consider only the
simplest.

We denote by |G(e2,e1,z)|2tr the truncated analog of

|G(e2,e1,z)|2; |G(e2,e1,z)|2tr is given by the same expression as
Eq. (16), but with the sum running only over me = 0,1. Then
|G(e2,e1,z)|2tr is interpreted as a two-point function in the loop
model defined by the loop vertices of Fig. 2 and with loop
weight n = 0.

In the original CC model, the parameter β in the S matrix
(2) is staggered. It is useful to consider an anisotropic version
of this, where it takes the value β on the even sublattice of L
and β ′ on the odd sublattice. In this anisotropic CC model, the
critical line is4

sinh β sinh β ′ = 1 . (17)

The Boltzmann weights of the truncated loop model are
defined in Fig. 2. For general β and β ′, they take the

values:

t ,u1,u2,w1,w2,x = 1, a , b , a2 , b2 ,

− a b (even sublattice),

t ′,u′
1,u

′
2,w

′
1,w

′
2,x

′ = 1, b′, a′, b′2, a′2,
− a′b′ (odd sublattice), (18)

where

a := z2 cosh−2 β , b := z2 tanh2 β ,
(19)

a′ := z2 cosh−2 β ′ , b′ := z2 tanh2 β ′ .

Note that at the isotropic point these weights are

1, z2/2, z2/2, z4/4, z4/4, − z4/4 . (20)

D. Critical properties

We now discuss the observables of the model, espe-
cially the mean-square Green’s function between two edges
|G(e2,e1,z)|2. As pointed out in Ref. 25, this has to be
distinguished from the point-contact conductance P (e2,e1,z);
|G(e2,e1,z)|2 is defined for any boundary conditions, whereas
the point-contact conductance refers to a setup where one cuts
open the two edges e1 and e2, and hence involves only the
forward paths going from e1 to e2 without visiting e1 or e2

any other time (and the analogous backward paths). However,
in this graphical interpretation, one clearly sees that the two
quantities |G|2 and P do coincide in the truncated model.

At z = 1 in the untruncated model, for a system without
any open boundary contacts, |G(e2,e1,z)|2 is identically equal
to one by conservation of probability. It is given by the sum
over all pairs of Feynman paths going out and back from e1 to
e2, such that each edge is traversed the same number of times
in the forward path as in the return path, and weighted by the
appropriate S-matrix elements of the CC model. It has been
argued26 that the weights for such “pictures” are all positive.
For z → 1− and on the critical line (17), we expect a scaling
form

|G(e2,e1,z)|2 ∼ F
[
r(1 − z)1/dCC

f

]
, (21)

where r = |e1 − e2| and dCC
f is the fractal dimension of these

pictures (whereby their total mass M behaves as rdf ). The
absence of the prefactor of the form r−2X|G|2 is a consequence
of the fact that |G(z = 1)|2 = 1 for a closed system.

In the truncated model, we no longer have the probability
conservation and so the point z = 1 is no longer special.
Instead, in analogy with other loop models, we expect to find
a different critical point, at z = zc, such that the average loop
length is finite for z < zc and diverges for z � zc. The function
|G(e2,e1,z)|2tr now corresponds to the weighted sum of a pair of
black and grey paths connecting e1 and e2. On the critical line
and as z → z−

c , we expect the same scaling form as Eq. (21):

|G(e2,e1,z)|2tr ∼ r−2X|G|2 F [r(zc − z)1/df ], (22)

but not necessarily with the same dimension df and scaling
function F as in the full model. In Fig. 3 and Table I,
we show the numerical determination of zc using the two
largest eigenvalues 0 and 1 of the transfer matrix. These
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FIG. 3. Numerical determination of the critical monomer fugacity
zc in the model of Fig. 2. On the y axis we plot the effective thermal
exponent Xt (L,βc,z) = L

2π
ln 0

1
.

eigenvalues define the thermal exponent Xt through the CFT
form of the free-energy gap:

ln
0

1
� 2πXt

L
. (23)

More generally, it is possible to consider “watermelon”
exponents X�1,�2 corresponding to �1 black and �2 grey paths
originating from the vicinity of a given edge. The truncation
constraint of course implies that these cannot originate on
the same edge for � > 1, but we imagine taking the scaling
limit where edges a finite distance apart on the lattice are
mapped to the same point. These operators are well suited for
a transfer-matrix-based numerical analysis.27

In particular, we see that X1,1 corresponds to X|G|2 in
Eq. (22). Also, since z∗z counts the number of edges connected
to two black and two grey paths, we have

df = 2 − X2,2. (24)

Using transfer-matrix diagonalization, we obtain the value

X2,2 = Xt � 0.3. (25)

Finally, we evaluate the correlation-length exponent ν

associated to a perturbation of the parameter β away from
βc. For the lowest free-energy gap, we expect the scaling form

ln
0

1
� 2π

L
F [(β − βc) L1/ν]. (26)

The best data collapse is obtained for the value (see Fig. 4):

ν � 1.1. (27)

TABLE I. Finite-size estimates of the critical monomer fugacity
zc in the model of Fig. 2. The value zc(L,L + 2) is defined as
the solution of Xt (L,βc,z) = Xt (L + 2,βc,z), where Xt (L,β,z) =
L

2π
ln 0

1
is the effective thermal exponent.

L 4 6 8 10

zc(L,L + 2) 1.029 885 1.030 895 1.031 454 1.031 695

L = 12
L = 10
L = 8
L = 6
L = 4

(β − βc) × L1/ν

X
t(

L
,β

,z
c
)

21.510.50

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

FIG. 4. Data collapse for the effective thermal exponent
Xt (L,β,zc) under a perturbation of the parameter β. The value used
for this plot is 1/ν = 0.9.

E. Relation to Hilbert-space truncation

We close this section by comparing our approach to
earlier studies10,11 of the IQHE problem based on a different
truncation procedure. Our method consists in writing the lattice
path-integral representation for the mean conductance using
the supersymmetry trick, and then truncating the infinite sum
over the paths, to keep only the self-avoiding paths. This gives
us the well defined loop model of Fig. 2, where we will tune
slightly the Boltzmann weights to obtain an integrable point
(see Sec. III).

In contrast, in Refs. 10 and 11, one starts from a two-
dimensional single-particle Hamiltonian including Gaussian
hopping coefficients, and computes its supersymmetric path
integral. The resulting action is then interpreted as the action of
a one-dimensional many-body supersymmetric Hamiltonian
HMB, given in Eqs. (3)–(5) of Ref. 11. This Hamiltonian
is expressed in terms of the coefficients Sa of a superspin
matrix. In this model, the Hilbert space for each site is infinite
dimensional (each site can be occupied by an arbitrary number
of bosons). The idea is to truncate this Hilbert space down to
dimension D, and follow the behavior of the energy gap as D

increases. The model is not critical for finite D, but it becomes
critical in the limit D → ∞.

Let us show how to relate the terms of HMB in the truncated
space of dimension D = 5 to the generators, which encode the
loop model of Fig. 2. We first get rid of the (−1)j factor in
HMB.11 This is done through the change

c↑j → −c↑j , for j ≡ 2 ∼ mod 4 or j ≡ 3 ∼ mod 4 ,

without affecting the (anti)commutation relations for the bj ,cj .
We obtain the Hamiltonian:

HMB =
L∑

j=1

[
16∑

a=1

gaS
a
j Sa

j+1 + η
(
S1

j + S2
j + S5

j + S6
j

)]
, (28)

where the signs ga are given by

ga =
{

1, if a = 1,2,10,12,14,16,

−1, if a = 3, . . . ,9,11,13,15.
(29)
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We decompose HMB as a sum of generators:

HMB =
L∑

j=1

{−(�)j − (�)j + ej + fj + (1 + η)[(〉〉 )j + ( 〈〈)j + 2(〉〉 〈〈)j ]}, (30)

where we have defined

(�)j := S3
j S

3
j+1 + S7

j S
7
j+1 + S15

j S15
j+1 − S16

j S16
j+1,

(�)j := S4
j S

4
j+1 + S8

j S
8
j+1 + S13

j S13
j+1 − S14

j S14
j+1,

(〉〉 )j + (〉〉 〈〈)j := 1
2

(
S1

j + S2
j + S5

j + S6
j

)
,

(31)
( 〈〈)j + (〉〉 〈〈)j := 1

2

(
S1

j+1 + S2
j+1 + S5

j+1 + S6
j+1

)
,

ej := (
S1

j − 1
2

) (
S1

j+1 − 1
2

) − (
S5

j + 1
2

) (
S5

j+1 + 1
2

) + S10
j S10

j+1 + S12
j S12

j+1,

fj := (
S2

j − 1
2

) (
S2

j+1 − 1
2

) − (
S6

j + 1
2

) (
S6

j+1 + 1
2

) − S9
j S

9
j+1 − S11

j S11
j+1 .

In terms of the creation/annihilation operators, the above generators read

(�)j = (b†j↑b
†
j+1↑ + c

†
j↑c

†
j+1↑)(b†j↓b

†
j+1↓ − c

†
j↓c

†
j+1↓),

(�)j = (bj↑bj+1↑ + cj↑cj+1↑)(bj↓bj+1↓ − cj↓cj+1↓),

ej = (b†j↑b
†
j+1↑ + c

†
j↑c

†
j+1↑)(bj↑bj+1↑ + cj↑cj+1↑),

(32)
fj = (b†j↓b

†
j+1↓ − c

†
j↓c

†
j+1↓)(bj↓bj+1↓ − cj↓cj+1↓),

(〉〉 )j + (〉〉 〈〈)j = 1
2 (b†j↑bj↑ + c

†
j↑cj↑ + b

†
j↓bj↓ + c

†
j↓cj↓),

( 〈〈)j + (〉〉 〈〈)j = 1
2 (b†j+1↑bj+1↑ + c

†
j+1↑cj+1↑ + b

†
j+1↓bj+1↓ + c

†
j+1↓cj+1↓) .

In the D = 5 truncated space, each site is either empty or
occupied by two particles of opposite spins (↑ , ↓). If each
spin is interpreted as a loop color, the above generators
(when restricted to the D = 5 space) obey a dilute two-color
Temperley-Lieb algebra with loop weight n = 0. Hence, they
represent the vertices u1,u2,w1,x of the loop model defined
in Sec. II C. In particular, the ej and fj form two decoupled
Temperley-Lieb algebras.

Note that, in this context, the generator for the w2 vertex,
Ej = ejfj , cannot be realized by a linear combination of the
Sa

j Sa
j+1, but it may be a linear combination of the (Sa

j Sa
j+1)2. So

introducing Ej terms in the Hamiltonian leads to higher-order
terms in HMB, and most probably it breaks the invariance with
respect to the supersymmetric charges Q1,2. However, we have
shown that the supersymmetric model HMB, when restricted to
the D = 5 space, corresponds to a particular manifold in the
phase diagram of the two-color loop model.

III. CONSTRUCTION OF AN INTEGRABLE
CRITICAL LOOP MODEL

In the preceding section, we truncated the Chalker-
Coddington network model to yield a two-color loop model
that is simpler to analyze. To make further progress, we
modify this model further. We augment it by allowing the
“straight-line” vertices with weight v illustrated in Fig. 5. We
also generalize it by allowing the weight per loop n to not only
be zero, but to vary in the range n ∈ [−2,2]. By utilizing the

results of Ref. 28, we will show in this section that this modified
model for all values of n in this range has an integrable
line, and includes several critical points. The remainder
of the paper will be devoted to the study of the critical
behavior.

When the straight-line vertices are allowed, the loop model
can no longer be related directly to electron trajectories in
a potential. In the original CC model, the “checkerboard”
structure of the lattice (or, equivalently, the alternation of
arrows on the edges of L) is essential to the interpretation
of the paths as electron trajectories along the contour lines
of the random potential. However, several arguments indicate
that the truncated but unmodified loop model of Fig. 2 is in the
same universality class as that of the modified model. In other
words, one can obtain the unmodified model by perturbing the
critical line with irrelevant operators.

One argument for the equivalence of the two stems from
the relation of this two-color loop model to that studied in
Ref. 20. There the completely packed version was studied;
in the notation used here, this corresponds to setting the
Boltzmann weights t = u1 = u2 = v = 0. It was shown that
at least for weight per loop n �

√
2, the model has a

critical point when x/w2 is tuned appropriately. Moreover,
at this critical point, numerical evidence strongly suggests
that dilution (i.e., nonzero t , u1, and u2) is irrelevant. We
will provide additional evidence by finding that for certain
discrete values of n �

√
2, the critical point of the completely

packed model and that of the modified model studied here
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u1

t

u2 x

w1 w2

v

FIG. 5. Vertices of the augmented dilute two-color loop model.

are described by the same conformal field theory. Neither
of these arguments applies when n = 0, but all the criti-
cal exponents we have computed (Xt,X2,2,ν) for both the
truncated CC model and the integrable model at n = 0 in
regime 4 (see Table II) agree, up to our numerical precision.
This strongly indicates that the integrable model at n = 0
in regime 4 is in the universality class of the truncated CC
model.

In this section, we give the Boltzmann weights of
the integrable critical line in the loop model of Fig. 5.
These weights are expressed in terms of the generators of
the dilute Birman-Wenzl-Murakami (dBWM) algebra, so that
the solution of the Yang-Baxter equation found in Ref. 28 can
be used. In Appendix A, we review the BWM algebra and its
graphical presentation. The braid group can be represented
in terms of the BWM generators, and can then be used
to find invariants of knots and links generalizing the Jones
polynomial.21

An alternate way of obtaining the Boltzmann weights of the
integrable critical line is to search for holomorphic observables
on the lattice. These are operators whose expectation values
satisfy the lattice analog of the Cauchy-Riemann equations.
This method is described in Appendix B, and yields the
same weights as those found in Ref. 28 using the dBWM
algebra.

A. Critical completely packed loop models

We first review the critical completely packed loop model,
arising for example in the Fortuin-Kasteleyn expansion of the
Potts model.29 Each vertex of this model has the two possible
configurations displayed in Fig. 6. The partition function
is conveniently written in terms of the generators of the
Temperley-Lieb (TL) algebra.30 This algebra for a system of
width L has L generators ej acting at positions j = 1,2, . . . ,L

as well as the identity 1, which obey the relations

e2
j = n ej , ej ej±1ej = ej , eiej = ej ei for |i − j | > 1.

(33)

The first of the relations encodes the fact that the weight for
a closed loop is n, while the second encodes the fact that the
weight does not depend on the length or the shape of the loop.

The Boltzmann weights of the integrable critical loop model
are then

Řj (u) = sin(2θ − u) 1 − sin u ej , (34)

where n = −2 cos 2θ and |n| � 2. The transfer matrix for an
even number of sites L is then

T = Ř1Ř3 . . . ŘL−1Ř2Ř4 . . . ŘL . (35)

It is straightforward to use the TL algebra to verify that these
Boltzmann weights satisfy the Yang-Baxter equation

Řj (u)Řj+1(u + v)Řj (v) = Řj+1(v)Řj (u + v)Řj+1(u)

(36)

and the inversion relation

Řj (u)Řj (−u) = sin(2θ − u) sin(2θ + u) 1 . (37)

Braid group generators bj and b−1
j are found by taking u →

±i∞:

Řj (i∞) ∝ bj = e−iθ 1 + eiθ ej , Řj (−i∞) ∝ b−1
j

= eiθ 1 + e−iθ ej .

These satisfy the braid-group relations (A1) and (A2) as a
consequence of the Yang-Baxter equation and the inversion
relation respectively.

The critical completely packed loop model on the square
lattice is in the same universality class as what is usually known

TABLE II. The four regimes of the integrable loop model.

regime θ range parameterization central charge

1 0 < θ < π

3 n = −2 cos π

r+2 c = 2
[
1 − 6

(r+1)(r+2)

] + 1
2

2 π

3 < θ < π

2 n = 2 cos π

r+2 c = 2
[
1 − 6

(r+1)(r+2)

]
3 π

2 < θ < 2π

3 n = 2 cos π

r+2 c = 3r2

(r+1)(r+2) + 1
2

4 2π

3 < θ < π n = −2 cos π

r+2 c = 3r2

(r+1)(r+2)
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FIG. 6. Action of 1 (left) and ej (right) on a pair of strands at
positions j and j + 1. The transfer matrix direction is upward.

as the O(n) model in its dense phase. Well established results
on the dense O(n) model24 give the central charge of the CFT
describing the scaling limit to be

cO(n) = 1 − 3(π − 2θ )2

πθ
. (38)

The Boltzmann weights of the completely packed doubled
loop model studied in Refs. 19 and 20 can be written in terms of
the generators ei and fi of two independent TL algebras. This
model is displayed in Fig. 5 with t = u1 = u2 = v = 0. In this
picture, the ej acts on black loops, while the fj act on grey
loops, while the transfer matrix goes to the northeast. Thus
the vertex with weight w1 corresponds to the generator 1, the
vertex with weight w2 corresponds to ejfj , while those with
weight x are ej and fj . Since the ej ’s and the fj ’s commute,
we have immediately that the Bj ,B

−1
j defined by

Bj := (e−iθ 1 + eiθ ej )(e−iθ 1 + eiθ fj ),
(39)

B−1
j := (eiθ 1 + e−iθ ej )(eiθ 1 + e−iθ fj ),

also generate a braid group. Similarly, TL generators with loop
weight N = n2 may be constructed as

Ej := ej fj . (40)

Using the relations (33) for the ej ’s and fj ’s, it is
straightforward to show that the Bj ,B

−1
j , and Ej generate

the BWM algebra described in Appendix A with parameters
N = n2 = (−2 cos 2θ )2, ω = ei6θ .20 The doubled lines here
correspond to the single lines displayed in Appendix A, as is
apparent by comparing Figs. 5 and 14. Writing the Boltzmann
weights in terms of this algebra is useful because solutions
of the Yang-Baxter equation involving the BWM generators
have long been known.31 From this solution, a critical point
for the coupled completely packed loop models for n �

√
2

was found.19,20 With the parametrization

n = 2 cos
π

r + 2
,

in the isotropic case w1 = w2, the critical point is at x/w1 =
λc, where

λc = −
√

2 sin

[
π (r − 2)

4(r + 2)

]
. (41)

At integer values r = 2,3,4 . . . , this critical point was identi-
fied with a particular conformal field theory, the WZW coset
model SU(2)r × SU(2)r/SU(2)2r . This conformal field theory
has central charge

cr = 3r2

(r + 1)(r + 2)
. (42)

For 1/λc < x/w1 < λc, the doubled loop model has a critical
phase corresponding to two decoupled completely packed loop
models. The central charge is thus twice Eq. (38).

B. The integrable critical line

We now can use the results of Grimm and Warnaar28 to find
an integrable model involving all the vertices in Fig. 5. We are
interested mainly in the critical points, which can be written
in terms of the dilute BWM algebra. The dilute BWM algebra
extends the BWM algebra described in Appendix A to include
edges of the lattice uncovered by strands. In the two-color loop
model, these amount to allowing vertices to be empty of both
colors. The dilute generators act identically on the two colors,
and so include the remaining vertices in Fig. 5. In an obvious
notation, we then can write the Ř matrix as

Řj (ϕ) = t(ϕ)( )j + u1(ϕ)[(〉〉)j + (〈〈)j ]

+u2(ϕ)[(�)j + (�)j ] + v(ϕ)[(��)j + (��)j ]

+w1(ϕ)Ij + w2(ϕ)Ej + x(ϕ)Xj . (43)

In terms of the TL generators introduced in the previous
section, Ej = ejfj and Xj ≡ ej + fj , while Ij takes value
0 on the dilute configurations and 1 otherwise.

Since the nondilute vertices satisfy the BWM algebra, it is
simple to show that the operators

Bj ,Ej ,Ij ,( )j ,(〉〉)j ,(〈〈)j ,(�)j ,(�)j ,(��)j ,(��)j

constructed from the two-color loop model satisfy a di-
lute BWM algebra. Namely, with doubled lines here cor-
responding to single lines in Appendix A, and the Bj

defined in Eq. (39), these operators generate the dilute
BWM algebra with parameters [N = (q + q−1)2, ω = q3],
where q = e2iθ .

In Ref. 28, an integrable model based on the dBWM algebra
was derived. With n = −2 cos 2θ as before, its Boltzmann
weights are given by

t(ϕ) = − cos(2ϕ − 3θ ) − cos 5θ + cos 3θ + cos θ,

u1(ϕ) = −2 sin 2θ sin(ϕ − 3θ ),

u2(ϕ) = 2 sin 2θ sin ϕ,

v(ϕ) = −2 sin ϕ sin(ϕ − 3θ ), (44)

w1(ϕ) = 2 sin(ϕ − 2θ ) sin(ϕ − 3θ ),

w2(ϕ) = 2 sin ϕ sin(ϕ − θ ),

x(ϕ) = 2 sin ϕ sin(ϕ − 3θ ) .

We denote by ϕ0 the isotropic value which is closest to zero:

ϕ0 =
{

3θ
2 , if 0 < θ < π

3 ,

3θ
2 − π, if π

3 < θ < π .
(45)

The universal properties are independent of the anisotropy
parameter ϕ (as long as ϕ lies between 0 and ϕ0), but depend
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very strongly on θ , as we shall see. At the isotropic point
ϕ = 3θ/2, the weights can be rescaled to

t = 2 cos 3θ + 2 cos 2θ + 1,

u1 = u2 = 4 cos
θ

2
cos θ,

v = 2 cos θ + 1, (46)

w1 = w2 = 1,

x = −(2 cos θ + 1) .

The integrable model defined by Eqs. (43)–(44) obeys the
following properties: (i) the isotropic weights are invariant
under the transformations θ → 2π + θ and θ → −θ , so the
range of inequivalent couplings is θ ∈ [0,π ]. Each value of
n ∈ [−2,2] appears twice in this interval. (ii) Since there are
no loop ends, the number of loops mod 2 is the same as the
number of x vertices mod 2. This allows us to change the sign
of n by absorbing the sign in the weight x: (n,x) → (−n, − x).
Thus there are four distinct critical points for each value of
n ∈ (0,2), while there are two for n = 0 and n = 2. (iii) The
weights satisfy the inversion relation

Ř(ϕ)Ř(−ϕ) = 4 sin(2θ − ϕ) sin(2θ + ϕ)

× sin(3θ − ϕ) sin(3θ + ϕ) 1 . (47)

(iv) Rotating by 90o is equivalent to sending ϕ → 3θ − ϕ. (v)
The weights are trivial when u = 0: Ř(0) = 2 sin 2θ sin 3θ 1 .

(vi) The eigenvalues of the transfer matrix are preserved under
(u1,u2) → (−u1, − u2) and v → −v.

C. The quantum Hamiltonian

To gain intuition into this doubled loop model, it is useful
to find the equivalent 1D quantum Hamiltonian by taking the
very anisotropic limit ϕ → 0. The Hamiltonian is found from
the transfer matrix TL(ϕ) for L sites by

H := 2 sin 2θ sin 3θ
d log TL(ϕ)

dϕ

∣∣∣∣
ϕ=0

+ 2L sin 5θ 1 ,

yielding

H =
L∑

j=1

{4 cos 4θ sin θ ( )j + 2 cos 2θ sin 3θ

× [(〉〉)j + (〈〈)j ] + 2 sin 2θ [(�)j + (�)j ]

+ 2 sin 3θ [(��)j + (��)j ] − 2 sin θ Ej

− 2 sin 3θ Xj } . (48)

To find the Fermi velocity vf , we assume that in the scaling
limit this Hamiltonian is that of a conformal field theory. In
the next section, we will present much evidence in support of
this assumption. In a conformal field theory, the ground-state
energy (the lowest eigenvalue of H ) is32

E0
L � Le∞ − πc

6L
vf , (49)

where c is the central charge. Let 0
L(ϕ) be the dominant

eigenvalue of the transfer matrix. The analysis of Appendix B
indicates that the free energy of the loop model on a rhombic
lattice with angle α is given by [− log 0

L(ϕ)], where α =

πϕ/(2ϕ0) and ϕ0 is the isotropic value, as defined in Eq. (45).
In a conformal field theory, one expects32

− log 0
L(ϕ) � Lf∞(α) − πc

6L
sin α . (50)

Differentiating (50) around ϕ = 0 and comparing with Eq. (49)
yields

vf =
∣∣∣∣2π sin 2θ sin 3θ

2ϕ0

∣∣∣∣ ,

ϕ0 =
{

3θ
2 , if 0 < θ < π

3 ,

3θ
2 − π, if π

3 < θ < π .
(51)

IV. IDENTIFYING THE CRITICAL THEORIES

In this section, we present what we believe is convincing
evidence that the doubled loop model with Boltzmann weights
(44) is critical. We find the presumably exact central charge
of the conformal field theories describing the scaling limit,
and also give some of the dimensions of fields. We do this
by a combination of calculations exploiting the integrability,
comparison to a similar integrable model, and exact diagonal-
ization of the transfer matrix and the Hamiltonian for widths
up to L = 14 sites.

A. The four regimes

This critical line is parametrized by the value of θ ∈
[0,π ], related to the weight per loop by n = −2 cos 2θ .
Since the Fermi velocity vanishes at θ = π/3,π/2 and has
a discontinuity at θ = 2π/3, it is natural to expect that the
physics is discontinuous if θ is varied across these values. We
thus divide the critical line into four regimes, as described in
Table II.

All known integrable models with Boltzmann weights
parameterized by trigonometric functions of the anisotropy
parameter ϕ are critical, and this is no exception. One argument
for this is the existence of the lattice holomorphic operator
described in Appendix B. Another is the inversion-relation
calculation done below, which shows that with standard
assumptions about holomorphicity in ϕ, the free energy is
singular as this critical point. A numerical check is to use
exact diagonalization to find the largest eigenvalue of T and/or
the ground-state energy of H , and then fit the results to
Eqs. (49) or (50). To extract the central charge c, we use two
different-length systems to get rid of the extensive piece Le∞.
Doing this, we find the results given in Fig. 7. We see a very
nice convergence to the critical behavior as expected.

We combine these results with other arguments to conjec-
ture exact formulas for the central charge for all θ . We can
also identify precisely which conformal field theories describe
some critical lines. There are two types of conformal field
theories known to describe doubled loop models, and both
occur along this critical line. Unfortunately, the value of n = 0
at θ = 3π/4 of interest for the truncated CC model lies in one
of the regions where we do not understand the conformal field
theory. As is apparent from Fig. 7, we do know that c = 0 as
required there.
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FIG. 7. Numerical estimates for the central charge in the four critical regimes. Different symbols represent data points for consecutive
system sizes: L = 4,6 (+),L = 6,8 (×),L = 8,10 (∗),L = 10,12 (�), and L = 12,14 (�). Full lines represent the predicted exact values from
Table II.

At several special values of θ , the model simplifies. Namely,
when n = ±1, all loop configurations receive the same weight
[if n = −1, we transform (n,x) → (−n, − x) as explained in
Sec. III B]. Thus when computing the partition function, we
can sum up the four completely packed vertices to give a single
one with weight w1 + w2 + 2nx.

For θ = 2π/3, at the isotropic point, x = v = 0, so this
reduces to a six-vertex model with no staggering. Here, the
usual parameter33 has value

� = a2 + b2 − c2

2ab
= −1 ,

so this is in the same universality class as the antiferromagnetic
Heisenberg model. Thus the central charge is c = 1 and the
first thermal exponent is Xt = 1/2, in agreement with the
numerical results in Figs. 7 and 8.

At θ = π/6 and θ = 5π/6, we obtain a staggered version of
the eight-vertex model. Ordinarily the staggered eight-vertex
model is not solvable, but as we detail in Appendix C, this one
is not only solvable, but can be mapped onto a free-fermion
theory. There we show that there are two Majorana fermions
present, but only one of the two is critical. Thus the central
charge is c = 1/2 here, again consistent with the numerics.

B. Computation of an exact scaling dimension

Since the model is integrable, it is possible to derive
some quantities exactly. Here, we extract the dimension of

L = 12
L = 10
L = 8
L = 6
L = 4

θ

X
t

π5π
6

3π
4

2π
3

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
—— —

FIG. 8. Thermal exponent Xt in regime 4. Data points were
obtained by transfer-matrix diagonalization, and the solid line
represents the exact result for the integrable perturbation dimension
X(1,1;adj) = 2r

r+1 .
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an operator in the critical theory as a function of θ . This is
possible because at certain discrete values of θ , there exists
a deformation away from the critical point preserving the
integrability.28 The inversion-relation method33 yields the free
energy along this deformation, and by analyzing its expansion
around the critical point, we extract the value of the exponent
νint. This then yields the dimension of the operator, which
when added to the action causes the deformation.

It is convenient to parametrize the loop weight n within
each of the four regimes by a parameter r ,

n = 2ε cos
π

r + 2
, (52)

where ε = −1 in regimes 1 and 4 and ε = 1 in regimes 2 and
3 (see Table II).

The integrable deformations resulting in unitary field
theories occur at integer values of r in all four regimes.
Here, the dilute BWM algebra admits a “height” or “restricted
solid-on-solid” (RSOS) realization.28 Instead of treating the
loops as the degrees of freedom, on the dual lattice one
places height variables, which are integers restricted to a
certain interval. The loops then play the role of domain walls
separating regions of different heights.

The inversion-relation method is a way of computing
the free energy exactly after making assumptions about its
holomorphicity properties as a function of ϕ. The free energy
satisfies constraints following from the inversion relation (53)
below, and the fact that sending ϕ → 3θ − ϕ rotates the lattice
by 90◦. The holomorphicity assumptions then give a unique
solution to these constraints. Parameterizing the deformation
in our case by p, the inversion relation becomes28

Ř(ϕ,p)Ř(−ϕ,p) = (4p)−1 θ1(2θ − ϕ,p) θ1(2θ + ϕ,p)

× θ1(3θ − ϕ,p) θ1(3θ + ϕ,p) 1 , (53)

where θ1(u,p) is the standard elliptic theta function. This
indeed reduces to Eq. (47) in the critical limit p → 0. From
this, it is simple to show that the inverse of the transfer matrix
in the diagonal direction is given by forming a transfer matrix
out of products of Řj (−ϕ,p).

Conveniently, both Eq. (53) and the behavior under rota-
tional symmetry are identical to that of the model studied in
Ref. 34, so we utilize these results. The singular part of the free
energy approaching the critical point depends on p as fsing ∼
p2−νint , so the operator perturbing the critical theory in the
integrable direction has scaling dimension Xint = 2 − 2/νint.
Then we find

Xint =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
r−1
r+2 + 1, in regime 1,
r−1
r+2 , in regime 2,

3
r+2 + 1, in regime 3,

3
r+2 , in regime 4.

(54)

We have written these results in terms of r instead of θ to
emphasize that the derivation only applies to r integer, since
this is where Eq. (53) can be derived. However, we expect that
the results can be continued to all r within a given regime,
since the equations themselves depend on r as a continuous
parameter.

A good check of the validity of Eq. (54) for generic θ is
that it corresponds exactly to Xint = 2s, where s is the spin

of the discretely holomorphic parafermion ψs(z) described in
Appendix B, see Eq. (B6).

C. Description by conformal field theory

Here, we give formulas for the central charges in all four
regimes that are presumably exact. All are related to those
occurring in completely packed models. However, the doubled
loop models are not identical to completely packed models:
we have checked that the doubled loops have nontrivial fractal
dimension in regime 4 (see Sec. V C).

One type of critical behavior possible for a doubled loop
model is simply to have the two colors decouple in the
scaling limit. This occurs in the isotropic completely packed
version when x = −w1 = −w2, and is argued to persist in
a region around this point.20 The central charge is simply
twice cO(n) given in Eq. (38). Examining our numerical results
for c, we see that in regime 2, the central charge indeed is
converging nicely to 2cO(n) with the appropriate dependence
on n. When r is an integer, this is twice the central charge
of the conformal minimal models, and so the corresponding
height model should scale to two decoupled minimal models.
An additional check on this comes from the fact that the
dimension of the integrable perturbing operator in Eq. (54) is
twice that of an operator in a minimal model. Namely, we have
Xint = 2X1,2, where X1,2 = r−1

2(r+2) is the scaling dimension of
the �1,2 operator in the minimal model with central charge
c = 1 − 6

(r+1)(r+2) . It is thus natural to conjecture that in regime
2, the scaling limit of our integrable loop model is indeed
that of two decoupled completely packed loop models. These
conformal field theories have been extensively studied.35

In regime 1, the numerics for the central charge are
apparently converging to 2cO(n) + 1

2 . Thus here the loops
apparently decouple as well, but additional critical Ising
degrees of freedom appear. This is consistent with the mapping
to the Ising model at θ = π/6 described in Appendix C.
The scaling dimension Xint here is 2X1,2 + 1, leading to the
natural interpretation that the operator is a product of the
�1,2 operators in the two minimal models with the energy
operator in the Ising model, the latter having dimension one.
These extra Ising degrees of freedom, which also occur in
a certain regime of the square-lattice O(n) model,36 appear
through the following mechanism. The vertices of the loop
model obey a Z2 symmetry, in the sense that any vertex is
surrounded by an even number of empty edges. Thus empty
edges form polygons where each node has even degree, and
so they respect the geometry of Ising domain walls for Ising
variables σ lying on the dual lattice. Depending on the values
of the Boltzmann weights, these Ising variables may become
critical in the continuum limit. This is evidently what happens
in regime 1.

The critical behavior in regimes 3 and 4 is not that of two
decoupled models. As mentioned above in Sec. III A, in the
completely packed version of the doubled loop model, there
occurs a coupled critical point corresponding to the SUr (2) ×
SUr (2)/SU2r (2) WZW coset model, with central charge cr

(42). The numerical analysis in Fig. 7 nicely fits to cr in regime
4, and agrees with the Ising value c = 1/2 at θ = 5π/6, derived
in Appendix C. Moreover, when r is an integer, the exponent
Xint in Eq. (54) belongs to the above coset theory. Thus it is
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natural to conjecture that the central charge throughout regime
4 is cr . As we see from our numerics at n = 0 (see Sec. V C),
the fractal dimension of a single loop is df < 2, so regime 4
represents a “dilute branch” of the coset theory.

Likewise, in regime 3 the data seem to be converging to cr +
1/2, agreeing with the six-vertex value c = 1 at θ = 2π/3. The
exponent Xint is one greater than the value in regime 4, so it is
natural to interpret that the operator is multiplied by the Ising
energy operator of dimension one. Thus, like in regime 1, the
critical theory presumably includes an extra Ising piece.

Outside r integer, the conformal field theory in regimes
3 and 4 is not understood. Moreover, we will see in the
subsequent section that even though the formula for the central
charge is applicable for all r , it is not even clear whether
dimensions of exponents can be continued to values of |n| < 1.

V. CRITICAL BEHAVIOR IN REGIME 4

The main motivation of this paper is to explore a doubled
loop model arising in the truncation of the Chalker-Coddington
network model. For a connection to disordered systems, the
weight per loop n and the central charge c must be zero. We
have two n = 0 points, but for θ = π/4 inside regime 1, the
corresponding critical field theory seems to have nothing to
do with the CC model. Not only do the different colors of
loop decouple, but the extra Ising degree of freedom makes
c �= 0. We thus in this section focus on the behavior in regime
4, which contains the other n = 0 point at θ = 3π/4.

As noted above, we do not have a conformal field theory
description valid in regime 4 outside of integer r . It therefore
seems a good idea to exploit the fact that the associated height
description at these points is described by the coset conformal
field theory SU(2)r × SU(2)r/SU(2)2r .

A. Integrable perturbations

This coset theory is known to have two integrable pertur-
bations. One of them, found by using level-rank duality on the
results of Ref. 37, is by the operator with dimension Xint = 3

r+2
discussed above. This perturbation describes the scaling limit
of the height model with elliptic Boltzmann weights.28 In terms
of the loop model, we have found that the discrete parafermion
ψs(z) of Appendix B is the chiral part of the corresponding
operator. This parafermion consists of the insertion of a one-leg
defect for each loop flavor.

The other integrable perturbation also has a very natural
meaning in terms of loops. This perturbing operator corre-
sponds to the (1,1;adjoint) operator of dimension X(1,1;adj) =

2r
r+1 . Several arguments imply that this perturbation corre-
sponds to changing the weight per unit length of the loops.38

This integrable field theory describes the scaling limit of an
integrable height model,39 and using the BWM algebra, it
is described in Ref. 38 how to relate this height model to a
dilute doubled loop model very similar to the one we study
here. Moving away from the critical point in this similar
model turns out to be effectively changing the weight per unit
length. The second argument implying this result involves the
S matrices for this integrable field theory, which decompose
into the tensor product of S matrices of two minimal models
Sr × Sr .40 It is natural to interpret the worldlines of a particle

in a single minimal model as a loop in the O(n) model.41 Thus
when the S matrix is given by this tensor product, it is natural
to interpret the worldlines of such particles as doubled loops;
when two particles scatter, they obey one of the four processes
in the vertices w1, w2, and x pictured in Fig. 5. In such an
interpretation, the weight per unit length of the loop is related
to the mass of the particle. In the field theory, moving along
this integrable line corresponds precisely to varying the mass
of the particle.

We denote Xt the thermal exponent, defined as the
conformal dimension for the first excited state in the zero-
leg sector. The numerical calculation of Xt (see Fig. 8)
brings two observations. In the region 5π/6 � θ < π , the
thermal exponent Xt converges to X(1,1;adj) = 2r

r+1 even for
generic values of θ , whereas X(1,1;adj) was derived only for
integer values of r . This indicates that the results from
the SU(2)r × SU(2)r/SU(2)2r coset WZW model may be
continued to arbitrary 5π/6 � θ < π . However, in the region
2π/3 < θ � 5π/6, Xt clearly deviates from the continued
value 2r

r+1 ; this shows that not all exponents of the loop model
are given by analytic continuation of the WZW coset model in
this region, including our point of interest θ = 3π/4.

B. Correlation length exponent ν

The correlation length exponent ν is defined as the analog
for the loop model of νCC (4). In the CC model, the effect of
perturbing the energy level E away from the transition value
Ec amounts to taking β and β ′ out of the critical line (17).
The analog of this perturbation in the integrable loop model
is to introduce a staggering of the spectral parameter between
the even and odd sublattices, with symmetric values around
the isotropic spectral parameter ϕ0 (51); ϕ = (1 ± λ)ϕ0, in the
range −1 � λ � 1.

The parameter λ acts in a similar way to (β − βc) in
the original CC model. At λ = −1, the only allowed loops
are those with minimal length, winding around the vertices
of one sublattice (say, the even one). At λ = 1 loops also
have minimal length, but wind around the odd sublattice.
The critical transition takes place at λ = 0, where the two
sublattices become equivalent, and loops may be very long.
In the limit λ → 0, we expect this perturbation to develop a
correlation length, scaling as

ξ ∼ |λ|−ν . (55)

Since this staggering does not respect the rapidity lines of the
square lattice, it breaks integrability.

Let us first discuss the point θ = 5π/6, where the model
maps to free fermions and remains solvable when the λ

perturbation is included (see Appendix C). At this point, we get
the analytical result ν = 2, whereas the energy operator of the
free-fermion theory is Xt = 1. In Appendix C, we show that
the effective theory is a massive Majorana fermion with mass
proportional to λ2 and not λ. Thus, at θ = 5π/6, we have
the relation between ν and the dimension of the perturbing
operator:

Xt = 2 − 2

ν
. (56)
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FIG. 9. Data collapse for the effective thermal exponent Xt (L,λ)
in the presence of a λ perturbation. The value used for this plot is
1/ν = 0.9.

It is natural to assume that both ν and Xt are continuous in
θ , so the effective-mass term should still be proportional to λ2

outside θ = 5π/6, and the relation (56) holds all along regime
4.

For θ �= 5π/6, exponent ν is only accessible numerically,
through finite-size scaling. The correlation-length exponent ν

is obtained by assuming a one-parameter scaling law for the
energy gap in the presence of the staggered perturbation λ. For
λ � 0, we expect the behavior:

ln
0(λ)

1(λ)
� 2π

L
F (λ L1/ν), (57)

where F is a scaling function. Since eigenvalues are unchanged
under λ → −λ, F must be an even function. In particular, at
θ = 3π/4, like for the truncated CC model (see Sec. II D), we
get the best data collapse (see Fig. 9) for the value

ν � 1.1 . (58)

To our numerical precision, this value is close to what one
would get from Eq. (56) with Xt � 0.3. This is an indication
that the relation (56) should hold throughout regime 4.

C. Other exponents

A finite-size scaling plot of the gap corresponding to �1 =
�2 = 1 is shown in Fig. 10. The fact that it scales to zero faster
than 1/L indicates that X1,1, and hence X|G|2 , are consistent
with zero. In the untruncated CC model, the vanishing of the
analogous exponent XCC

|G|2 is due to probability conservation
(see Sec. II D), but as far as we know there is no fundamental
reason for this property to hold also in the truncated model, and
it would be interesting to investigate this further. The observed
slope in Fig. 10 suggests existence of an irrelevant operator
with scaling dimension ≈3.2.

Moreover, we observe numerically that Xt = X2,2. Hence,
like for usual dilute polymers, this means that Xt is associated
to a perturbation of the monomer fugacity [but different from

L

E
1
,1
−

E
0

108642

10

1

0.1

0.01

FIG. 10. Log-log plot of the energy gap for the watermelon (1,1)
sector. Data points are fitted by a line of slope �−2.2, and hence the
conformal dimension is X1,1 = 0.

the coset-model continuation to r = 0, which would yield
X(1,1;adj) = 0], and the fractal dimension of a path is

df = 2 − X2,2 � 1.71 . (59)

VI. DISCUSSION

Regimes 3 and 4 of the integrable model are particularly
interesting, as the two loop colors remain coupled in the
continuum limit. They are described by the “dilute branch”
of the SU(2)r × SU(2)r/SU(2)2r WZW coset CFT (the same
CFT as for the completely packed case20), with an additional
Ising degree of freedom in regime 3. Strictly speaking, this
theory is only valid at the RSOS points, but some critical
properties (including the central charge) extend to the loop
model for generic fugacity n. However, differences between
the loop and RSOS spectra exist, as shown by our results
on the thermal exponent Xt . An analytic study of the loop
model through the Bethe Ansatz equations is considered for
future work. One also needs to understand if a Coulomb-gas
construction (most probably with a three-dimensional target
space) could reproduce the coset results for generic n.

The original motivation for the present work was to propose
an exactly solvable approximation to the IQHE transition.
Unfortunately, our results for the correlation-length exponent
ν clearly indicate that the point n = 0 of the integrable model is
not in the universality class of IQHE. However, this model is a
critical, integrable point in the phase diagram of our modified
CC model. It should really be considered as the first order
in a hierarchy of truncated models, converging to the IQHE
universality class. Higher-order truncated models should also
contain integrable points, which may be built by “fusing” the
edges of the first-order model, following Ref. 39 or a more
recent approach based on additional ZN symmetry.42

From the numerical point of view, we used the only known
efficient method to study a generic loop model: transfer-matrix
diagonalization. However, the inherent limitations on the
system size prevent us from obtaining sharp estimates for
the exponents, especially for ν. Recently, new Monte-Carlo
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algorithms have been proposed to simulate 2D loop models.43

We hope to adapt this new approach to two-color models, and
get more precise estimates for the exponents of our truncated
CC model.
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APPENDIX A: THE BWM ALGEBRA

In this Appendix, we recall the motivation and definition of
the BWM algebra in a graphical language. The BWM algebra21

is a braid-monoid algebra, an object relevant to knot theory.
It was originally designed to compute a certain link invariant,
and later it was realized that it could be represented by RSOS
models related to affine Lie algebras.31 In Ref. 28, a dilute
version of the BWM algebra was constructed, together with
the corresponding R matrix.

In the context of knot theory, the basic objects under
consideration are braids. Let (p1, . . . ,pL) be L distinct points
in the complex plane, and define two copies of each point
in three-dimensional space, p′

j = pj × {0},p′′
j = pj × {1}, so

that the points {p′
j } and {p′′

j } lie in two parallel planes. For
all j = 1, . . . ,L, take a curve �j enclosed between the two
planes, and connecting p′

j to p′′
j . Furthermore, impose that

the �j ’s do not intersect each other. Denote the multiplet
� = (�1, . . . ,�L): a braid β is then an equivalence class of
�’s, modulo continuous deformations of the curves. A typical
braid is depicted in Fig. 11.

Multiplication of two braids β and β ′ is defined by the
concatenation of the two corresponding diagrams, with the
convention that diagrams act from bottom to top: the product
ββ ′ corresponds to β above β ′. The β’s form the braid group,
generated by the elementary braids Bj ,B

−1
j , which satisfy the

relations:

BjB
−1
j = B−1

j Bj = 1, (A1)

BjBj+1Bj = Bj+1BjBj+1, (A2)

BjB� = B�Bj , if |j − �| � 2. (A3)

Consider now multiplets � = (�1, . . . ,�L) of nonintersect-
ing curves connecting all the elements of {p′

j } ∪ {p′′
j }, without

FIG. 11. An element of the braid group (left) and a word of the
braid-monoid algebra (right) for L = 4.

the restriction that a curve should go from a p′
j to a p′′

k .
The corresponding diagrams are then words on the alphabet
{Bj ,B

−1
j ,Ej , j = 1, . . . ,(L − 1)}, where the meaning of the

letters Bj ,B
−1
j , and Ej is given in Fig. 12. The algebra on these

words is called a braid-monoid algebra. It has two parameters
(N,ω), and is defined by the braid-group relations (A1) and
(A2), together with the additional relations (see Fig. 13):

E2
j = N Ej, (A4)

EjEj±1Ej = Ej , (A5)

BjEj = EjBj = ω Ej , (A6)

BjBj±1Ej = Ej±1BjBj±1 = Ej±1Ej . (A7)

Equations (A4) and (A5) mean that the Ej form a Temperley-
Lieb algebra with loop weight N .

The BWM algebra is a braid-monoid algebra (A1)–(A7)
where one imposes a linear relation between Bj , B−1

j , and Ej :

Ej = 1 + Bj − B−1
j

q − q−1
, where N = 1 + ω − ω−1

q − q−1
. (A8)

The reason for introducing such a constraint is that the resulting
algebra supports a linear form (the Markov trace), which
is identical to a geometric invariant of the diagrams � (the
Kauffman polynomial).21

The dBWM algebra28 is obtained by allowing vacancies, or
equivalently by taking multiplets of curves � = (�1, . . . ,��)
with 0 � � � L. This amounts to adding the generators

Ij ,( )j ,(〉)j ,(〈)j ,(∪)j ,(∩)j ,(�)j ,(�)j ,

whose action is depicted in Fig. 14 . In Eqs. (A1) and (A8), 1 is
replaced by Ij , so that the Bj ,B

−1
j , and Ej still form a BWM

algebra on the set of occupied sites. Additional relations for the
dilute generators should be included to implement invariance
under continuous deformation of the curves in the presence of
vacancies. The full set of dBWM relations is given in Ref. 28.

APPENDIX B: DISCRETELY HOLOMORPHIC
PARAFERMION IN THE LOOP MODEL

In this Appendix, we show that the two-color loop model
admits a discretely holomorphic parafermion ψs(z)44–46 ex-
actly on the integrable manifold (44). The parafermion ψs(z)
is defined on the midpoints of the dual lattice L∗, and inserts
a one-leg defect for each color at point z. In the two-point
function 〈ψs(0)ψs(z)〉, there is a black (respectively, grey) path
γ1 (respectively, γ2) connecting 0 and z, and one includes a
phase factor involving the winding angles W of the paths
γ1 and γ2:

〈ψs(0)ψs(z)〉
= 1

Z

∑
(γ1,γ2)0→z

∑
C|(γ1,γ2)

�(C) e
is
2 [W (γ1)+W (γ2)] , (B1)

where the first sum is over all possible pairs of paths from 0 to
z, the second sum is over the loop configurations C compatible
with γ1 and γ2, and �(C) is the Boltzmann weight for a loop
configuration C (see Fig. 15).
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Bj B−1
j Ej

j j + 1 j j + 1 j j + 1

. . .. . . . . . . . . . . . . . .

FIG. 12. Generators of a braid-monoid algebra.

We impose discrete Cauchy-Riemann (CR) on
〈ψs(0)ψs(z)〉: ∑

z∈�
〈ψs(0)ψs(z)〉 δz = 0 , (B2)

where the sum is over the edges of an elementary plaquette
of L∗, and the δz’s are the corresponding elementary dis-
placements. For the discrete CR equations (B2) to hold, it is
sufficient to fix the external loop configuration outside a given

plaquette (see Fig. 16), and ask the total contribution of internal
configurations to vanish.44,46 This determines a linear system
of equations for the Boltzmann weights. To get anisotropic
solutions, we consider the analog problem on a rhombic lattice
of angle α.45,46 Setting

λ := e
iπs

2 , μ := eiα(1+s) , (B3)

we get the 7 × 7 linear system for the unknowns
(t,u1,u2,v,w1,w2,x):

t + μλ−2u1 − μu2 − v = 0,

n2u1 − λ−2u2 − μλ2v + μλ−2(n2w1 + w2 + 2nx) = 0,

−λ2u1 + n2u2 + μλ−4v − μ(w1 + n2w2 + 2nx) = 0,

−μλ2u1 + μλ−4u2 + n2v − λ4w1 − λ−4w2 − 2x = 0, (B4)

nλu1 − nλ−1u2 − μλ−1v + μλ−1[n(w1 + w2) + (n2 + 1)x] = 0,

nλ−1u1 − λu2 − nμλv + μλ−3(nw1 + x) + μλ(w2 + nx) = 0,

−u1 + nλ2u2 + nμλ−2v − μλ−2(w1 + nx) − μλ2(nw2 + x) = 0.

As a first step, we need to determine the spin s by going back to
the isotropic case α = π/2. Imposing u1 = u2 and w1 = w2,
Eq. (B4) reduces to a 5 × 5 system, whose determinant is

D(n,λ) = −λ−4(λ2 + 1)(nλ4 − 1)2(λ4 + λ−4 + n3 − 3n) .

(B5)

Using the parametrization n = −2 cos 2θ , this determinant
vanishes when

exp(2iπs) = exp(±6iθ ) . (B6)

For a general angle α, the solution of Eq. (B4) is a set of
α-dependent weights t(α), . . . x(α). If we apply the substitu-
tion

α → ϕ

1 + s
, (B7)

we observe that the solution of Eq. (B4) is identical to
the integrable weights (44). This is analogous to what was
found for various other integrable models with a discrete
holomorphic parafermion.44–46 Note that the relation (B7)
is consistent with the discussion on the Fermi velocity in
Sec. III C.

Moreover, at the Ising points θ = π/6,5π/6 (see
Appendix C), the spin s = 1/2 is consistent with Eq. (B6).

APPENDIX C: FREE FERMIONS AT θ = π/6,5π/6

1. Mapping to a staggered 8V model

At θ = π/6 and θ = 5π/6, the model maps to a free
fermion Hamiltonian through the mapping sequence:

two-color loop → square-lattice O(n = 1)

→ staggered 8V → free fermions.

In both cases, we start from the two-color loop model and
do the sign change (n,x) → (−n, − x) to get n = 1. With
this value of n, one may discard loop connectivities, and the
model is simply local, with occupied and empty edges. After
the exchange of occupied/empty edges, we get a square-lattice
O(n) model36 with n = 1 and weights:

t̃ = w1 + w2 − 2x, ũ1 = u1, ũ2 = u2,
(C1)

ṽ = v, w̃1 + w̃2 = t .

(The tilde is here to avoid confusion between the O(n) and
two-color loop model Boltzmann weights.) For θ = π/6, we
have the specific values

t̃ = sin 2ϕ −
√

3,

ũ1 =
√

3 cos ϕ,

ũ2 = −
√

3 sin ϕ,
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FIG. 13. Algebraic rules in the braid-monoid algebra with parameters (N,ω).

ṽ = sin 2ϕ,

w̃1 = − cos

(
π

6
− 2ϕ

)
−

√
3

2
,

w̃2 = cos

(
π

6
+ 2ϕ

)
−

√
3

2
, (C2)

which are exactly those of the integrable square-lattice O(n)
model36 with n = 1 at the dilute critical point. The O(n = 1)
model maps in turn to an eight-vertex model (see Fig. 17) with
staggered weights

ω1 = ω2 =
√

3 cos ϕ,

ω3 = ω4 = −
√

3 sin ϕ,

(ω5,ω6) =
{

(− sin 2ϕ−√
3, sin 2ϕ−√

3), on even sites,
(sin 2ϕ − √

3,− sin 2ϕ−√
3), on odd sites,

ω7 = ω8 = sin 2ϕ . (C3)

At θ = 5π/6, one gets the same 8V model, up to irrelevant
signs.

2. Very anisotropic limit: the XY chain in a magnetic field

In terms of the Pauli matrices σj , the 8V Ř matrix reads

Ř8V
j = 1

4 (ω1 + ω2 + ω5 + ω6)1 + 1
4 (ω1 + ω2 − ω5 − ω6)

× σ z
j σ z

j+1 + (ω3 σ−
j σ+

j+1 + ω4 σ+
j σ−

j+1+ω7 σ−
j σ−

j+1

+ω8 σ+
j σ+

j+1) + 1
4 (ω1 − ω2)

(
σ z

j + σ z
j+1

)
+ 1

4 (ω5 − ω6)
(
σ z

j − σ z
j+1

)
. (C4)

We can now take the very anisotropic limit ϕ → 0. Denoting
by a prime the derivative with respect to ϕ at ϕ = 0, and using
the weights (C3), we obtain

Ř
′8V
j = −

√
3(σ−

j σ+
j+1 + σ+

j σ−
j+1) + 2(σ−

j σ−
j+1 + σ+

j σ+
j+1)

− (−1)j
(
σ z

j − σ z
j+1

)
. (C5)

( )j

j j + 1 j j + 1

( )j

j j + 1

j j + 1

( )j ( )j

j j + 1

Ij

j j + 1

Ej

j j + 1

Bj

j j + 1

B−1
j

j j + 1

( )j

j j + 1 j j + 1

( ∪ )j ( ∩ )j

FIG. 14. The generators of the dilute BWM algebra.
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0

z

FIG. 15. A loop configuration contributing to 〈ψs(0)ψs(z)〉.

The critical Hamiltonian is given by

H0 = −1

2

L∑
j=1

Ř
′8V
j = −1

4

L∑
j=1

[
Jx σ x

j σ x
j+1 − Jy σ

y

j σ
y

j+1

+ 2h (−1)j σ z
j

]
, (C6)

where Jx = (2 − √
3), Jy = (2 + √

3), and h = 2. The alter-
nating sign of the last term in Eq. (C6) can be eliminated by
the unitary change of basis:

H0 → U †H0U , where U :=
L/2∏
�=1

σx
2�−1 . (C7)

This maps H0 to an XY chain in a magnetic field:47,48

HXY = U †H0U = −1

2

L∑
j=1

[
(1 + γ ) σx

j σ x
j+1

+ (1 − γ ) σ
y

j σ
y

j+1 + h σ z
j

]
, (C8)

where γ = −√
3/2 and h = 2. In particular, we have learned

that this particular point of the XY spin chain is exactly
equivalent to the integrable dilute O(n = 1) model.

3. Staggered perturbation associated to ν

The setting of the 8V model also allows us to consider
a staggered perturbation like the one defining exponent ν

(see Sec. V B). To do this, we introduce staggered spectral

parameters (1 ± λ)ϕ on the even/odd sites. We take the very
anisotropic limit ϕ → 0, with λ fixed. This way, the parameter
λ controls the strength of the perturbation. The resulting
Hamiltonian has the form

H (λ) = H0 + λH1,

where

H1 = −1

2

L∑
j=1

(−1)j Ř
′8V
j

= −1

4

L∑
j=1

(−1)j
(
Jx σ x

j σ x
j+1 − Jy σ

y

j σ
y

j+1

)
, (C9)

and Jx and Jy are the same as for H0. After the unitary change
of basis defined by U , we get the perturbing term:

Hp = U †H1U = −λ

2

L∑
j=1

(−1)j
[
(1 + γ ) σx

j σ x
j+1

+ (1 − γ ) σ
y

j σ
y

j+1

]
. (C10)

Staggered 6V and 8V models were studied by various
authors,49 but to our best knowledge, the case of the perturba-
tion (C10) has not been treated. We will thus use the technique
of Ref. 47 to solve it exactly.

4. Exact free-fermion solution

In this paragraph, we expose the exact solution of H (λ) for
general values of γ, h, and λ. Following Ref. 47, we can solve
the model H (λ) by a Jordan-Wigner transformation, mapping
the Pauli matrices σj to fermion operators:

cj :=
(

j−1∏
�=1

σ z
�

)
σ+

j , c
†
j :=

(
j−1∏
�=1

σ z
�

)
σ−

j ,

(C11)

c
†
j cj = 1

2

(
1 − σ z

j

)
,

obeying anticommutation relations:

{cj ,c�} = 0 , {cj ,c
†
�} = δj� . (C12)

In this language, the perturbed Hamiltonian reads

H (λ) = −
L∑

j=1

{
[1 + (−1)j λ][c†j cj+1 + c

†
j+1cj + γ (c†j c

†
j+1

+ cj+1cj )] + h

(
1

2
− c

†
j cj

)}
. (C13)

We introduce two species of fermions

c1,� := c2� , c2,� := c2�−1 , (C14)

(1) (2) (3) (4) (5) (6) (7)

FIG. 16. External loop connectivities outside an elementary plaquette.
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ω1 ω2 ω3 ω4 ω6ω5 ω7 ω8

FIG. 17. Correspondence between the 8V model and the O(n = 1) model. The mapping depicted here is valid on one sublattice, say even
sites. On odd sites, all arrows must be reversed.

and their Fourier modes

cμ,q := 1√
L/2

L/2∑
�=1

ei�qcμ,� ,

(C15)

q = 2πm

L/2
− π , m = 1, . . . ,

L

2
.

We can now rewrite H (λ) as

H (λ) =
∑

−π<q�π

∑
μ,ν

[
c†μ,qAμν,qcν,q + 1

2
(c†μ,qBμν,qc

†
ν,−q

− cμ,−qBμν,qcν,q)

]
, (C16)

where the matrices Aq and Bq read

Aq =
(

h α∗
q

αq h

)
, Bq =

(
0 −β∗

q

βq 0

)
,

αq := −[(1 + λ)eiq + (1 − λ)] , (C17)

βq := γ [(1 + λ)eiq − (1 − λ)] .

Like in Ref. 47, the energies εμ(q) are the square roots of the
eigenvalues of (Aq + Bq)(Aq − Bq):

ε1,2(q) = 2

√
h2

4
+ (1 + γ 2λ2) cos2

q

2
+ (γ 2 + λ2) sin2

q

2
∓
√

4γ 2λ2 + h2
∣∣∣cos

q

2
+ iλ sin2

q

2

∣∣∣2 . (C18)

This is the two-branch dispersion relation for arbitrary
γ, h, and λ.

To express the corresponding eigenmodes, we need the
unitary 2 × 2 matrices Wq,Vq defined by the linear relations

(Aq − Bq)Wq = VqDq , (Aq + Bq)Vq = WqDq ,

Dq :=
(

ε1(q) 0

0 ε2(q)

)
. (C19)

The Bogoliubov transformation diagonalizing H (λ) is

ημ,q := 1

2

∑
ν

[(W + V )†μν,q cν,q − (W − V )†μν,q c
†
ν,−q].

(C20)

The unitarity of Vq and Wq ensures the canonical anticommu-
tation relations

{ημ,q,ημ′,q ′ } = 0 , {ημ,q,η
†
μ′,q ′ } = δμμ′δqq ′ . (C21)

In terms of the η’s, the Hamiltonian reads

H (λ) =
∑

−π<q�π

∑
μ=1,2

εμ(q) η†
μ,qημ,q . (C22)

Note that there are L/2 distinct momenta q, and that each
momentum corresponds to two modes μ = 1,2. Thus, we
recover L independent modes ημ,q .

As a final step, we perform the change

ημ,q → η̃μ,q =
{

ημ,q, if q � 0,

η
†
μ,q, if q < 0,

(C23)

so that the modes with q < 0 are now considered as holes. the
Hamiltonian becomes

H (λ) =
∑

−π<q�π

∑
μ=1,2

ε̃μ(q) η̃†
μ,q η̃μ,q , where

ε̃μ(q) : = sgn(q) εμ(q) . (C24)

5. Critical Majorana fermion at h = 2, and λ = 0

The dispersion relation of the XY chain in a magnetic field
is obtained by setting λ = 0 in Eq. (C18):

ε1,2(q) = 2

√(
h

2
∓ cos

q

2

)2

+ γ 2 sin2
q

2
(λ = 0) .

(C25)
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FIG. 18. The dispersion relation for h = 2,γ = −
√

3
2 . Left: crit-

ical case λ = 0. Right: λ = 1
2 . The full (respectively, dotted) lines

represent ε̃1 (respectively, ε̃2).

For h = 2, ε1 is critical at q = 0, whereas ε2 is not critical:50

ε̃1(q) = 4 sin
q

4

√
sin2

q

4
+ γ 2 cos2

q

4
, (C26)

ε̃2(q) = 4 sgn(q) cos
q

4

√
cos2

q

4
+ γ 2 sin2

q

4
. (C27)

The dispersion relation ε̃1(q) is approximately linear at q = 0
(see Fig. 18). In the ground state, all levels with −π < q < 0
are filled: this is a Fermi sea with only one Fermi level qf = 0,
and thus it corresponds to a Majorana fermion with central
charge c = 1/2. The critical eigenmodes are obtained from
Eq. (C20):

η1,q = cos
θ1,q

2
(c1,q + c2,q) + i sin

θ1,q

2
(c†1,−q + c

†
2,−q),

η2,q = cos
θ2,q

2
(c1,q − c2,q) + i sin

θ2,q

2
(c†1,−q − c

†
2,−q),

(C28)

where

θ1,q := Arg
(

1 − cos
q

2
− i sin

q

2

)
,

(C29)
θ2,q := Arg

(
1 + cos

q

2
+ i sin

q

2

)
.

After the change η → η̃, Eq. (C23), the continuum limit is
described by the effective Hamiltonian

H0 � ivf

∫
dx η̃

†
1∂xη̃1. (C30)

6. Gapped theory at h = 2 and λ > 0

When the λ perturbation is turned on, an energy gap opens
at q = 0 (see Fig. 18):

�E := 2ε1(q = 0) = 2|
√

1 + γ 2λ2 − 1| ∼ γ 2λν , ν = 2 .

(C31)

To understand this value of ν, we shall analyze the perturbing
term Hp in terms of the critical modes η̃1,q (C28). The relations
(C28) can be inversed, to give

c1,q + c2,q = cos
θ1,q

2
η1,q − i sin

θ1,q

2
η
†
1,−q := a1,q ,

c1,q − c2,q = cos
θ2,q

2
η2,q − i sin

θ2,q

2
η
†
2,−q := a2,q .

(C32)

The perturbing term has the expression

Hp = 1

2

∑
−π<q�π

{(1 − cos q) (a†
1,qa1,q − a

†
2,qa2,q )

+ i sin q
[
a
†
2,qa1,q+

γ

2
(a†

1,qa
†
1,−q − a

†
2,qa

†
2,−q) − H.c.

]
− γ (1 + cos q) (a†

2,qa
†
1,−q + a1,−qa2,q)} . (C33)

In the region q � 0, the first term in Eq. (C33) is of order
q2, and thus it generates irrelevant terms of the form η̃

†
1∂

2
x η̃1

in the continuum limit. The second term is of order q, and
corresponds to η̃

†
1∂xη̃1, which renormalizes the Fermi velocity.

At first order in λ, the third term has no effect on the continuum
theory. However, in second-order perturbation in λ, it generates
terms of the form (̃η†

2η̃2)(̃η†
1η̃1), which are nonvanishing, since

the lowest η̃2 modes are occupied in the ground state. From this
analysis, we obtain the effective Hamiltonian in the continuum
limit,

Heff(λ) ∝
∫

dx (i η̃
†
1∂xη̃1 + const × γ 2λ2 η̃

†
1η̃1) .

(C34)

The “mass term” has dimension Xt = 1, and the energy gap
thus scales as

�E ∝ (λ2)
1

2−Xt .

Comparing with (C31), we get the scaling relation

Xt = 2 − 2

ν
. (C35)
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